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Abstract. A general method to construct SO(n)-invariant

Lagrangian submanifolds in complex Euclidean n-space was intro-

duced in [6]. In this paper we extend the method to construct

SO(k, n − k)-invariant Lagrangian submanifolds in an indefinite

complex Euclidean spaces C
n
k . To do so, we introduce the notion

of complex extensors in C
n
k . We show that a complex extensor

in C
n
k is a Lagrangian H-umbilical submanifold. Conversely, we

prove that, except the flat cases, Lagrangian H-umbilical sub-

manifolds in C
n
k are Lagrangian pseudo-Riemannian spheres, La-

grangian pseudo-hyperbolic spaces, complex extensors of a unit

pseudo-Riemannian sphere, or complex extensors of a unit pseudo-

hyperbolic space.

1. Introduction. The complex number m-space Cm with complex

coordinates z1, . . . , zm endowed with gm,k: the real part of the Hermitian

form

bm,k(z,w) = −
k
∑

j=1

z̄jwj +
m
∑

j=k+1

z̄jwj , z, w ∈ Cm,(1.1)
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is a flat indefinite complex space with complex index k. We simply denote

the pair (Cn, gm,k) by Cm
k which is called the indefinite complex Euclidean

m-space with complex index k.

A submanifold M of Cm
k is called totally real if the almost complex

structure J of Cm
k carries each tangent space of M into its corresponding

normal space [14]. It is called Lagrangian if the almost complex structure

of Cn
k interchanges the tangent and the normal spaces of M . Lagrangian

submanifolds play some important roles in symplectic geometry, Riemannian

geometry as well as in mathematical physics (see [10]). (For results on

Lagrangian submanifolds from Riemannian geometric point of views, see for

examples, [2]-[4], [6]-[15], [18, 19, 22]).

Among examples of Lagrangian submanifolds with large symmetric

groups in complex Euclidean n-space Cn, we mention those which are in-

variant under the standard action of SO(n) on Cn. A general method to

construct SO(n)-invariant Lagrangian submanifolds in Cn has been intro-

duced in [6]. It was proved in [6] that one obtains SO(n)-invariant subman-

ifolds by constructing the complex extensors of the unit hypersphere of En

via a unit speed curve in the complex plane C.

The notion of complex extensors has been applied in [3] to show how

to embed a time slice of the Schwarzchild spacetime that models the outer

space around a massive star as a SO(n)-invariant Lagrangian submanifold.

In this paper we extend the method of [6] to indefinite complex Eu-

clidean spaces which provides us a way to construct SO(k, n − k)-invariant

Lagrangian submanifolds in Cn
k . Our idea is to extend the notion of com-

plex extensors in Cn to complex extensors in Cn
k . We show that complex

extensors in Cn
k are Lagrangian H-umbilical submanifolds. Our main result

states that, except the flat ones, Lagrangian H-umbilical submanifolds in Cn
k

are Lagrangian pseudo-hyperbolic spaces, Lagrangian pseudo-Riemannian

spheres, complex extensors of the unit pseudo-hyperbolic space, or complex

extensors of the unit pseudo-Riemannian sphere via unit speed curves in the
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complex plane. As byproduct, we obtain, for each k ≥ 1, abundant new

examples of SO(k, n − k)-invariant Lagrangian submanifolds in Cn
k .

2. Preliminaries. In this section, we briefly recall some facts about

indefinite complex space forms. For more details, we refer the reader to [1].

We put C∗ = C − {0}.

Let M̃n
s (4c) be an indefinite complex space form of complex dimension

n and complex index s. The complex index is defined as the (complex)

dimension of the largest complex negative definite vector subspace of the

tangent space. The curvature tensor R̃ of M̃n
s (4c) is given by

R̃(X,Y )Z

= c(〈Y,Z〉X − 〈X,Z〉Y + 〈JY,Z〉JX − 〈JX,Z〉 JY + 2 〈X,JY 〉JZ),

where J denotes the complex structure. We refer to [1] for the construction of

the standard models of indefinite complex space forms CPn
s (4c), when c > 0,

CHn
s (4c), when c < 0 and Cn

s . For our purposes it is sufficient to know that

there exist pseudo-Riemannian submersions, called Hopf fibrations,

π : S̆2n+1
2s (c) → CPn

s (4c) : z 7→ z ·C⋆

if c > 0 and if c < 0 by

π : H̆2n+1
2s+1 (c) → CHn

s (4c) : z 7→ z · C⋆,

where

S̆2n+1
2s (c) =

{

z ∈ Cn+1|bs,n+1(z, z) =
1

c

}

, c > 0,

H̆2n+1
2s+1 (c) =

{

z ∈ Cn+1|bs+1,n+1(z, z) =
1

c

}

, c < 0,

and bp,q is the standard Hermitian form with index p on Cq.

In [1] it is shown that locally any indefinite complex space form is holo-

morphically isometric to either Cn
s , CPn

s (4c), or CHn
s (4c).
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Since a submanifold M of a Kähler manifold is Lagrangian if and only if

J interchanges the tangent and the normal space, a Lagrangian submanifold

of an indefinite complex space form of index s has real index s.

A tangent vector X of a pseudo-Riemannian manifold is called space-like

(respectively, time-like or light-like) if 〈X,X〉 ≥ 0 (respectively, 〈X,X〉 < 0

or 〈X,X〉 = 0 with X 6= 0).

Let M be a submanifold of an indefinite complex space form M̃m
k (4c).

Denote by ∇ and ∇̃ the Levi-Civita connection on M and M̃m
k (4c), respec-

tively. Then the formulas of Gauss and Weingarten are given respectively

by

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xξ = −AξX + DXξ,(2.2)

for X,Y tangent to M and ξ normal to M , where h,A and D are the second

fundamental form, the shape operator and the normal connection. It is well-

known that, for each Y ∈ TxM , the shape operator AJY is a symmetric

endomorphism of the tangent space TxM . The second fundamental form

and the shape operator are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 ,(2.3)

where <,> denotes the indefinite inner product on M as well as on M̃m
k (4c).

It is known that the shape operator Aξ is self-adjoint, i.e., 〈AξX,Y 〉 =

〈AξY,X〉 for X,Y tangent to M .

The equations of Gauss, Codazzi and Ricci are given respectively by

〈R(X,Y )Z,W 〉 =
〈

Ah(Y,Z)X,W
〉

−
〈

Ah(X,Z)Y,W
〉

(2.4)

+c (〈X,W 〉 〈Y,Z〉 − 〈X,Z〉 〈Y,W 〉),

(∇h)(X,Y,Z) = (∇h)(Y,X,Z),(2.5)
〈

RD(X,Y )ξ, η
〉

= R̃(X,Y ; ξ, η) + 〈[Aξ , Aη]X,Y 〉 ,(2.6)
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where X,Y,Z,W (respectively, η and ξ) are vector tangent (respectively,

normal) to M , R̃ is the curvature tensor of M̃m
k (4c), RD(X,Y ) = [DX ,DY ]−

D[X,Y ], and ∇h is defined by

(∇h)(X,Y,Z) = DXh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ).(2.7)

If M is a Lagrangian submanifold in M̃n
k (4c), then we have

DXJY = J∇XY,(2.8)

AJY X = −Jh(X,Y ) = AJXY,(2.9)

〈h(X,Y ), Z〉 = 〈h(Y,Z), JX〉 = 〈h(Z,X), JY 〉(2.10)

for X,Y,Z tangent to M .

We need the following Existence and Uniqueness Theorems for later use.

Existence theorem. Let (Mn
k , g) be a simply-connected pseudo-Riema-

nnian n-manifold with index k and TM denote the tangent bundle of Mn
k .

If h is a TM -valued symmetric bilinear form on Mn
k satisfying

(1) 〈h(X,Y ), Z〉 is totally symmetric,

(2) (∇h)(X,Y,Z) = ∇Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ) is totally sym-

metric,

(3) R(X,Y )Z = c(〈Y,Z〉X − 〈X,Z〉Y ) + h(h(Y,Z),X) − h(h(X,Z), Y ),

then there exists a Lagrangian isometric immersion L from (Mn
k , g) into

a complete simply-connected indefinite complex space form M̃n
k (4c) whose

second fundamental form h is given by h(X,Y ) = Jh(X,Y ).

Uniqueness theorem. Let L1, L2:M
n
k → M̃n

k (4c) be two Lagrangian

isometric immersions of a pseudo-Riemannian n-manifold Mn
k with second

fundamental forms h1 and h2, respectively. If

〈

h1(X,Y ), JL1⋆Z
〉

=
〈

h2(X,Y ), JL2⋆Z
〉

,(2.11)
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for all vector fields X,Y,Z tangent to Mn
k , then there exists an isometry φ

of M̃n
k (4c) such that L1 = L2 ◦ φ.

These two theorems can be proved in a way similar to the Riemannian

case given in [7, 11] (see, also [15]).

3. Complex Extensors. Let Em
k denote the pseudo-Euclidean m-

space endowed with pseudo-Euclidean metric with index k given by

g = −
k
∑

j=1

dx2
j +

m
∑

ℓ=k+1

dx2
ℓ .(3.1)

The group of matrices in SL(m,R) which leave invariant the quadratic

form

−x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

m(3.2)

is denoted by SO(k,m − k).

For a real number r > 0, we denote by Sm−1
k (r2) the pseudo-Riemannian

sphere and by Hm−1
k−1 (−r2) the pseudo-hyperbolic space defined respectively

by

Sm−1
k (r2) =

{

x ∈ Em
k : 〈x, x〉 =

1

r2

}

, k ≥ 0,(3.3)

Hm−1
k−1 (−r2) =

{

x ∈ Em
k : 〈x, x〉 = − 1

r2

}

, k ≥ 2,(3.4)

where <,> denotes the indefinite inner product on the pseudo-Euclidean

space. If k = 1, we put

Hm−1(−r2) =
{

x ∈ Em
1 : 〈x, x〉 = − 1

r2
and x1 > 0

}

.(3.5)

It is well-known that a complete simply-connected pseudo-Riemannian

n-manifold of constant curvature c with index k is isometric to an indefi-

nite Euclidean space Cn
k , a pseudo-Riemannian sphere Sn

k (c), or a pseudo-

hyperbolic space Hn
k (c), according to c = 0, c > 0 or c < 0. Both Sn−1

k (c)
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and Hn−1
k−1 (c) are invariant under the standard action of SO(k, n− k) on En

k .

We simply denote Sm−1
k (1), Hm−1(−1), and Hm−1

k−1 (1) by Sm−1
k , Hm−1,

and Hm−1
k−1 , respectively. Sm−1

1 is known as the de Sitter space-time and

Hm−1
1 as the anti-de Sitter space-time in the theory of relativity.

Definition 3.1. Let G : Mn−1
t → Em

k be an isometric immersion of a

semi-Riemannian (n− 1)-manifold with index t into Em
k and let F : I → C∗

be a unit speed curve in the punctured complex plane C∗. We extend the

immersion G : Mn−1
t → Em

k to an immersion of I×Mn−1
t into Cm

k = C⊗Em
k

by

φ = F ⊗ G : I × Mn−1
t → Cm

k ,(3.6)

where F ⊗ G is the tensor product immersion of F and G defined by

(F ⊗ G)(s, p) = F (s) ⊗ G(p), s ∈ I, p ∈ Mn−1
t .(3.7)

We call such an extension F ⊗ G of the immersion G a complex extensor of

G (or of submanifold Mn−1
t ) via F .

The complex extensor φ = F⊗G : I×Mn−1
t → Cm

k is called F -isometric

(respectively, F -anti-isometric) if, for each p ∈ Mn−1
t ,

F ⊗ G(p) : I → Cm
k : s 7→ F (s) ⊗ G(p)

carries the unit vector field d/ds into a unit space-like vector field (respec-

tively, a unit time-like vector field). It is called G-isometric if, for each

s ∈ I,

F (s) ⊗ G : Mn−1
t → Cm

1 : p 7→ F (s) ⊗ G(p)

is isometric.

Lemma 3.1. Let G : Mn−1
t → Em

k be an isometric immersion and let

F : I → C∗ be a unit speed curve. Then we have

(1) The complex extensor φ = F ⊗G is F -isometric if and only if G(Mn−1
t )

is contained in the unit pseudo-Riemannian sphere Sm−1
k .
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(2) φ = F ⊗ G is F -anti-isometric if and only if G(Mn−1
t ) is contained in

the unit pseudo-hyperbolic space Hm−1
k−1 .

(3) φ = F ⊗ G is G-isometric if and only if F (I) is contained in the unit

circle S1 ⊂ C.

(4) φ = F ⊗ G is totally real if and only if one of the following three cases

occurs:

(4.a) G(Mn−1
t ) is contained in the unit pseudo-Riemannian sphere

Sm−1
k .

(4.b) G(Mn−1
t ) is contained in the unit pseudo-hyperbolic space Hm−1

k−1 .

(4.c) F (s) = cfϕ(s) for some c ∈ C and some real-valued function ϕ.

Proof. We regard each tangent vector of Mn−1
t also as a tangent vector

of the product manifold I × Mn−1
t in a natural way. Under the hypothesis

we have

φs = F ′(s) ⊗ G, Y φ = F ⊗ Y, φs =
∂φ

∂s
,(3.8)

where Y is a vector tangent to the second component of I × Mn−1
t .

From (3.8) we obtain |φs|2 = 〈G,G〉, which implies Statements (1) and

(2) of the Lemma. Statement (3) follows from the second equation of (3.8).

It follows from a direct computation that the complex extensor φ =

F⊗G is totally real if and only if, for any s ∈ I, p ∈ Mn−1
t , and Y ∈ TpM

n−1
t ,

we have

Re(iF (s)F̄ ′(s)) 〈G(p), Y 〉 = 0,(3.9)

where F̄ ′ denotes the complex conjugate of F ′ and Re(iF F̄ ′) the real part

of iF F̄ ′. Condition (3.9) implies Re(iF (s)F̄ ′(s)) = 0 for all s ∈ I or

〈G(p), Y 〉 = 0 for all p ∈ Mn−1, Y ∈ TpM
n−1
t . The first case occurs if

and only if F = cϕ(s) for some c ∈ C and real-valued function ϕ; and the

second case occurs if and only if G(M
(n−1)
t ) is contained either in a pseudo-

Riemannian sphere Sm−1
k (r2) or in a pseudo-hyperbolic space Hm−1

k−1 (−r2).

Lemma 3.2. Let G : Mn−1
t → Em

k be an isometric immersion and

F : I → C∗ a unit speed curve. Then the complex extensor φ = F ⊗ G :

I ×Mn−1
t → Cm

k is totally geodesic with respect to the induced metric if and

only if one of the following two cases occurs:
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(a) G : Mn−1
t → Em

k is of essential codimension one and F (s) = (s+a)c for

some real number a and some unit complex number c.

(b) n = 2 and G is a line in Em
k .

Proof. This is proved exactly in the same way as Proposition 2.2 of [6].

Let <<,>> denote the standard inner product of the complex plane C.

Recall that a local frame e1, . . . , en on a pseudo-Riemannian n-manifold is

called orthonormal if 〈ei, ej〉 = δijεj where εj = 〈ej , ej〉 = ±1.

Theorem 3.1. Let ιH : Hn−1
k−1 → En

k be the standard inclusion map

of the unit pseudo-hyperbolic space Hn−1
k−1 in En

k and let F : I → C∗ be a

unit speed curve. Then the complex extensor φ = F ⊗ ιH : I × Hn−1
k−1 → Cn

k

is a Lagrangian submanifold with index k whose second fundamental form

satisfying

h(e1, e1) = λJe1, h(e2, e2) = . . . = h(ek, ek) = µJe1,

h(ek+1, ek+1) = . . . = h(en, en) = −µJe1,(3.10)

h(e1, ej) = µJej , h(ej , eℓ) = 0, 2 ≤ j 6= ℓ ≤ n

λ = f ′(s), µ =

〈〈

eif , iF
〉〉

〈〈F,F 〉〉 , F ′(s) = eif(s),

where e1, e2, . . . , en is an orthonormal frame on I ×||F || H
n−1
k−1 with e1 = φs

and

〈e1, e1〉 = . . . = 〈ek, ek〉 = −1, 〈ek+1, ek+1〉 = . . . = 〈en, en〉 = 1.(3.11)

Proof. Statement (4) of Lemma 3.1 implies that every complex extensor

of the unit hyperbolic space Hn−1
k−1 in En

k gives rise to a Lagrangian subman-

ifold of Cn
k .

Since F : I → C∗ is unit speed, we may put

F ′(s) = eif(s)(3.12)
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for some real-valued function f defined on I. Therefore, F takes the following

form:

F (s) =

∫ s

a
eif(t)dt(3.13)

for some real number a.

Since ιH is the inclusion of the unit hyperbolic space Hn−1
k−1 in En

k , (3.7)

and (3.12) imply

φs = eif(s) ⊗ ιH , Y φ = F ⊗ Y,(3.14)

φss = if ′(s)eif(s) ⊗ ιH , Y φs = eif(s) ⊗ Y,(3.15)

Y Zφ = F ⊗∇Y Z + 〈Y,Z〉 (F ⊗ ιH),(3.16)

for Y,Z tangent to the second component of I × Hn−1
k−1 .

Since 〈ιH , ιH〉 = −1, equation (3.14) implies that e1 = φs is a unit

time-like vector field. Moreover, (3.14) implies that the induced metric on

I×Hn−1
k−1 is given by g = −ds2+||F (s)||2gH , where gH is the standard metric

on Hn−1
k−1 . Thus, the index of g is k.

Clearly, φs and Y φ are orthogonal for Y tangent to the second compo-

nent of I ×Hn−1
k−1 . Therefore, by (3.14)−(3.16), we conclude that the second

fundamental form of the complex extensor φ satisfies (3.10).

Theorem 3.2. Let ιS : Sn−1
k → En

k be the standard inclusion map

of the unit pseudo-Riemannian sphere in En
k . Then the complex extensor

φS = F⊗ιS of ιS via a unit speed curve F in C∗ is a Lagrangian submanifold

with index k in Cn
k whose second fundamental form satisfies

h(e1, e1) = λJe1, h(e2, e2) = . . . = h(ek+1, ek+1) = −µJe1,

h(ek+2, ek+2) = . . . = h(en, en) = µJe1,(3.17)

h(e1, eℓ) = µJeℓ, h(et, eℓ) = 0, 2 ≤ t 6= ℓ ≤ n,
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λ = f ′(s), µ =

〈〈

eif , iF
〉〉

〈〈F,F 〉〉 , F ′(s) = eif(s),

where e1, e2, . . . , en is an orthonormal frame on I ×||F || S
n−1
k with e1 = φs

and

〈e2, e2〉 = . . . = 〈ek+1, ek+1〉 = −1,

(3.18)

〈e1, e1〉 = 〈ek+2, ek+2〉 = . . . = 〈en, en〉 = 1.

Proof. This can be done in a way similar to Theorem 3.1.

Remark 3.1. The complex extensors of Hn−1
k−1 and Sn−1

k via a unit

speed curve given in Theorems 3.1 and 3.2 are invariant under the standard

action of SO(k, n − k) on Cn
k .

Example 3.1. (Lagrangian pseudo-hyperbolic spaces). For a positive

real number b, let Fb : Ib = (−π
b , π

b ) → C∗ be the unit speed curve defined

by

Fb(s) =
e2bsi + 1

2bi
.(3.19)

Then, with respect to the induced metric, the complex extensor:

φH = Fb ⊗ ιH : Ib × Hn−1
k−1 → Cn

k(3.20)

is a Lagrangian isometric immersion of an open portion of Hn
k (−b2) of con-

stant negative curvature −b2 into Cn
k . The induced metric on Ib ×Hn−1

k−1 via

φH is

g = −ds2 +
cos2(bs)

b2
gH ,(3.21)
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where gH is the standard metric on Hn−1
k−1 given by

gH =− cosh2 uk+1

(

du2
2+cos2 u2du2

3+· · ·+
k−1
∏

j=2

cos2 ujdu2
k

)

+du2
k+1(3.22)

+ sinh2 uk+1

(

du2
k+2+cos2 uk+2du2

k+3+· · ·+
n−1
∏

j=k+2

cos2 ujdu2
n

)

.

The coordinate system {u2, . . . , un} on Hn−1
k−1 in En

k is defined by

x1 = sin u2 cosh uk+1,

...

xk−1 = cos u2 . . . cos uk−1 sin uk cosh uk+1,

xk = cos u2 . . . cos uk cosh uk+1,(3.23)

xk+1 = sin uk+2 sinhuk+1,

...

xn−1 = cos uk+2 . . . cos un−1 sin un sinh uk+1,

xn = cos uk+2 . . . cos un−1 sinh uk+1.

We call such a submanifold a Lagrangian pseudo-hyperbolic space. The

second fundamental form of the Lagrangian pseudo-hyperbolic space is given

by (3.10) with λ = 2b and µ = b.

Example 3.2. (Lagrangian pseudo-Riemannian spheres). The complex

extensor:

φS = Fb ⊗ ιS : Ib × Sn−1
k → Cn

k(3.24)

is a Lagrangian isometric immersion of an open part of Sn
k (b2) of constant

curvature b2 into Cn
k . The induced metric on Ib × Sn−1

k via φS is

g = ds2 +
cos2(bs)

b2
gS ,(3.25)
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where gS is the standard metric on Sn−1
k given by

gS = −du2
2 − sinh2 u2

(

du2
3 + cos2 u3du2

4 + · · · +
k
∏

j=3

cos2 ujdu2
k+1

)

(3.26)

+ cosh2 u2

(

du2
k+2 + cos2 uk+2du2

k+3 + · · · +
n−1
∏

j=k+2

cos2 ujdu2
n

)

The coordinate system {u2, . . . , un} on Sn
k in En

k is defined by

x1 = sinhu2 sinu3,

...

xk−1 = sinhu2 cos u3 . . . cos uk sin uk+1,

xk = sinhu2 cos u3 . . . cos uk+1,(3.27)

xk+1 = cosh u2 sin uk+2,

...

xn−1 = cosh u2 cos uk+2 . . . cos un−1 sin un,

xn = cosh u2 cos uk+2 . . . cos un,

We call such a submanifold a Lagrangian pseudo-Riemannian sphere.

The second fundamental form of the Lagrangian pseudo-Riemannian sphere

is given by (3.17) with λ = 2b and µ = b.

4. Lagrangian H-umbilical Submanifolds. In views of Theorems

3.1 and 3.2, we define a Lagrangian H-umbilical submanifold in an indefinite

complex Euclidean space Cn
k as follows.

Definition 4.1. A Lagrangian submanifold M in an indefinite complex

Euclidean space Cn
k is called Lagrangian H-umbilical if its second funda-
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mental form satisfies

h(e1, e1) = λJe1, h(e1, et) = µJet,

h(et, et) = µδtJe1, δt ∈ {−1, 1}, t = 2, . . . , n,(4.1)

h(eℓ, et) = 0, 2 ≤ ℓ 6= t ≤ n,

for some functions λ and µ with respect to some orthonormal local frame

e1, . . . , en.

Since the second fundamental form h of a Lagrangian submanifold satis-

fies Condition (2.10), Lagrangian H-umbilical submanifolds are the simplest

Lagrangian submanifolds which satisfy the following two conditions:

(a) JH is an eigenvector of the shape operator AH and

(b) the restriction of AH to (JH)⊥ is proportional to the identity map.

In this way, we can regard Lagrangian H-umbilical submanifolds as the

simplest Lagrangian submanifolds next to the totally geodesic ones.

The main result of this section is the following classification theorem.

Theorem 4.1. Let L : M → Cn
k be a Lagrangian H-umbilical subman-

ifold in Cn
k with n ≥ 3 and index k > 0.

(i) If M has constant sectional curvature, then, up to rigid motions of Cn
k ,

one of the following three cases occurs:

(i-a) M is a flat pseudo-Riemannian manifold.

(i-b) M is an open portion of a pseudo-hyperbolic space Hn
k (−b2) and

L is locally a Lagrangian pseudo-hyperbolic space in Cn
k .

(i-c) M is an open portion of a pseudo-Riemannian sphere Sn
k (b2) and

L is locally a Lagrangian pseudo-Riemannian sphere in Cn
k .

(ii) If M contains no open subset of constant sectional curvature, then, up

to rigid motions, one of the following two cases occurs:

(ii-a) L is an open portion of a complex extensor of the unit pseudo-

hyperbolic space Hn−1
k−1 via a unit speed curve in C∗.
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(ii-b) L is an open portion of a complex extensor of the unit pseudo-

Riemannian sphere Sn−1
k via a unit speed curve in C∗.

Proof. Let n ≥ 3, k > 0, and L : M → Cn
k be a Lagrangian H-

umbilical isometric immersion whose second fundamental form satisfies (4.1)

for some functions λ and µ with respect to some orthonormal local frame

field e1, . . . , en.

If we put

∇̃XeA =
n
∑

B=1

ǫBωB
A(X)eB +

n
∑

B=1

ǫBωB∗

A (X)JeB , ǫB = 〈eB , eB〉(4.2)

∇̃X(JeA) =
n
∑

B=1

ǫBωB
A∗(X)eB +

n
∑

B=1

ǫBωB∗

A∗ (X)JeB ,(4.3)

for A,B = 1, . . . , n, then we have

ωB
A = −ωA

B, ωA
B∗ = ωB∗

A , ωA∗

B∗ = ωA
B.(4.4)

Let ω1, . . . , ωn denote the dual 1-forms of e1, . . . , en defined by

ωA(eB) = δAB =







0, if A 6= B,

1, if A = B.
(4.5)

Then we have

ωB∗

A =
n
∑

C=1

ǫChB∗

ACωC , hB∗

AC = 〈h(eA, eC), JeB〉 .(4.6)

The Cartan’s structure equations are given by

dωA =
n
∑

B=1

ǫBωB ∧ ωA
B,(4.7)

dωB
A =

n
∑

C=1

ǫCωC
A ∧ ωB

C +
n
∑

C=1

ǫCωC∗

A ∧ ωB
C∗.(4.8)
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Case (1): e1 is time-like. In this case, we may assume

〈e1, e1〉 = . . . = 〈ek, ek〉 = −1, 〈ek+1, ek+1〉 = . . . = 〈en, en〉 = 1,(4.9)

so, we have

ǫ1 = . . . = ǫk = −1, ǫk+1 = . . . = ǫn = 1.(4.10)

From (2.3), (2.9), (4.1), and (4.9)−(4.10), we find δt = −ǫt for t =

2, . . . , n. Hence (4.1) becomes

h(e1, e1) = λJe1, h(e1, et) = µJet,

h(ej , ej) = µJe1, h(eα, eα) = −µJe1, h(eℓ, et) = 0,(4.11)

2 ≤ j ≤ k, k + 1 ≤ α ≤ n, 2 ≤ ℓ 6= t ≤ n.

From (4.2)−(4.4), (4.11), and Codazzi’s equation, we obtain

e1µ = (λ − 2µ)ǫtω
t
1(et),(4.12)

etλ = (2µ − λ)ωt
1(e1),(4.13)

(λ − 2µ)ωℓ
1(et) = 0, 2 ≤ ℓ 6= t ≤ n,(4.14)

etµ = 3µω1
t (e1),(4.15)

µωt
1(e1) = 0,(4.16)

for 2 ≤ t ≤ n.

Since the ambient space Cn
k is flat, (4.10)−(4.11) and Gauss’ equation

imply that the sectional curvature function K of M satisfies

K(e1, et) = µ(µ − λ), t = 2, . . . , n,(4.17)

K(eℓ, et) = −µ2, 2 ≤ ℓ 6= t ≤ n.(4.18)

Case (1-a): M is of constant curvature. In this case, (4.17) and (4.18)

imply µ(λ − 2µ) = 0.
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Case (1-a.1): µ = 0 identically. In this case, M is a flat pseudo-

Riemannian manifold with index k. Hence, we obtain Case (i-a) of Theorem

4.1.

Case (1-a.2): µ 6= 0. In this case, λ = 2µ 6= 0 on a nonempty open

subset V of M . Thus, (4.12) and (4.13) imply that µ is a nonzero constant,

say b 6= 0. Thus, by continuity, we have V = M . Hence, the equation of

Gauss implies that M is a pseudo-Riemannian manifold of constant negative

curvature −b2. Therefore, M is locally isometric to the warped product

Ib ×cos(bs)/b Hn−1
k−1 , Ib = (−π/2b, π/2b), whose metric is given by

g = −ds2 +
cos2(bs)

b2
gH .(4.19)

Therefore, the Uniqueness Theorem implies that, up to rigid motions of

Cn
k , the Lagrangian immersion is given by (3.20). This gives Case (i-b) of

Theorem 4.1.

Case (1-b): M contains no open subset of constant curvature. In this

case, the set U := { p ∈ M : µ(λ− 2µ) 6= 0 at p } is an open dense subset of

M .

Equations (4.13)−(4.16) imply

etλ = etµ = 0, t = 2, . . . , n.(4.20)

ωℓ
1(et) = 0, 2 ≤ ℓ 6= t ≤ n, on U.(4.21)

Moreover, (4.12), (4.16) and (4.21) yield

ωt
1 = κǫtω

t, κ = e1µ
λ−2µ , t = 2, . . . , n, on U.(4.22)

For 2 ≤ ℓ, t ≤ n, (4.21) gives 〈[eℓ, et], e1〉 = ω1
t (eℓ) − ω1

ℓ (et) = 0. Thus,

the distribution D⊥ =: Span {e2, . . . , en} is integrable. Let D denote the

distribution spanned by e1. Then D is also integrable, since D is one-

dimensional. Thus, there is a local coordinate system {s, x2, . . . , xn} such
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that (a) D is spanned by {∂/∂s}, (b) D⊥ is spanned by {∂/∂x2, . . . , ∂/∂xn}
and (c) e1 = ∂/∂s, ω1 = ds.

From (4.20) we know that λ and µ depend only on s. Hence, the function

κ defined in (4.22) depends only on s, too. From (4.2), (4.21) and (4.22), we

find

〈∇eℓ
et, e1〉 = −κδℓt 〈eℓ, et〉 , 2 ≤ ℓ, t ≤ n,(4.23)

which implies that D⊥ is a spherical distribution, i.e., D⊥ is an integrable

distribution whose leaves are extrinsic spheres in M . By an extrinsic sphere,

we mean a totally umbilical submanifolds with parallel mean curvature vec-

tor. Moreover, by (4.11), (4.23), and Gauss’ equation, we know that each

leaf of D⊥ is of constant sectional curvature −(µ2 + κ2). Furthermore, from

(4.22), we have ∇e1
e1 = 0. Thus, integral curves of e1 are geodesics. Con-

sequently, by applying a result of [17, 21], we conclude that U is locally

a warped product E1
1 ×f(s) Hn−1

k−1 of a time-like line and the unit pseudo-

hyperbolic space Hn−1
k−1 for some positive function f(s). Hence, there is a

local coordinate system on M such that the metric tensor is given by

g = −ds2 + f(s)2gH(4.24)

where gH is the metric on Hn−1
k−1 defined by (3.22).

Equations (3.22) and (4.24) and a direct long computation yield

∇∂/∂s
∂

∂s
= 0, ∇∂/∂s

∂

∂ut
=

f ′

f

∂

∂ut
, t = 2, . . . , n,

∇∂/∂ui

∂

∂uj
= − tan ui

∂

∂uj
, 2 ≤ i < j ≤ k,

∇∂/∂u2

∂

∂u2
= −ff ′ cosh2 uk+1

∂

∂s
+

sinh(2uk+1)

2

∂

∂uk+1
,

∇∂/∂uj

∂

∂uj
=

j−1
∏

ℓ=2

cos2 uℓ

{

sinh(2uk+1)

2

∂

∂uk+1
− ff ′ cosh2 uk+1

∂

∂s

}

+
j−1
∑

ℓ=2





sin 2uℓ

2

j−1
∏

i=ℓ+1

cos2 ui





∂

∂uℓ
, j = 3, . . . , k,



2003] COMPLEX EXTENSORS AND LAGRANGIAN SUBMANIFOLDS 169

∇∂/∂uk+1

∂

∂uk+1
= ff ′ ∂

∂s
,

∇∂/∂uj

∂

∂uk+1
= tanh uk+1

∂

∂uj
, 2 ≤ j ≤ k,(4.25)

∇∂/∂uj

∂

∂uβ
= 0, 2 ≤ j ≤ k; k + 2 ≤ β ≤ n,

∇∂/∂uα

∂

∂uβ
= − tan uα

∂

∂uβ
, k + 2 ≤ α < β ≤ n,

∇∂/∂uk+2

∂

∂uk+2
= ff ′ sinh2 uk+1

∂

∂s
− sinh(2uk+1)

2

∂

∂uk+1
,

∇∂/∂uα

∂

∂uα
=

α−1
∏

ℓ=2

cos2 uℓ

{

ff ′ sinh2 uk+1
∂

∂s
− sinh(2uk+1)

2

∂

∂uk+1

}

+
α−1
∑

β=k+2





sin 2uβ

2

α−1
∏

l=β+1

cos2 ul





∂

∂uβ
,

∇∂/∂uα

∂

∂uk+1
= coth uk+1

∂

∂uα
, k + 2 ≤ α ≤ n.

By applying (4.11), (4.25) and Gauss’ formula, we find

Lss = iλLs, i =
√
−1,(4.26)

Lsut =
(f ′

f
+ iµ

)

Lut , t = 2, . . . , n,(4.27)

Luiuj
= − tan uiLuj

, 2 ≤ i < j ≤ k,(4.28)

Lu2u2
= (iµf2 − ff ′) cosh2 uk+1Ls +

sinh 2uk+1

2
Luk+1

,(4.29)

Lujuj
=

j−1
∏

ℓ=2

cos2 uℓ

{

(iµf2 − ff ′) cosh2 uk+1Ls +
sinh 2uk+1

2
Luk+1

}

(4.30)

+
j−1
∑

ℓ=2





sin 2uℓ

2

j−1
∏

i=ℓ+1

cos2 ui



Luℓ
, j = 3, . . . , k,

Luk+1uk+1
= (ff ′ − iµf2)Ls,(4.31)

Lujuk+1
= tanh uk+1Luj

, 2 ≤ j ≤ k,(4.32)

Lujuβ
= 0, 2 ≤ j ≤ k; k + 2 ≤ β ≤ n,(4.33)

Luαuβ
= − tan uαLuβ

, k + 2 ≤ α < β ≤ n,(4.34)
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Luk+2uk+2
= (f ′ − iµf)f sinh2 uk+1Ls −

sinh(2uk+1)

2
Luk+1

,(4.35)

Luαuα =
α−1
∏

ℓ=k+2

cos2 uℓ

{

(f ′−iµf)f sinh2 uk+1Ls−
sinh(2uk+1)

2
Luk+1

}

(4.36)

+
α−1
∑

β=k+2





sin 2uβ

2

α−1
∏

l=β+1

cos2 ul



Luβ
,

Luk+1uα = coth uk+1Luα , k + 2 ≤ α ≤ n.(4.37)

Since Lssut = Lsuts, (4.26) and (4.27) imply

κ′ + κ2 = µ2 − λµ, κ = µ′

λ−2µ ,(4.38)

where κ = fs/f . Also, from Lu2uk+1uk+1
= Luk+1uk+1u2

, (4.31) and (4.32),

we find f2 = 1/(κ2 + µ2). Therefore, we get

f = c exp

(

∫

κ(s)dx

)

=
1

√

κ2 + µ2
,(4.39)

for some integration constant c 6= 0.

Solving the equation (4.26) yields

L = A(u2, . . . , un)

∫ s

ei
∫ s

λ(t)dtds + B(u2, . . . , un)(4.40)

for some Cn
k -valued functions A and B, where

∫ s λ(t)dt is an antiderivative

of λ(s).

By (4.27) and (4.40), we find

(κ + iµ)But =

(

ei
∫ s

λ(t)dt − (κ + iµ)

∫ s

e−i
∫ x

λ(t)dtdx

)

Aut(4.41)

for t = 2, . . . , n. Since A and B are independent of s, (4.41) implies

ei
∫ s

λ(t)dt − (κ + iµ)

∫ s

e−i
∫ x

λ(t)dtdx = α(κ + iµ)(4.42)

for some α ∈ C. Thus, (4.41) gives B = αA + C for some α ∈ C and
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C ∈ Cn
k . Thus, after applying a suitable translation on Cn

k , we obtain from

(4.40) that

L(s, u2, . . . , un)=F (s)A(u2, . . . , un), F (s)=α+

∫ s

ei
∫ s

λ(t)dtds.(4.43)

From (4.27) and (4.43), we find

F ′(s) = (κ + iµ)F (s).(4.44)

Since ||F ′(s)|| = 1, (4.39) and (4.44) imply

||F (s)|| = f(s).(4.45)

Equation (4.43) gives

Ls = F ′(s)A, Luk+1uk+1
= F (s)Auk+1uk+1

.(4.46)

On the other hand, by (4.31), (4.39), (4.44) and (4.46), we find

Luk+1uk+1
=(ff ′−iµf2)F ′A = (ff ′−iµf2)

(

f ′

f
+iµ

)

FA = FA.(4.47)

Combining (4.46), and (4.47) yields Auk+1uk+1
= A. Thus, we obtain

A = b1 sinhuk+1 + b2 cosh uk+1(4.48)

for some Cn
k -valued functions b1, b2 of u2, . . . , uk, uk+1, . . . , un.

By applying (4.32) with j = 2 and (4.48), we find

b1 =b1(u3, . . . , uk, uk+2, . . . , un),

b2 =b3(u3, . . . , uk, uk+2, . . . , un) sin u2+b4(u3, . . . , uk, uk+2, . . . , un) cos u2.

Continuing such procedure (k − 1)-times with the help of (4.28)−(4.32), we
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obtain

b1 = b1(uk+2, . . . , un)

b2 = c1 sinu2 + c2 sin u3 cos u2 + · · ·(4.49)

+ck−1 sin uk

k−1
∏

j=2

cos uj + ck

k
∏

j=2

cos uj

for some Cn
k -valued functions c1, . . . , ck of uk+2, . . . , un.

Similarly, by (4.33)−(4.37), we know that c1, . . . , ck are constant vectors

and

b1 = ck+1 sin uk+2 + ck+2 sin uk+3 cos uk+2 + · · ·(4.50)

+cn−1 sin un

n−1
∏

α=k+2

cos uα + cn

n
∏

α=2

cos uα

for some constant vectors c1, . . . , ck in Cn
k . Therefore, by combining (4.43)

and (4.48)−(4.50), we obtain

L = F (s)

{

c1 sinu2 + c2 sin u3 cos u2 + · · ·

+ck−1 sinuk

k−1
∏

j=2

cos uj + ck

k
∏

j=2

cos uj

}

cosh uk+1(4.51)

+F (s)

{

ck+1 sin uk+2 + ck+2 sin uk+3 cos uk+2 + · · ·

+cn−1 sin un

n−1
∏

α=k+2

cos uα + cn

n
∏

α=k+2

cos uα

}

sinh uk+1

for some constant vectors c1, . . . , cn in Cn
k .

Because M is a Lagrangian submanifold in Cn
k , we may choose the

following initial conditions:

Ls(0, . . . , 0) = (1, 0, . . . , 0),

Lu2
(0, . . . , 0) =

(

0,
1

f(0)
, . . . , 0

)

,(4.52)
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...

Lun(0, . . . , 0) =

(

0, . . . , 0,
1

f(0)

)

,

in view of (3.22) and (4.51). By using (4.51) and (4.52) we obtain

Lz = F (s)

(

sin u2 cosh uk+1, sin u3 cos u2 cosh uk+1, . . . ,(4.53)

sinuk cosh uk+1

k−1
∏

j=2

cos uj , cosh uk+1

k
∏

j=2

cos uj , sinh uk+1 sinuk+2,

sinhuk+1 sin uk+3 cos uk+2, . . . , sinh uk+1 sin un

n−1
∏

α=k+2

cos uα,

sinhuk+1

n
∏

α=k+2

cos uα

)

which implies that, up to rigid motions of Cn
k , M is the complex extensor

of the unit pseudo-hyperbolic space via the unit speed curve F . Thus, we

obtain Case (ii-a) of Theorem 4.1.

Case (2): e1 is space-like. In this case, we may assume

〈e2, e2〉 = . . . = 〈ek+1, ek+1〉 = −1,

(4.54)

〈e1, e1〉 = 〈ek+2, ek+2〉 = . . . = 〈en, en〉 = 1,

so, we have ǫ2 = . . . = ǫk+1 = −1, ǫ1 = ǫk+2 = . . . = ǫn = 1.

From (2.3), (2.9), (4.1), and (4.54) we find δt = ǫt for t = 2, . . . , n.

Hence (4.1) becomes

h(e1, e1) = λJe1, h(e1, et) = µJet,

h(ej , ej) = −µJe1, h(eα, eα) = µJe1, h(eℓ, et) = 0,(4.55)

2 ≤ j ≤ k + 1, k + 2 ≤ α ≤ n, 2 ≤ ℓ 6= t ≤ n.
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From (4.2)−(4.4), (4.55), and Codazzi’s equation, we find

e1µ = (λ − 2µ)ǫtω
t
1(et),(4.56)

etλ = (λ − 2µ)ωt
1(e1),(4.57)

(λ − 2µ)ωℓ
1(et) = 0,(4.58)

etµ = −3µω1
t (e1),(4.59)

µωt
1(e1) = 0,(4.60)

for 2 ≤ ℓ 6= t ≤ n.

Since the ambient space is flat, the equation of Gauss and (4.10)−(4.11)

imply

K(e1, et) = µ(λ − µ), t = 2, . . . , n,(4.61)

K(eℓ, et) = µ2, 2 ≤ ℓ 6= t ≤ n.(4.62)

Case (2-a): M is of constant curvature. In this case, (4.61) and (4.62)

imply µ(λ − 2µ) = 0.

Case (2-a.1): µ = 0 identically. In this case, M is a flat pseudo-

Riemannian manifold with index k.

Case (2-a.2): µ 6= 0. In this case, λ = 2µ 6= 0 on a nonempty open

subset V of M . Thus, (4.57) and (4.60) imply that µ is a nonzero constant,

say b 6= 0. Hence, by continuity, we obtain V = M . Therefore M is a

pseudo-Riemannian manifold of constant curvature b2. Hence, M is locally

isometric to the warped product Ib×cos(bs)/bS
n−1
k , Ib = (−π/2b, π/2b). Thus,

by applying the Uniqueness Theorem, we obtain Case (i-c) of Theorem 4.1.

Case (2-b): M contains no open subset of constant curvature. In this

case, the set U := { p ∈ M : µ(λ− 2µ) 6= 0 at p } is an open dense subset of

M .



2003] COMPLEX EXTENSORS AND LAGRANGIAN SUBMANIFOLDS 175

As Case (1-b), Equations (4.56)−(4.60) imply that the distribution

D⊥ spanned by {e2, . . . , en} is integrable whose leaves are extrinsic spheres in

M and integral curves of e1 are geodesics. Thus, there is a local coordinate

system {s, x2, . . . , xn} such that (a) D is spanned by {∂/∂s}, (b) D⊥ is

spanned by {∂/∂x2, . . . , ∂/∂xn} and (c) e1 = ∂/∂s, ω1 = ds. Furthermore,

in this case we know that U is locally a warped product E1 ×f(s) Sn−1
k

of a space-like line and the unit pseudo-Riemannian sphere Sn−1
k for some

positive function f . Therefore, there is a local coordinate system on M such

that the metric tensor is given by

g = ds2 + f(s)2gS(4.63)

where gS is the metric on Sn−1
k defined by (3.26).

After computing Christoffel symbols of g, we obtain from (4.55) and the

formula of Gauss that

Lss = iλLs, i =
√
−1,(4.64)

Lsut =

(

f ′

f
+ iµ

)

Lut, t = 2, . . . , n,(4.65)

Lu2uj
= coth u2Luj

, 3 ≤ j ≤ k + 1,(4.66)

Lu2uα = tanhu2Luα , k + 2 ≤ α ≤ n.(4.67)

Luiuj
= − tan uiLuj

, 3 ≤ i < j ≤ k + 1,(4.68)

Lu2u2
= (ff ′ − iµf2)Ls,(4.69)

Lu3u3
= (ff ′ − iµf2) sinh2 u2Ls −

sinh 2u2

2
Lu2

,(4.70)

Lujuj
=

j−1
∏

ℓ=3

cos2 uℓ

{

(ff ′ − iµf2) sinh2 u2Ls +
sinh 2u2

2
Lu2

}

(4.71)

+
j−1
∑

ℓ=3





sin 2uℓ

2

j−1
∏

i=ℓ+1

cos2 ui



Luℓ
, j = 4, . . . , k + 1,

Lujuβ
= 0, 3 ≤ j ≤ k + 1; k + 2 ≤ β ≤ n,(4.72)

Luαuβ
= − tan uαLuβ

, k + 2 ≤ α < β ≤ n,(4.73)



176 B. Y. CHEN [September

Luk+2uk+2
= (iµf2 − ff ′) cosh2 uk+1Ls +

sinh(2uk+1)

2
Lu2

,(4.74)

Luαuα =
α−1
∏

ℓ=k+2

cos2 uℓ

{

(iµf2 − ff ′) cosh2 u2Ls+
sinh(2uk+1)

2
Luk+1

}

(4.75)

+
α−1
∑

β=k+2





sin 2uβ

2

α−1
∏

l=β+1

cos2 ul



Luβ
,

Since Lssut = Lsuts and Lu2u2u3
= Lu2u3u2

, (4.64)−(4.66) and (4.69)

imply

κ′ + κ2 = µ2 − λµ, κ =
f ′

f
=

µ′

λ − 2µ
, f2 = 1/(κ2 + µ2).(4.76)

After solving the system (4.64)−(4.75) with the help of (4.76) as in Case

(1-b), we obtain

L = F (s)

{

c1 sin u3 + c2 sin u4 cos u3 + · · ·

+ck sinuk+1

k
∏

j=3

cos uj + ck

k+1
∏

j=3

cos uj

}

sinhu2(4.77)

+F (s)

{

ck+1 sin uk+2 + ck+2 sin uk+3 cos uk+2 + · · ·

+cn−1 sin un

n−1
∏

α=k+2

cos uα + cn

n
∏

α=2

cos uα

}

cosh u2

for some constant vectors c1, . . . , cn in Cn
k , where F (s) is the unit speed

curve defined by (4.43). By choosing the same initial conditions (4.52) as

Case (1-b), we obtain

L = F (s)

(

sinhu2 sin u3, sinh u2 sin u4 cos u3, . . . ,(4.78)

sinhu2 sin uk+1

k
∏

j=3

cos uj , sinhu2

k+1
∏

j=3

cos uj, cosh u2 sinuk+2,
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cosh u2 sin uk+3 cos uk+2, . . . , cosh u2 sin un

n−1
∏

α=k+2

cos uα,

cosh u2

n
∏

α=k+2

cos uα

)

.

This shows that, up to rigid motions, the Lagrangian submanifold is the

complex extensor of the unit pseudo-Riemannian sphere via the unit speed

curve F . Hence, we obtain Case (ii-b) of Theorem 4.1.

The converse is easy to verified.

Theorem 4.1 implies immediately the following.

Corollary 4.1. Let M be a Lagrangian submanifold of Cn
k with n ≥ 3

and k ≥ 1. Then, up to rigid motions, M is an open portion of a Lagrangian

pseudo-Riemannian sphere or of a Lagrangian pseudo-hyperbolic space if and

only if M is a Lagrangian H-umbilical submanifold with nonzero constant

curvature.

Corollary 4.2. Let L : M → Cn
1 be a Lagrangian H-umbilical subman-

ifold in the Lorentzian complex Euclidean n-space with n ≥ 3.

(i) If M is of constant curvature, then, up to rigid motions of Cn
1 , one of

the following three cases occurs:

(i-a) M is a flat Lorentzian n-manifold.

(i-b) M is an open portion of a Lagrangian hyperbolic space in Cn
1 .

(i-c) M is an open portion of a Lagrangian de Sitter spacetime in Cn
1 .

(ii) If M contains no open subset of constant curvature, then, up to rigid

motions, L is locally one of the following two Lagrangian submani-

folds:

(ii-a) L is a complex extensor of the unit hyperbolic space Hn−1 via a

unit speed curve in C∗.

(ii-b) L is a complex extensor of the unit de Sitter spacetime Sn−1
1 via

a unit speed curve in C∗.
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