COMPLEX EXTENSORS AND LAGRANGIAN SUBMANIFOLDS IN INDEFINITE COMPLEX EUCLIDEAN SPACES

BY

BANG－YEN CHEN（陳邦彥）
To Professor Wei－Eihn Kuan on his 70th birthday

Abstract

A general method to construct $S O(n)$－invariant Lagrangian submanifolds in complex Euclidean n－space was intro－ duced in［6］．In this paper we extend the method to construct $S O(k, n-k)$－invariant Lagrangian submanifolds in an indefinite complex Euclidean spaces \mathbf{C}_{k}^{n} ．To do so，we introduce the notion of complex extensors in \mathbf{C}_{k}^{n} ．We show that a complex extensor in \mathbf{C}_{k}^{n} is a Lagrangian H－umbilical submanifold．Conversely，we prove that，except the flat cases，Lagrangian H－umbilical sub－ manifolds in \mathbf{C}_{k}^{n} are Lagrangian pseudo－Riemannian spheres，La－ grangian pseudo－hyperbolic spaces，complex extensors of a unit pseudo－Riemannian sphere，or complex extensors of a unit pseudo－ hyperbolic space．

1．Introduction．The complex number m－space \mathbf{C}^{m} with complex coordinates z_{1}, \ldots, z_{m} endowed with $g_{m, k}$ ：the real part of the Hermitian form

$$
\begin{equation*}
b_{m, k}(z, w)=-\sum_{j=1}^{k} \bar{z}_{j} w_{j}+\sum_{j=k+1}^{m} \bar{z}_{j} w_{j}, \quad z, w \in \mathbf{C}^{m} \tag{1.1}
\end{equation*}
$$

Received by the editors May 20， 2002.
AMS 2000 Subject Classification：Primary 53C42，53D12，Secondary 53B25，53C40， 53C50．

Key words and phrases：Complex extensor，Lagrangian submanifold，indefinite com－ plex Euclidean space，Lagrangian pseudo－hyperbolic space，Lagrangian pseudo－riemannian sphere．
is a flat indefinite complex space with complex index k. We simply denote the pair $\left(\mathbf{C}^{n}, g_{m, k}\right)$ by \mathbf{C}_{k}^{m} which is called the indefinite complex Euclidean m-space with complex index k.

A submanifold M of \mathbf{C}_{k}^{m} is called totally real if the almost complex structure J of \mathbf{C}_{k}^{m} carries each tangent space of M into its corresponding normal space [14]. It is called Lagrangian if the almost complex structure of \mathbf{C}_{k}^{n} interchanges the tangent and the normal spaces of M. Lagrangian submanifolds play some important roles in symplectic geometry, Riemannian geometry as well as in mathematical physics (see [10]). (For results on Lagrangian submanifolds from Riemannian geometric point of views, see for examples, [2]-[4], [6]-[15], [18, 19, 22]).

Among examples of Lagrangian submanifolds with large symmetric groups in complex Euclidean n-space \mathbf{C}^{n}, we mention those which are invariant under the standard action of $S O(n)$ on \mathbf{C}^{n}. A general method to construct $S O(n)$-invariant Lagrangian submanifolds in \mathbf{C}^{n} has been introduced in [6]. It was proved in [6] that one obtains $S O(n)$-invariant submanifolds by constructing the complex extensors of the unit hypersphere of \mathbf{E}^{n} via a unit speed curve in the complex plane \mathbf{C}.

The notion of complex extensors has been applied in [3] to show how to embed a time slice of the Schwarzchild spacetime that models the outer space around a massive star as a $S O(n)$-invariant Lagrangian submanifold.

In this paper we extend the method of [6] to indefinite complex Euclidean spaces which provides us a way to construct $S O(k, n-k)$-invariant Lagrangian submanifolds in \mathbf{C}_{k}^{n}. Our idea is to extend the notion of complex extensors in \mathbf{C}^{n} to complex extensors in \mathbf{C}_{k}^{n}. We show that complex extensors in \mathbf{C}_{k}^{n} are Lagrangian H-umbilical submanifolds. Our main result states that, except the flat ones, Lagrangian H-umbilical submanifolds in \mathbf{C}_{k}^{n} are Lagrangian pseudo-hyperbolic spaces, Lagrangian pseudo-Riemannian spheres, complex extensors of the unit pseudo-hyperbolic space, or complex extensors of the unit pseudo-Riemannian sphere via unit speed curves in the
complex plane. As byproduct, we obtain, for each $k \geq 1$, abundant new examples of $S O(k, n-k)$-invariant Lagrangian submanifolds in \mathbf{C}_{k}^{n}.
2. Preliminaries. In this section, we briefly recall some facts about indefinite complex space forms. For more details, we refer the reader to [1]. We put $\mathbf{C}^{*}=\mathbf{C}-\{0\}$.

Let $\tilde{M}_{s}^{n}(4 c)$ be an indefinite complex space form of complex dimension n and complex index s. The complex index is defined as the (complex) dimension of the largest complex negative definite vector subspace of the tangent space. The curvature tensor \tilde{R} of $\tilde{M}_{s}^{n}(4 c)$ is given by

$$
\begin{aligned}
& \tilde{R}(X, Y) Z \\
= & c(\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle J Y, Z\rangle J X-\langle J X, Z\rangle J Y+2\langle X, J Y\rangle J Z),
\end{aligned}
$$

where J denotes the complex structure. We refer to [1] for the construction of the standard models of indefinite complex space forms $C P_{s}^{n}(4 c)$, when $c>0$, $C H_{s}^{n}(4 c)$, when $c<0$ and \mathbf{C}_{s}^{n}. For our purposes it is sufficient to know that there exist pseudo-Riemannian submersions, called Hopf fibrations,

$$
\pi: \breve{S}_{2 s}^{2 n+1}(c) \rightarrow C P_{s}^{n}(4 c): z \mapsto z \cdot \mathbf{C}^{\star}
$$

if $c>0$ and if $c<0$ by

$$
\pi: \breve{H}_{2 s+1}^{2 n+1}(c) \rightarrow C H_{s}^{n}(4 c): z \mapsto z \cdot \mathbf{C}^{\star}
$$

where

$$
\begin{aligned}
\breve{S}_{2 s}^{2 n+1}(c) & =\left\{z \in \mathbf{C}^{n+1} \left\lvert\, b_{s, n+1}(z, z)=\frac{1}{c}\right.\right\}, \\
\breve{H}_{2 s+1}^{2 n+1}(c) & =\{z \in 0 \\
& \left.=\mathbf{C}^{n+1} \left\lvert\, b_{s+1, n+1}(z, z)=\frac{1}{c}\right.\right\},
\end{aligned} \quad c<0, ~ l
$$

and $b_{p, q}$ is the standard Hermitian form with index p on \mathbf{C}^{q}.
In [1] it is shown that locally any indefinite complex space form is holomorphically isometric to either $\mathbf{C}_{s}^{n}, C P_{s}^{n}(4 c)$, or $C H_{s}^{n}(4 c)$.

Since a submanifold M of a Kähler manifold is Lagrangian if and only if J interchanges the tangent and the normal space, a Lagrangian submanifold of an indefinite complex space form of index s has real index s.

A tangent vector X of a pseudo-Riemannian manifold is called space-like (respectively, time-like or light-like) if $\langle X, X\rangle \geq 0$ (respectively, $\langle X, X\rangle<0$ or $\langle X, X\rangle=0$ with $X \neq 0$).

Let M be a submanifold of an indefinite complex space form $\tilde{M}_{k}^{m}(4 c)$. Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connection on M and $\tilde{M}_{k}^{m}(4 c)$, respectively. Then the formulas of Gauss and Weingarten are given respectively by

$$
\begin{align*}
\tilde{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{2.1}\\
\tilde{\nabla}_{X} \xi & =-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{align*}
$$

for X, Y tangent to M and ξ normal to M, where h, A and D are the second fundamental form, the shape operator and the normal connection. It is wellknown that, for each $Y \in T_{x} M$, the shape operator $A_{J Y}$ is a symmetric endomorphism of the tangent space $T_{x} M$. The second fundamental form and the shape operator are related by

$$
\begin{equation*}
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle, \tag{2.3}
\end{equation*}
$$

where $<,>$ denotes the indefinite inner product on M as well as on $\tilde{M}_{k}^{m}(4 c)$. It is known that the shape operator A_{ξ} is self-adjoint, i.e., $\left\langle A_{\xi} X, Y\right\rangle=$ $\left\langle A_{\xi} Y, X\right\rangle$ for X, Y tangent to M.

The equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{align*}
\langle R(X, Y) Z, W\rangle= & \left\langle A_{h(Y, Z)} X, W\right\rangle-\left\langle A_{h(X, Z)} Y, W\right\rangle \tag{2.4}\\
& +c(\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle) \\
(\nabla h)(X, Y, Z)= & (\nabla h)(Y, X, Z) \tag{2.5}\\
\left\langle R^{D}(X, Y) \xi, \eta\right\rangle= & \tilde{R}(X, Y ; \xi, \eta)+\left\langle\left[A_{\xi}, A_{\eta}\right] X, Y\right\rangle \tag{2.6}
\end{align*}
$$

where X, Y, Z, W (respectively, η and ξ) are vector tangent (respectively, normal) to M, \tilde{R} is the curvature tensor of $\tilde{M}_{k}^{m}(4 c), R^{D}(X, Y)=\left[D_{X}, D_{Y}\right]-$ $D_{[X, Y]}$, and ∇h is defined by

$$
\begin{equation*}
(\nabla h)(X, Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) . \tag{2.7}
\end{equation*}
$$

If M is a Lagrangian submanifold in $\tilde{M}_{k}^{n}(4 c)$, then we have

$$
\begin{align*}
& D_{X} J Y=J \nabla_{X} Y, \tag{2.8}\\
& A_{J Y} X=-J h(X, Y)=A_{J X} Y, \tag{2.9}\\
& \langle h(X, Y), Z\rangle=\langle h(Y, Z), J X\rangle=\langle h(Z, X), J Y\rangle \tag{2.10}
\end{align*}
$$

for X, Y, Z tangent to M.
We need the following Existence and Uniqueness Theorems for later use.

Existence theorem. Let $\left(M_{k}^{n}, g\right)$ be a simply-connected pseudo-Riemannian n-manifold with index k and TM denote the tangent bundle of M_{k}^{n}. If h is a TM-valued symmetric bilinear form on M_{k}^{n} satisfying
(1) $\langle h(X, Y), Z\rangle$ is totally symmetric,
(2) $(\nabla h)(X, Y, Z)=\nabla_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)$ is totally symmetric,
(3) $R(X, Y) Z=c(\langle Y, Z\rangle X-\langle X, Z\rangle Y)+h(h(Y, Z), X)-h(h(X, Z), Y)$, then there exists a Lagrangian isometric immersion L from $\left(M_{k}^{n}, g\right)$ into a complete simply-connected indefinite complex space form $\tilde{M}_{k}^{n}(4 c)$ whose second fundamental form h is given by $h(X, Y)=J h(X, Y)$.

Uniqueness theorem. Let $L_{1}, L_{2}: M_{k}^{n} \rightarrow \tilde{M}_{k}^{n}(4 c)$ be two Lagrangian isometric immersions of a pseudo-Riemannian n-manifold M_{k}^{n} with second fundamental forms h^{1} and h^{2}, respectively. If

$$
\begin{equation*}
\left\langle h^{1}(X, Y), J L_{1 \star} Z\right\rangle=\left\langle h^{2}(X, Y), J L_{2 \star} Z\right\rangle, \tag{2.11}
\end{equation*}
$$

for all vector fields X, Y, Z tangent to M_{k}^{n}, then there exists an isometry ϕ of $\tilde{M}_{k}^{n}(4 c)$ such that $L_{1}=L_{2} \circ \phi$.

These two theorems can be proved in a way similar to the Riemannian case given in $[7,11]$ (see, also [15]).
3. Complex Extensors. Let \mathbf{E}_{k}^{m} denote the pseudo-Euclidean m space endowed with pseudo-Euclidean metric with index k given by

$$
\begin{equation*}
g=-\sum_{j=1}^{k} d x_{j}^{2}+\sum_{\ell=k+1}^{m} d x_{\ell}^{2} \tag{3.1}
\end{equation*}
$$

The group of matrices in $S L(m, \mathbf{R})$ which leave invariant the quadratic form

$$
\begin{equation*}
-x_{1}^{2}-\cdots-x_{k}^{2}+x_{k+1}^{2}+\cdots+x_{m}^{2} \tag{3.2}
\end{equation*}
$$

is denoted by $S O(k, m-k)$.
For a real number $r>0$, we denote by $S_{k}^{m-1}\left(r^{2}\right)$ the pseudo-Riemannian sphere and by $H_{k-1}^{m-1}\left(-r^{2}\right)$ the pseudo-hyperbolic space defined respectively by

$$
\begin{align*}
& S_{k}^{m-1}\left(r^{2}\right)=\left\{x \in \mathbf{E}_{k}^{m}:\langle x, x\rangle=\frac{1}{r^{2}}\right\}, \quad k \geq 0 \tag{3.3}\\
& H_{k-1}^{m-1}\left(-r^{2}\right)=\left\{x \in \mathbf{E}_{k}^{m}:\langle x, x\rangle=-\frac{1}{r^{2}}\right\}, \quad k \geq 2 \tag{3.4}
\end{align*}
$$

where $<,>$ denotes the indefinite inner product on the pseudo-Euclidean space. If $k=1$, we put

$$
\begin{equation*}
H^{m-1}\left(-r^{2}\right)=\left\{x \in \mathbf{E}_{1}^{m}:\langle x, x\rangle=-\frac{1}{r^{2}} \text { and } x_{1}>0\right\} \tag{3.5}
\end{equation*}
$$

It is well-known that a complete simply-connected pseudo-Riemannian n-manifold of constant curvature c with index k is isometric to an indefinite Euclidean space \mathbf{C}_{k}^{n}, a pseudo-Riemannian sphere $S_{k}^{n}(c)$, or a pseudohyperbolic space $H_{k}^{n}(c)$, according to $c=0, c>0$ or $c<0$. Both $S_{k}^{n-1}(c)$
and $H_{k-1}^{n-1}(c)$ are invariant under the standard action of $S O(k, n-k)$ on \mathbf{E}_{k}^{n}.
We simply denote $S_{k}^{m-1}(1), H^{m-1}(-1)$, and $H_{k-1}^{m-1}(1)$ by S_{k}^{m-1}, H^{m-1}, and H_{k-1}^{m-1}, respectively. S_{1}^{m-1} is known as the de Sitter space-time and H_{1}^{m-1} as the anti-de Sitter space-time in the theory of relativity.

Definition 3.1. Let $G: M_{t}^{n-1} \rightarrow \mathbf{E}_{k}^{m}$ be an isometric immersion of a semi-Riemannian ($n-1$)-manifold with index t into \mathbf{E}_{k}^{m} and let $F: I \rightarrow \mathbf{C}^{*}$ be a unit speed curve in the punctured complex plane \mathbf{C}^{*}. We extend the immersion $G: M_{t}^{n-1} \rightarrow \mathbf{E}_{k}^{m}$ to an immersion of $I \times M_{t}^{n-1}$ into $\mathbf{C}_{k}^{m}=\mathbf{C} \otimes \mathbf{E}_{k}^{m}$ by

$$
\begin{equation*}
\phi=F \otimes G: I \times M_{t}^{n-1} \rightarrow \mathbf{C}_{k}^{m} \tag{3.6}
\end{equation*}
$$

where $F \otimes G$ is the tensor product immersion of F and G defined by

$$
\begin{equation*}
(F \otimes G)(s, p)=F(s) \otimes G(p), \quad s \in I, p \in M_{t}^{n-1} \tag{3.7}
\end{equation*}
$$

We call such an extension $F \otimes G$ of the immersion G a complex extensor of G (or of submanifold M_{t}^{n-1}) via F.

The complex extensor $\phi=F \otimes G: I \times M_{t}^{n-1} \rightarrow \mathbf{C}_{k}^{m}$ is called F-isometric (respectively, F-anti-isometric) if, for each $p \in M_{t}^{n-1}$,

$$
F \otimes G(p): I \rightarrow \mathbf{C}_{k}^{m}: s \mapsto F(s) \otimes G(p)
$$

carries the unit vector field $d / d s$ into a unit space-like vector field (respectively, a unit time-like vector field). It is called G-isometric if, for each $s \in I$,

$$
F(s) \otimes G: M_{t}^{n-1} \rightarrow \mathbf{C}_{1}^{m}: p \mapsto F(s) \otimes G(p)
$$

is isometric.
Lemma 3.1. Let $G: M_{t}^{n-1} \rightarrow \mathbf{E}_{k}^{m}$ be an isometric immersion and let $F: I \rightarrow \mathbf{C}^{*}$ be a unit speed curve. Then we have
(1) The complex extensor $\phi=F \otimes G$ is F-isometric if and only if $G\left(M_{t}^{n-1}\right)$ is contained in the unit pseudo-Riemannian sphere S_{k}^{m-1}.
(2) $\phi=F \otimes G$ is F-anti-isometric if and only if $G\left(M_{t}^{n-1}\right)$ is contained in the unit pseudo-hyperbolic space H_{k-1}^{m-1}.
(3) $\phi=F \otimes G$ is G-isometric if and only if $F(I)$ is contained in the unit circle $S^{1} \subset \mathbf{C}$.
(4) $\phi=F \otimes G$ is totally real if and only if one of the following three cases occurs:
(4.a) $G\left(M_{t}^{n-1}\right)$ is contained in the unit pseudo-Riemannian sphere S_{k}^{m-1}.
(4.b) $G\left(M_{t}^{n-1}\right)$ is contained in the unit pseudo-hyperbolic space H_{k-1}^{m-1}.
(4.c) $F(s)=c f \varphi(s)$ for some $c \in \mathbf{C}$ and some real-valued function φ.

Proof. We regard each tangent vector of M_{t}^{n-1} also as a tangent vector of the product manifold $I \times M_{t}^{n-1}$ in a natural way. Under the hypothesis we have

$$
\begin{equation*}
\phi_{s}=F^{\prime}(s) \otimes G, \quad Y \phi=F \otimes Y, \quad \phi_{s}=\frac{\partial \phi}{\partial s} \tag{3.8}
\end{equation*}
$$

where Y is a vector tangent to the second component of $I \times M_{t}^{n-1}$.
From (3.8) we obtain $\left|\phi_{s}\right|^{2}=\langle G, G\rangle$, which implies Statements (1) and (2) of the Lemma. Statement (3) follows from the second equation of (3.8).

It follows from a direct computation that the complex extensor $\phi=$ $F \otimes G$ is totally real if and only if, for any $s \in I, p \in M_{t}^{n-1}$, and $Y \in T_{p} M_{t}^{n-1}$, we have

$$
\begin{equation*}
\operatorname{Re}\left(i F(s) \bar{F}^{\prime}(s)\right)\langle G(p), Y\rangle=0 \tag{3.9}
\end{equation*}
$$

where \bar{F}^{\prime} denotes the complex conjugate of F^{\prime} and $\operatorname{Re}\left(i F \bar{F}^{\prime}\right)$ the real part of $i F \bar{F}^{\prime}$. Condition (3.9) implies $\operatorname{Re}\left(i F(s) \bar{F}^{\prime}(s)\right)=0$ for all $s \in I$ or $\langle G(p), Y\rangle=0$ for all $p \in M^{n-1}, Y \in T_{p} M_{t}^{n-1}$. The first case occurs if and only if $F=c \varphi(s)$ for some $c \in \mathbf{C}$ and real-valued function φ; and the second case occurs if and only if $G\left(M_{t}^{(n-1)}\right)$ is contained either in a pseudoRiemannian sphere $S_{k}^{m-1}\left(r^{2}\right)$ or in a pseudo-hyperbolic space $H_{k-1}^{m-1}\left(-r^{2}\right)$.

Lemma 3.2. Let $G: M_{t}^{n-1} \rightarrow \mathbf{E}_{k}^{m}$ be an isometric immersion and $F: I \rightarrow \mathbf{C}^{*}$ a unit speed curve. Then the complex extensor $\phi=F \otimes G$: $I \times M_{t}^{n-1} \rightarrow \mathbf{C}_{k}^{m}$ is totally geodesic with respect to the induced metric if and only if one of the following two cases occurs:
(a) $G: M_{t}^{n-1} \rightarrow \mathbf{E}_{k}^{m}$ is of essential codimension one and $F(s)=(s+a) c$ for some real number a and some unit complex number c.
(b) $n=2$ and G is a line in \mathbf{E}_{k}^{m}.

Proof. This is proved exactly in the same way as Proposition 2.2 of [6].
Let \ll, \gg denote the standard inner product of the complex plane \mathbf{C}. Recall that a local frame e_{1}, \ldots, e_{n} on a pseudo-Riemannian n-manifold is called orthonormal if $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j} \varepsilon_{j}$ where $\varepsilon_{j}=\left\langle e_{j}, e_{j}\right\rangle= \pm 1$.

Theorem 3.1. Let $\iota_{H}: H_{k-1}^{n-1} \rightarrow \mathbf{E}_{k}^{n}$ be the standard inclusion map of the unit pseudo-hyperbolic space H_{k-1}^{n-1} in \mathbf{E}_{k}^{n} and let $F: I \rightarrow \mathbf{C}^{*}$ be a unit speed curve. Then the complex extensor $\phi=F \otimes \iota_{H}: I \times H_{k-1}^{n-1} \rightarrow \mathbf{C}_{k}^{n}$ is a Lagrangian submanifold with index k whose second fundamental form satisfying

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{2}, e_{2}\right)=\ldots=h\left(e_{k}, e_{k}\right)=\mu J e_{1} \\
& h\left(e_{k+1}, e_{k+1}\right)=\ldots=h\left(e_{n}, e_{n}\right)=-\mu J e_{1} \tag{3.10}\\
& h\left(e_{1}, e_{j}\right)=\mu J e_{j}, \quad h\left(e_{j}, e_{\ell}\right)=0, \quad 2 \leq j \neq \ell \leq n \\
& \lambda=f^{\prime}(s), \quad \mu=\frac{\left\langle\left\langle e^{i f}, i F\right\rangle\right\rangle}{\langle\langle F, F\rangle\rangle}, \quad F^{\prime}(s)=e^{i f(s)}
\end{align*}
$$

where $e_{1}, e_{2}, \ldots, e_{n}$ is an orthonormal frame on $I \times_{\|F\|} H_{k-1}^{n-1}$ with $e_{1}=\phi_{s}$ and

$$
\begin{equation*}
\left\langle e_{1}, e_{1}\right\rangle=\ldots=\left\langle e_{k}, e_{k}\right\rangle=-1,\left\langle e_{k+1}, e_{k+1}\right\rangle=\ldots=\left\langle e_{n}, e_{n}\right\rangle=1 \tag{3.11}
\end{equation*}
$$

Proof. Statement (4) of Lemma 3.1 implies that every complex extensor of the unit hyperbolic space H_{k-1}^{n-1} in \mathbf{E}_{k}^{n} gives rise to a Lagrangian submanifold of \mathbf{C}_{k}^{n}.

Since $F: I \rightarrow \mathbf{C}^{*}$ is unit speed, we may put

$$
\begin{equation*}
F^{\prime}(s)=e^{i f(s)} \tag{3.12}
\end{equation*}
$$

for some real-valued function f defined on I. Therefore, F takes the following form:

$$
\begin{equation*}
F(s)=\int_{a}^{s} e^{i f(t)} d t \tag{3.13}
\end{equation*}
$$

for some real number a.
Since ι_{H} is the inclusion of the unit hyperbolic space H_{k-1}^{n-1} in $\mathbf{E}_{k}^{n},(3.7)$ and (3.12) imply

$$
\begin{align*}
& \phi_{s}=e^{i f(s)} \otimes \iota_{H}, \quad Y \phi=F \otimes Y, \tag{3.14}\\
& \phi_{s s}=i f^{\prime}(s) e^{i f(s)} \otimes \iota_{H}, \quad Y \phi_{s}=e^{i f(s)} \otimes Y, \tag{3.15}\\
& Y Z \phi=F \otimes \nabla_{Y} Z+\langle Y, Z\rangle\left(F \otimes \iota_{H}\right), \tag{3.16}
\end{align*}
$$

for Y, Z tangent to the second component of $I \times H_{k-1}^{n-1}$.
Since $\left\langle\iota_{H}, \iota_{H}\right\rangle=-1$, equation (3.14) implies that $e_{1}=\phi_{s}$ is a unit time-like vector field. Moreover, (3.14) implies that the induced metric on $I \times H_{k-1}^{n-1}$ is given by $g=-d s^{2}+\|F(s)\|^{2} g_{H}$, where g_{H} is the standard metric on H_{k-1}^{n-1}. Thus, the index of g is k.

Clearly, ϕ_{s} and $Y \phi$ are orthogonal for Y tangent to the second component of $I \times H_{k-1}^{n-1}$. Therefore, by (3.14)-(3.16), we conclude that the second fundamental form of the complex extensor ϕ satisfies (3.10).

Theorem 3.2. Let $\iota_{S}: S_{k}^{n-1} \rightarrow \mathbf{E}_{k}^{n}$ be the standard inclusion map of the unit pseudo-Riemannian sphere in \mathbf{E}_{k}^{n}. Then the complex extensor $\phi_{S}=F \otimes \iota_{S}$ of ι_{S} via a unit speed curve F in \mathbf{C}^{*} is a Lagrangian submanifold with index k in \mathbf{C}_{k}^{n} whose second fundamental form satisfies

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{2}, e_{2}\right)=\ldots=h\left(e_{k+1}, e_{k+1}\right)=-\mu J e_{1}, \\
& h\left(e_{k+2}, e_{k+2}\right)=\ldots=h\left(e_{n}, e_{n}\right)=\mu J e_{1}, \tag{3.17}\\
& h\left(e_{1}, e_{\ell}\right)=\mu J e_{\ell}, \quad h\left(e_{t}, e_{\ell}\right)=0, \quad 2 \leq t \neq \ell \leq n,
\end{align*}
$$

$$
\lambda=f^{\prime}(s), \quad \mu=\frac{\left\langle\left\langle e^{i f}, i F\right\rangle\right\rangle}{\langle\langle F, F\rangle\rangle}, \quad F^{\prime}(s)=e^{i f(s)},
$$

where $e_{1}, e_{2}, \ldots, e_{n}$ is an orthonormal frame on $I \times_{\|F\|} S_{k}^{n-1}$ with $e_{1}=\phi_{s}$ and

$$
\begin{align*}
& \left\langle e_{2}, e_{2}\right\rangle=\ldots=\left\langle e_{k+1}, e_{k+1}\right\rangle=-1 \\
& \left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{k+2}, e_{k+2}\right\rangle=\ldots=\left\langle e_{n}, e_{n}\right\rangle=1 . \tag{3.18}
\end{align*}
$$

Proof. This can be done in a way similar to Theorem 3.1.

Remark 3.1. The complex extensors of H_{k-1}^{n-1} and S_{k}^{n-1} via a unit speed curve given in Theorems 3.1 and 3.2 are invariant under the standard action of $S O(k, n-k)$ on \mathbf{C}_{k}^{n}.

Example 3.1. (Lagrangian pseudo-hyperbolic spaces). For a positive real number b, let $F_{b}: I_{b}=\left(-\frac{\pi}{b}, \frac{\pi}{b}\right) \rightarrow \mathbf{C}^{*}$ be the unit speed curve defined by

$$
\begin{equation*}
F_{b}(s)=\frac{e^{2 b s i}+1}{2 b i} . \tag{3.19}
\end{equation*}
$$

Then, with respect to the induced metric, the complex extensor:

$$
\begin{equation*}
\phi_{H}=F_{b} \otimes \iota_{H}: I_{b} \times H_{k-1}^{n-1} \rightarrow \mathbf{C}_{k}^{n} \tag{3.20}
\end{equation*}
$$

is a Lagrangian isometric immersion of an open portion of $H_{k}^{n}\left(-b^{2}\right)$ of constant negative curvature $-b^{2}$ into \mathbf{C}_{k}^{n}. The induced metric on $I_{b} \times H_{k-1}^{n-1}$ via ϕ_{H} is

$$
\begin{equation*}
g=-d s^{2}+\frac{\cos ^{2}(b s)}{b^{2}} g_{H}, \tag{3.21}
\end{equation*}
$$

where g_{H} is the standard metric on H_{k-1}^{n-1} given by

$$
\begin{align*}
g_{H}= & -\cosh ^{2} u_{k+1}\left(d u_{2}^{2}+\cos ^{2} u_{2} d u_{3}^{2}+\cdots+\prod_{j=2}^{k-1} \cos ^{2} u_{j} d u_{k}^{2}\right)+d u_{k+1}^{2} \tag{3.22}\\
& +\sinh ^{2} u_{k+1}\left(d u_{k+2}^{2}+\cos ^{2} u_{k+2} d u_{k+3}^{2}+\cdots+\prod_{j=k+2}^{n-1} \cos ^{2} u_{j} d u_{n}^{2}\right)
\end{align*}
$$

The coordinate system $\left\{u_{2}, \ldots, u_{n}\right\}$ on H_{k-1}^{n-1} in \mathbf{E}_{k}^{n} is defined by

$$
\begin{align*}
& x_{1}= \sin u_{2} \cosh u_{k+1} \\
& \vdots \\
& x_{k-1}= \cos u_{2} \ldots \cos u_{k-1} \sin u_{k} \cosh u_{k+1} \tag{3.23}\\
& x_{k}= \cos u_{2} \ldots \cos u_{k} \cosh u_{k+1} \\
& x_{k+1}= \sin u_{k+2} \sinh u_{k+1} \\
& \vdots \\
& x_{n-1}= \cos u_{k+2} \ldots \cos u_{n-1} \sin u_{n} \sinh u_{k+1} \\
& x_{n}= \cos u_{k+2} \ldots \cos u_{n-1} \sinh u_{k+1}
\end{align*}
$$

We call such a submanifold a Lagrangian pseudo-hyperbolic space. The second fundamental form of the Lagrangian pseudo-hyperbolic space is given by (3.10) with $\lambda=2 b$ and $\mu=b$.

Example 3.2. (Lagrangian pseudo-Riemannian spheres). The complex extensor:

$$
\begin{equation*}
\phi_{S}=F_{b} \otimes \iota_{S}: I_{b} \times S_{k}^{n-1} \rightarrow \mathbf{C}_{k}^{n} \tag{3.24}
\end{equation*}
$$

is a Lagrangian isometric immersion of an open part of $S_{k}^{n}\left(b^{2}\right)$ of constant curvature b^{2} into \mathbf{C}_{k}^{n}. The induced metric on $I_{b} \times S_{k}^{n-1}$ via ϕ_{S} is

$$
\begin{equation*}
g=d s^{2}+\frac{\cos ^{2}(b s)}{b^{2}} g_{S} \tag{3.25}
\end{equation*}
$$

where g_{S} is the standard metric on S_{k}^{n-1} given by

$$
\begin{align*}
g_{S}= & -d u_{2}^{2}-\sinh ^{2} u_{2}\left(d u_{3}^{2}+\cos ^{2} u_{3} d u_{4}^{2}+\cdots+\prod_{j=3}^{k} \cos ^{2} u_{j} d u_{k+1}^{2}\right) \\
& +\cosh ^{2} u_{2}\left(d u_{k+2}^{2}+\cos ^{2} u_{k+2} d u_{k+3}^{2}+\cdots+\prod_{j=k+2}^{n-1} \cos ^{2} u_{j} d u_{n}^{2}\right) \tag{3.26}
\end{align*}
$$

The coordinate system $\left\{u_{2}, \ldots, u_{n}\right\}$ on S_{k}^{n} in \mathbf{E}_{k}^{n} is defined by

$$
\begin{align*}
& x_{1}= \sinh u_{2} \sin u_{3}, \\
& \vdots \\
& x_{k-1}= \sinh u_{2} \cos u_{3} \ldots \cos u_{k} \sin u_{k+1}, \tag{3.27}\\
& x_{k}= \sinh u_{2} \cos u_{3} \ldots \cos u_{k+1}, \\
& x_{k+1}= \cosh u_{2} \sin u_{k+2}, \\
& \vdots \\
& \vdots \\
& x_{n-1}= \cosh u_{2} \cos u_{k+2} \ldots \cos u_{n-1} \sin u_{n}, \\
& x_{n}= \cosh u_{2} \cos u_{k+2} \ldots \cos u_{n},
\end{align*}
$$

We call such a submanifold a Lagrangian pseudo-Riemannian sphere. The second fundamental form of the Lagrangian pseudo-Riemannian sphere is given by (3.17) with $\lambda=2 b$ and $\mu=b$.
4. Lagrangian H-umbilical Submanifolds. In views of Theorems 3.1 and 3.2, we define a Lagrangian H-umbilical submanifold in an indefinite complex Euclidean space \mathbf{C}_{k}^{n} as follows.

Definition 4.1. A Lagrangian submanifold M in an indefinite complex Euclidean space \mathbf{C}_{k}^{n} is called Lagrangian H-umbilical if its second funda-
mental form satisfies

$$
\begin{align*}
h\left(e_{1}, e_{1}\right) & =\lambda J e_{1}, \quad h\left(e_{1}, e_{t}\right)=\mu J e_{t} \\
h\left(e_{t}, e_{t}\right) & =\mu \delta_{t} J e_{1}, \quad \delta_{t} \in\{-1,1\}, \quad t=2, \ldots, n \tag{4.1}\\
h\left(e_{\ell}, e_{t}\right) & =0, \quad 2 \leq \ell \neq t \leq n
\end{align*}
$$

for some functions λ and μ with respect to some orthonormal local frame e_{1}, \ldots, e_{n}.

Since the second fundamental form h of a Lagrangian submanifold satisfies Condition (2.10), Lagrangian H-umbilical submanifolds are the simplest Lagrangian submanifolds which satisfy the following two conditions:
(a) $J H$ is an eigenvector of the shape operator A_{H} and
(b) the restriction of A_{H} to $(J H)^{\perp}$ is proportional to the identity map.

In this way, we can regard Lagrangian H-umbilical submanifolds as the simplest Lagrangian submanifolds next to the totally geodesic ones.

The main result of this section is the following classification theorem.
Theorem 4.1. Let $L: M \rightarrow \mathbf{C}_{k}^{n}$ be a Lagrangian H-umbilical submanifold in \mathbf{C}_{k}^{n} with $n \geq 3$ and index $k>0$.
(i) If M has constant sectional curvature, then, up to rigid motions of \mathbf{C}_{k}^{n}, one of the following three cases occurs:
(i-a) M is a flat pseudo-Riemannian manifold.
(i-b) M is an open portion of a pseudo-hyperbolic space $H_{k}^{n}\left(-b^{2}\right)$ and L is locally a Lagrangian pseudo-hyperbolic space in \mathbf{C}_{k}^{n}.
(i-c) M is an open portion of a pseudo-Riemannian sphere $S_{k}^{n}\left(b^{2}\right)$ and L is locally a Lagrangian pseudo-Riemannian sphere in \mathbf{C}_{k}^{n}.
(ii) If M contains no open subset of constant sectional curvature, then, up to rigid motions, one of the following two cases occurs:
(ii-a) L is an open portion of a complex extensor of the unit pseudohyperbolic space H_{k-1}^{n-1} via a unit speed curve in \mathbf{C}^{*}.
(ii-b) L is an open portion of a complex extensor of the unit pseudoRiemannian sphere S_{k}^{n-1} via a unit speed curve in \mathbf{C}^{*}.

Proof. Let $n \geq 3, k>0$, and $L: M \rightarrow \mathbf{C}_{k}^{n}$ be a Lagrangian H umbilical isometric immersion whose second fundamental form satisfies (4.1) for some functions λ and μ with respect to some orthonormal local frame field e_{1}, \ldots, e_{n}.

If we put

$$
\begin{align*}
& \tilde{\nabla}_{X} e_{A}=\sum_{B=1}^{n} \epsilon_{B} \omega_{A}^{B}(X) e_{B}+\sum_{B=1}^{n} \epsilon_{B} \omega_{A}^{B^{*}}(X) J e_{B}, \quad \epsilon_{B}=\left\langle e_{B}, e_{B}\right\rangle \tag{4.2}\\
& \tilde{\nabla}_{X}\left(J e_{A}\right)=\sum_{B=1}^{n} \epsilon_{B} \omega_{A^{*}}^{B}(X) e_{B}+\sum_{B=1}^{n} \epsilon_{B} \omega_{A^{*}}^{B^{*}}(X) J e_{B}, \tag{4.3}
\end{align*}
$$

for $A, B=1, \ldots, n$, then we have

$$
\begin{equation*}
\omega_{A}^{B}=-\omega_{B}^{A}, \quad \omega_{B^{*}}^{A}=\omega_{A}^{B^{*}}, \quad \omega_{B^{*}}^{A^{*}}=\omega_{B}^{A} \tag{4.4}
\end{equation*}
$$

Let $\omega^{1}, \ldots, \omega^{n}$ denote the dual 1-forms of e_{1}, \ldots, e_{n} defined by

$$
\omega^{A}\left(e_{B}\right)=\delta_{A B}= \begin{cases}0, & \text { if } A \neq B \tag{4.5}\\ 1, & \text { if } A=B\end{cases}
$$

Then we have

$$
\begin{equation*}
\omega_{A}^{B^{*}}=\sum_{C=1}^{n} \epsilon_{C} h_{A C}^{B^{*}} \omega^{C}, \quad h_{A C}^{B^{*}}=\left\langle h\left(e_{A}, e_{C}\right), J e_{B}\right\rangle \tag{4.6}
\end{equation*}
$$

The Cartan's structure equations are given by

$$
\begin{align*}
d \omega^{A} & =\sum_{B=1}^{n} \epsilon_{B} \omega^{B} \wedge \omega_{B}^{A} \tag{4.7}\\
d \omega_{A}^{B} & =\sum_{C=1}^{n} \epsilon_{C} \omega_{A}^{C} \wedge \omega_{C}^{B}+\sum_{C=1}^{n} \epsilon_{C} \omega_{A}^{C^{*}} \wedge \omega_{C^{*}}^{B} . \tag{4.8}
\end{align*}
$$

Case (1): e_{1} is time-like. In this case, we may assume
(4.9) $\left\langle e_{1}, e_{1}\right\rangle=\ldots=\left\langle e_{k}, e_{k}\right\rangle=-1, \quad\left\langle e_{k+1}, e_{k+1}\right\rangle=\ldots=\left\langle e_{n}, e_{n}\right\rangle=1$,
so, we have

$$
\begin{equation*}
\epsilon_{1}=\ldots=\epsilon_{k}=-1, \quad \epsilon_{k+1}=\ldots=\epsilon_{n}=1 \tag{4.10}
\end{equation*}
$$

From (2.3), (2.9), (4.1), and (4.9)-(4.10), we find $\delta_{t}=-\epsilon_{t}$ for $t=$ $2, \ldots, n$. Hence (4.1) becomes

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{t}\right)=\mu J e_{t} \\
& h\left(e_{j}, e_{j}\right)=\mu J e_{1}, \quad h\left(e_{\alpha}, e_{\alpha}\right)=-\mu J e_{1}, \quad h\left(e_{\ell}, e_{t}\right)=0 \tag{4.11}\\
& 2 \leq j \leq k, \quad k+1 \leq \alpha \leq n, \quad 2 \leq \ell \neq t \leq n
\end{align*}
$$

From (4.2)-(4.4), (4.11), and Codazzi's equation, we obtain

$$
\begin{align*}
& e_{1} \mu=(\lambda-2 \mu) \epsilon_{t} \omega_{1}^{t}\left(e_{t}\right) \tag{4.12}\\
& e_{t} \lambda=(2 \mu-\lambda) \omega_{1}^{t}\left(e_{1}\right) \tag{4.13}\\
& (\lambda-2 \mu) \omega_{1}^{\ell}\left(e_{t}\right)=0, \quad 2 \leq \ell \neq t \leq n \tag{4.14}\\
& e_{t} \mu=3 \mu \omega_{t}^{1}\left(e_{1}\right) \tag{4.15}\\
& \mu \omega_{1}^{t}\left(e_{1}\right)=0 \tag{4.16}
\end{align*}
$$

for $2 \leq t \leq n$.
Since the ambient space \mathbf{C}_{k}^{n} is flat, (4.10)-(4.11) and Gauss' equation imply that the sectional curvature function K of M satisfies

$$
\begin{align*}
& K\left(e_{1}, e_{t}\right)=\mu(\mu-\lambda), \quad t=2, \ldots, n \tag{4.17}\\
& K\left(e_{\ell}, e_{t}\right)=-\mu^{2}, \quad 2 \leq \ell \neq t \leq n \tag{4.18}
\end{align*}
$$

Case (1-a): M is of constant curvature. In this case, (4.17) and (4.18) imply $\mu(\lambda-2 \mu)=0$.

Case (1-a.1): $\mu=0$ identically. In this case, M is a flat pseudoRiemannian manifold with index k. Hence, we obtain Case (i-a) of Theorem 4.1.

Case (1-a.2): $\mu \neq 0$. In this case, $\lambda=2 \mu \neq 0$ on a nonempty open subset V of M. Thus, (4.12) and (4.13) imply that μ is a nonzero constant, say $b \neq 0$. Thus, by continuity, we have $V=M$. Hence, the equation of Gauss implies that M is a pseudo-Riemannian manifold of constant negative curvature $-b^{2}$. Therefore, M is locally isometric to the warped product $I_{b} \times \cos (b s) / b H_{k-1}^{n-1}, I_{b}=(-\pi / 2 b, \pi / 2 b)$, whose metric is given by

$$
\begin{equation*}
g=-d s^{2}+\frac{\cos ^{2}(b s)}{b^{2}} g_{H} \tag{4.19}
\end{equation*}
$$

Therefore, the Uniqueness Theorem implies that, up to rigid motions of \mathbf{C}_{k}^{n}, the Lagrangian immersion is given by (3.20). This gives Case (i-b) of Theorem 4.1.

Case (1-b): M contains no open subset of constant curvature. In this case, the set $U:=\{p \in M: \mu(\lambda-2 \mu) \neq 0$ at $p\}$ is an open dense subset of M.

Equations (4.13)-(4.16) imply

$$
\begin{align*}
& e_{t} \lambda=e_{t} \mu=0, \quad t=2, \ldots, n \tag{4.20}\\
& \omega_{1}^{\ell}\left(e_{t}\right)=0, \quad 2 \leq \ell \neq t \leq n, \quad \text { on } U . \tag{4.21}
\end{align*}
$$

Moreover, (4.12), (4.16) and (4.21) yield

$$
\begin{equation*}
\omega_{1}^{t}=\kappa \epsilon_{t} \omega^{t}, \quad \kappa=\frac{e_{1} \mu}{\lambda-2 \mu}, \quad t=2, \ldots, n, \quad \text { on } U \tag{4.22}
\end{equation*}
$$

For $2 \leq \ell, t \leq n,(4.21)$ gives $\left\langle\left[e_{\ell}, e_{t}\right], e_{1}\right\rangle=\omega_{t}^{1}\left(e_{\ell}\right)-\omega_{\ell}^{1}\left(e_{t}\right)=0$. Thus, the distribution $\mathcal{D}^{\perp}=: \operatorname{Span}\left\{e_{2}, \ldots, e_{n}\right\}$ is integrable. Let \mathcal{D} denote the distribution spanned by e_{1}. Then \mathcal{D} is also integrable, since \mathcal{D} is onedimensional. Thus, there is a local coordinate system $\left\{s, x_{2}, \ldots, x_{n}\right\}$ such
that (a) \mathcal{D} is spanned by $\{\partial / \partial s\}$, (b) \mathcal{D}^{\perp} is spanned by $\left\{\partial / \partial x_{2}, \ldots, \partial / \partial x_{n}\right\}$ and (c) $e_{1}=\partial / \partial s, \omega^{1}=d s$.

From (4.20) we know that λ and μ depend only on s. Hence, the function κ defined in (4.22) depends only on s, too. From (4.2), (4.21) and (4.22), we find

$$
\begin{equation*}
\left\langle\nabla_{e_{\ell}} e_{t}, e_{1}\right\rangle=-\kappa \delta_{\ell t}\left\langle e_{\ell}, e_{t}\right\rangle, \quad 2 \leq \ell, t \leq n \tag{4.23}
\end{equation*}
$$

which implies that \mathcal{D}^{\perp} is a spherical distribution, i.e., \mathcal{D}^{\perp} is an integrable distribution whose leaves are extrinsic spheres in M. By an extrinsic sphere, we mean a totally umbilical submanifolds with parallel mean curvature vector. Moreover, by (4.11), (4.23), and Gauss' equation, we know that each leaf of \mathcal{D}^{\perp} is of constant sectional curvature $-\left(\mu^{2}+\kappa^{2}\right)$. Furthermore, from (4.22), we have $\nabla_{e_{1}} e_{1}=0$. Thus, integral curves of e_{1} are geodesics. Consequently, by applying a result of $[17,21]$, we conclude that U is locally a warped product $\mathbf{E}_{1}^{1} \times{ }_{f(s)} H_{k-1}^{n-1}$ of a time-like line and the unit pseudohyperbolic space H_{k-1}^{n-1} for some positive function $f(s)$. Hence, there is a local coordinate system on M such that the metric tensor is given by

$$
\begin{equation*}
g=-d s^{2}+f(s)^{2} g_{H} \tag{4.24}
\end{equation*}
$$

where g_{H} is the metric on H_{k-1}^{n-1} defined by (3.22).
Equations (3.22) and (4.24) and a direct long computation yield

$$
\begin{aligned}
& \nabla_{\partial / \partial s} \frac{\partial}{\partial s}=0, \quad \nabla_{\partial / \partial s} \frac{\partial}{\partial u_{t}}=\frac{f^{\prime}}{f} \frac{\partial}{\partial u_{t}}, t=2, \ldots, n, \\
& \nabla_{\partial / \partial u_{i}} \frac{\partial}{\partial u_{j}}=-\tan u_{i} \frac{\partial}{\partial u_{j}}, \quad 2 \leq i<j \leq k \\
& \nabla_{\partial / \partial u_{2}} \frac{\partial}{\partial u_{2}}=-f f^{\prime} \cosh ^{2} u_{k+1} \frac{\partial}{\partial s}+\frac{\sinh \left(2 u_{k+1}\right)}{2} \frac{\partial}{\partial u_{k+1}}, \\
& \nabla_{\partial / \partial u_{j}} \frac{\partial}{\partial u_{j}}=\prod_{\ell=2}^{j-1} \cos ^{2} u_{\ell}\left\{\frac{\sinh \left(2 u_{k+1}\right)}{2} \frac{\partial}{\partial u_{k+1}}-f f^{\prime} \cosh ^{2} u_{k+1} \frac{\partial}{\partial s}\right\} \\
&+\sum_{\ell=2}^{j-1}\left(\frac{\sin 2 u_{\ell}}{2} \prod_{i=\ell+1}^{j-1} \cos ^{2} u_{i}\right) \frac{\partial}{\partial u_{\ell}}, j=3, \ldots, k,
\end{aligned}
$$

$$
\nabla_{\partial / \partial u_{k+1}} \frac{\partial}{\partial u_{k+1}}=f f^{\prime} \frac{\partial}{\partial s}
$$

(4.25) $\nabla_{\partial / \partial u_{j}} \frac{\partial}{\partial u_{k+1}}=\tanh u_{k+1} \frac{\partial}{\partial u_{j}}, \quad 2 \leq j \leq k$,
$\nabla_{\partial / \partial u_{j}} \frac{\partial}{\partial u_{\beta}}=0, \quad 2 \leq j \leq k ; \quad k+2 \leq \beta \leq n$,
$\nabla_{\partial / \partial u_{\alpha}} \frac{\partial}{\partial u_{\beta}}=-\tan u_{\alpha} \frac{\partial}{\partial u_{\beta}}, \quad k+2 \leq \alpha<\beta \leq n$,
$\nabla_{\partial / \partial u_{k+2}} \frac{\partial}{\partial u_{k+2}}=f f^{\prime} \sinh ^{2} u_{k+1} \frac{\partial}{\partial s}-\frac{\sinh \left(2 u_{k+1}\right)}{2} \frac{\partial}{\partial u_{k+1}}$,
$\nabla_{\partial / \partial u_{\alpha}} \frac{\partial}{\partial u_{\alpha}}=\prod_{\ell=2}^{\alpha-1} \cos ^{2} u_{\ell}\left\{f f^{\prime} \sinh ^{2} u_{k+1} \frac{\partial}{\partial s}-\frac{\sinh \left(2 u_{k+1}\right)}{2} \frac{\partial}{\partial u_{k+1}}\right\}$

$$
+\sum_{\beta=k+2}^{\alpha-1}\left(\frac{\sin 2 u_{\beta}}{2} \prod_{l=\beta+1}^{\alpha-1} \cos ^{2} u_{l}\right) \frac{\partial}{\partial u_{\beta}}
$$

$\nabla_{\partial / \partial u_{\alpha}} \frac{\partial}{\partial u_{k+1}}=\operatorname{coth} u_{k+1} \frac{\partial}{\partial u_{\alpha}}, \quad k+2 \leq \alpha \leq n$.

By applying (4.11), (4.25) and Gauss' formula, we find
(4.26) $L_{s s}=i \lambda L_{s}, \quad i=\sqrt{-1}$,
(4.27) $L_{s u_{t}}=\left(\frac{f^{\prime}}{f}+i \mu\right) L_{u_{t}}, \quad t=2, \ldots, n$,
(4.28) $L_{u_{i} u_{j}}=-\tan u_{i} L_{u_{j}}, \quad 2 \leq i<j \leq k$,
(4.29) $L_{u_{2} u_{2}}=\left(i \mu f^{2}-f f^{\prime}\right) \cosh ^{2} u_{k+1} L_{s}+\frac{\sinh 2 u_{k+1}}{2} L_{u_{k+1}}$,
(4.30) $L_{u_{j} u_{j}}=\prod_{\ell=2}^{j-1} \cos ^{2} u_{\ell}\left\{\left(i \mu f^{2}-f f^{\prime}\right) \cosh ^{2} u_{k+1} L_{s}+\frac{\sinh 2 u_{k+1}}{2} L_{u_{k+1}}\right\}$

$$
+\sum_{\ell=2}^{j-1}\left(\frac{\sin 2 u_{\ell}}{2} \prod_{i=\ell+1}^{j-1} \cos ^{2} u_{i}\right) L_{u_{\ell}}, \quad j=3, \ldots, k
$$

(4.31) $L_{u_{k+1} u_{k+1}}=\left(f f^{\prime}-i \mu f^{2}\right) L_{s}$,
(4.32) $L_{u_{j} u_{k+1}}=\tanh u_{k+1} L_{u_{j}}, \quad 2 \leq j \leq k$,
(4.33) $L_{u_{j} u_{\beta}}=0, \quad 2 \leq j \leq k ; \quad k+2 \leq \beta \leq n$,
(4.34) $L_{u_{\alpha} u_{\beta}}=-\tan u_{\alpha} L_{u_{\beta}}, \quad k+2 \leq \alpha<\beta \leq n$,

$$
\text { (4.37) } L_{u_{k+1} u_{\alpha}}=\operatorname{coth} u_{k+1} L_{u_{\alpha}}, \quad k+2 \leq \alpha \leq n .
$$

Since $L_{s s u_{t}}=L_{s u_{t} s}$, (4.26) and (4.27) imply

$$
\begin{equation*}
\kappa^{\prime}+\kappa^{2}=\mu^{2}-\lambda \mu, \quad \kappa=\frac{\mu^{\prime}}{\lambda-2 \mu}, \tag{4.38}
\end{equation*}
$$

where $\kappa=f_{s} / f$. Also, from $L_{u_{2} u_{k+1} u_{k+1}}=L_{u_{k+1} u_{k+1} u_{2}}$, (4.31) and (4.32), we find $f^{2}=1 /\left(\kappa^{2}+\mu^{2}\right)$. Therefore, we get

$$
\begin{equation*}
f=c \exp \left(\int \kappa(s) d x\right)=\frac{1}{\sqrt{\kappa^{2}+\mu^{2}}} \tag{4.39}
\end{equation*}
$$

for some integration constant $c \neq 0$.
Solving the equation (4.26) yields

$$
\begin{equation*}
L=A\left(u_{2}, \ldots, u_{n}\right) \int^{s} e^{i \int^{s} \lambda(t) d t} d s+B\left(u_{2}, \ldots, u_{n}\right) \tag{4.40}
\end{equation*}
$$

for some \mathbf{C}_{k}^{n}-valued functions A and B, where $\int^{s} \lambda(t) d t$ is an antiderivative of $\lambda(s)$.

By (4.27) and (4.40), we find

$$
\begin{equation*}
(\kappa+i \mu) B_{u_{t}}=\left(e^{i \int^{s} \lambda(t) d t}-(\kappa+i \mu) \int^{s} e^{-i \int^{x} \lambda(t) d t} d x\right) A_{u_{t}} \tag{4.41}
\end{equation*}
$$

for $t=2, \ldots, n$. Since A and B are independent of s, (4.41) implies

$$
\begin{equation*}
e^{i \int^{s} \lambda(t) d t}-(\kappa+i \mu) \int^{s} e^{-i \int^{x} \lambda(t) d t} d x=\alpha(\kappa+i \mu) \tag{4.42}
\end{equation*}
$$

for some $\alpha \in \mathbf{C}$. Thus, (4.41) gives $B=\alpha A+C$ for some $\alpha \in \mathbf{C}$ and
$C \in \mathbf{C}_{k}^{n}$. Thus, after applying a suitable translation on \mathbf{C}_{k}^{n}, we obtain from (4.40) that
(4.43)L $L\left(s, u_{2}, \ldots, u_{n}\right)=F(s) A\left(u_{2}, \ldots, u_{n}\right), \quad F(s)=\alpha+\int^{s} e^{i \int^{s} \lambda(t) d t} d s$.

From (4.27) and (4.43), we find

$$
\begin{equation*}
F^{\prime}(s)=(\kappa+i \mu) F(s) \tag{4.44}
\end{equation*}
$$

Since $\left\|F^{\prime}(s)\right\|=1$, (4.39) and (4.44) imply

$$
\begin{equation*}
\|F(s)\|=f(s) \tag{4.45}
\end{equation*}
$$

Equation (4.43) gives

$$
\begin{equation*}
L_{s}=F^{\prime}(s) A, \quad L_{u_{k+1} u_{k+1}}=F(s) A_{u_{k+1} u_{k+1}} \tag{4.46}
\end{equation*}
$$

On the other hand, by (4.31), (4.39), (4.44) and (4.46), we find
(4.47) $L_{u_{k+1} u_{k+1}}=\left(f f^{\prime}-i \mu f^{2}\right) F^{\prime} A=\left(f f^{\prime}-i \mu f^{2}\right)\left(\frac{f^{\prime}}{f}+i \mu\right) F A=F A$.

Combining (4.46), and (4.47) yields $A_{u_{k+1} u_{k+1}}=A$. Thus, we obtain

$$
\begin{equation*}
A=b_{1} \sinh u_{k+1}+b_{2} \cosh u_{k+1} \tag{4.48}
\end{equation*}
$$

for some \mathbf{C}_{k}^{n}-valued functions b_{1}, b_{2} of $u_{2}, \ldots, u_{k}, u_{k+1}, \ldots, u_{n}$.
By applying (4.32) with $j=2$ and (4.48), we find

$$
\begin{aligned}
& b_{1}=b_{1}\left(u_{3}, \ldots, u_{k}, u_{k+2}, \ldots, u_{n}\right) \\
& b_{2}=b_{3}\left(u_{3}, \ldots, u_{k}, u_{k+2}, \ldots, u_{n}\right) \sin u_{2}+b_{4}\left(u_{3}, \ldots, u_{k}, u_{k+2}, \ldots, u_{n}\right) \cos u_{2}
\end{aligned}
$$

Continuing such procedure $(k-1)$-times with the help of (4.28)-(4.32), we
obtain

$$
\begin{align*}
& b_{1}=b_{1}\left(u_{k+2}, \ldots, u_{n}\right) \\
& b_{2}=c_{1} \sin u_{2}+c_{2} \sin u_{3} \cos u_{2}+\cdots \tag{4.49}\\
& \quad+c_{k-1} \sin u_{k} \prod_{j=2}^{k-1} \cos u_{j}+c_{k} \prod_{j=2}^{k} \cos u_{j}
\end{align*}
$$

for some \mathbf{C}_{k}^{n}-valued functions c_{1}, \ldots, c_{k} of u_{k+2}, \ldots, u_{n}.
Similarly, by (4.33)-(4.37), we know that c_{1}, \ldots, c_{k} are constant vectors and

$$
\begin{align*}
& b_{1}=c_{k+1} \sin u_{k+2}+c_{k+2} \sin u_{k+3} \cos u_{k+2}+\cdots \tag{4.50}\\
& \quad+c_{n-1} \sin u_{n} \prod_{\alpha=k+2}^{n-1} \cos u_{\alpha}+c_{n} \prod_{\alpha=2}^{n} \cos u_{\alpha}
\end{align*}
$$

for some constant vectors c_{1}, \ldots, c_{k} in \mathbf{C}_{k}^{n}. Therefore, by combining (4.43) and (4.48)-(4.50), we obtain

$$
L=F(s)\left\{c_{1} \sin u_{2}+c_{2} \sin u_{3} \cos u_{2}+\cdots\right.
$$

$$
\begin{align*}
& \left.+c_{k-1} \sin u_{k} \prod_{j=2}^{k-1} \cos u_{j}+c_{k} \prod_{j=2}^{k} \cos u_{j}\right\} \cosh u_{k+1} \tag{4.51}\\
& +F(s)\left\{c_{k+1} \sin u_{k+2}+c_{k+2} \sin u_{k+3} \cos u_{k+2}+\cdots\right. \\
& \left.+c_{n-1} \sin u_{n} \prod_{\alpha=k+2}^{n-1} \cos u_{\alpha}+c_{n} \prod_{\alpha=k+2}^{n} \cos u_{\alpha}\right\} \sinh u_{k+1}
\end{align*}
$$

for some constant vectors c_{1}, \ldots, c_{n} in \mathbf{C}_{k}^{n}.
Because M is a Lagrangian submanifold in \mathbf{C}_{k}^{n}, we may choose the following initial conditions:

$$
\begin{align*}
L_{s}(0, \ldots, 0) & =(1,0, \ldots, 0) \\
L_{u_{2}}(0, \ldots, 0) & =\left(0, \frac{1}{f(0)}, \ldots, 0\right) \tag{4.52}
\end{align*}
$$

$$
\begin{aligned}
& \vdots \\
L_{u_{n}}(0, \ldots, 0) & =\left(0, \ldots, 0, \frac{1}{f(0)}\right)
\end{aligned}
$$

in view of (3.22) and (4.51). By using (4.51) and (4.52) we obtain
(4.53) $L z=F(s)\left(\sin u_{2} \cosh u_{k+1}, \sin u_{3} \cos u_{2} \cosh u_{k+1}, \ldots\right.$,

$$
\begin{array}{r}
\sin u_{k} \cosh u_{k+1} \prod_{j=2}^{k-1} \cos u_{j}, \cosh u_{k+1} \prod_{j=2}^{k} \cos u_{j}, \sinh u_{k+1} \sin u_{k+2} \\
\sinh u_{k+1} \sin u_{k+3} \cos u_{k+2}, \ldots, \sinh u_{k+1} \sin u_{n} \prod_{\alpha=k+2}^{n-1} \cos u_{\alpha} \\
\left.\sinh u_{k+1} \prod_{\alpha=k+2}^{n} \cos u_{\alpha}\right)
\end{array}
$$

which implies that, up to rigid motions of \mathbf{C}_{k}^{n}, M is the complex extensor of the unit pseudo-hyperbolic space via the unit speed curve F. Thus, we obtain Case (ii-a) of Theorem 4.1.

Case (2): e_{1} is space-like. In this case, we may assume

$$
\begin{align*}
& \left\langle e_{2}, e_{2}\right\rangle=\ldots=\left\langle e_{k+1}, e_{k+1}\right\rangle=-1 \\
& \left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{k+2}, e_{k+2}\right\rangle=\ldots=\left\langle e_{n}, e_{n}\right\rangle=1 \tag{4.54}
\end{align*}
$$

so, we have $\epsilon_{2}=\ldots=\epsilon_{k+1}=-1, \epsilon_{1}=\epsilon_{k+2}=\ldots=\epsilon_{n}=1$.
From (2.3), (2.9), (4.1), and (4.54) we find $\delta_{t}=\epsilon_{t}$ for $t=2, \ldots, n$. Hence (4.1) becomes

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{t}\right)=\mu J e_{t}, \\
& h\left(e_{j}, e_{j}\right)=-\mu J e_{1}, \quad h\left(e_{\alpha}, e_{\alpha}\right)=\mu J e_{1}, \quad h\left(e_{\ell}, e_{t}\right)=0, \tag{4.55}\\
& 2 \leq j \leq k+1, \quad k+2 \leq \alpha \leq n, \quad 2 \leq \ell \neq t \leq n
\end{align*}
$$

From (4.2)-(4.4), (4.55), and Codazzi's equation, we find

$$
\begin{align*}
& e_{1} \mu=(\lambda-2 \mu) \epsilon_{t} \omega_{1}^{t}\left(e_{t}\right), \tag{4.56}\\
& e_{t} \lambda=(\lambda-2 \mu) \omega_{1}^{t}\left(e_{1}\right), \tag{4.57}\\
& (\lambda-2 \mu) \omega_{1}^{\ell}\left(e_{t}\right)=0, \tag{4.58}\\
& e_{t} \mu=-3 \mu \omega_{t}^{1}\left(e_{1}\right), \tag{4.59}\\
& \mu \omega_{1}^{t}\left(e_{1}\right)=0, \tag{4.60}
\end{align*}
$$

for $2 \leq \ell \neq t \leq n$.
Since the ambient space is flat, the equation of Gauss and (4.10)-(4.11) imply

$$
\begin{gather*}
K\left(e_{1}, e_{t}\right)=\mu(\lambda-\mu), \quad t=2, \ldots, n, \tag{4.61}\\
K\left(e_{\ell}, e_{t}\right)=\mu^{2}, \quad 2 \leq \ell \neq t \leq n . \tag{4.62}
\end{gather*}
$$

Case (2-a): M is of constant curvature. In this case, (4.61) and (4.62) imply $\mu(\lambda-2 \mu)=0$.

Case (2-a.1): $\mu=0$ identically. In this case, M is a flat pseudoRiemannian manifold with index k.

Case (2-a.2): $\mu \neq 0$. In this case, $\lambda=2 \mu \neq 0$ on a nonempty open subset V of M. Thus, (4.57) and (4.60) imply that μ is a nonzero constant, say $b \neq 0$. Hence, by continuity, we obtain $V=M$. Therefore M is a pseudo-Riemannian manifold of constant curvature b^{2}. Hence, M is locally isometric to the warped product $I_{b} \times{ }_{\cos (b s) / b} S_{k}^{n-1}, I_{b}=(-\pi / 2 b, \pi / 2 b)$. Thus, by applying the Uniqueness Theorem, we obtain Case (i-c) of Theorem 4.1.

Case (2-b): M contains no open subset of constant curvature. In this case, the set $U:=\{p \in M: \mu(\lambda-2 \mu) \neq 0$ at $p\}$ is an open dense subset of M.

As Case (1-b), Equations (4.56)-(4.60) imply that the distribution \mathcal{D}^{\perp} spanned by $\left\{e_{2}, \ldots, e_{n}\right\}$ is integrable whose leaves are extrinsic spheres in M and integral curves of e_{1} are geodesics. Thus, there is a local coordinate system $\left\{s, x_{2}, \ldots, x_{n}\right\}$ such that (a) \mathcal{D} is spanned by $\{\partial / \partial s\}$, (b) \mathcal{D}^{\perp} is spanned by $\left\{\partial / \partial x_{2}, \ldots, \partial / \partial x_{n}\right\}$ and (c) $e_{1}=\partial / \partial s, \omega^{1}=d s$. Furthermore, in this case we know that U is locally a warped product $\mathbf{E}^{1} \times f(s) S_{k}^{n-1}$ of a space-like line and the unit pseudo-Riemannian sphere S_{k}^{n-1} for some positive function f. Therefore, there is a local coordinate system on M such that the metric tensor is given by

$$
\begin{equation*}
g=d s^{2}+f(s)^{2} g_{S} \tag{4.63}
\end{equation*}
$$

where g_{S} is the metric on S_{k}^{n-1} defined by (3.26).
After computing Christoffel symbols of g, we obtain from (4.55) and the formula of Gauss that
(4.64) $L_{s s}=i \lambda L_{s}, \quad i=\sqrt{-1}$,
(4.65) $L_{s u_{t}}=\left(\frac{f^{\prime}}{f}+i \mu\right) L_{u_{t}}, t=2, \ldots, n$,
(4.66) $L_{u_{2} u_{j}}=\operatorname{coth} u_{2} L_{u_{j}}, \quad 3 \leq j \leq k+1$,
(4.67) $L_{u_{2} u_{\alpha}}=\tanh u_{2} L_{u_{\alpha}}, \quad k+2 \leq \alpha \leq n$.
(4.68) $L_{u_{i} u_{j}}=-\tan u_{i} L_{u_{j}}, \quad 3 \leq i<j \leq k+1$,
(4.69) $L_{u_{2} u_{2}}=\left(f f^{\prime}-i \mu f^{2}\right) L_{s}$,
(4.70) $L_{u_{3} u_{3}}=\left(f f^{\prime}-i \mu f^{2}\right) \sinh ^{2} u_{2} L_{s}-\frac{\sinh 2 u_{2}}{2} L_{u_{2}}$,
(4.71) $L_{u_{j} u_{j}}=\prod_{\ell=3}^{j-1} \cos ^{2} u_{\ell}\left\{\left(f f^{\prime}-i \mu f^{2}\right) \sinh ^{2} u_{2} L_{s}+\frac{\sinh 2 u_{2}}{2} L_{u_{2}}\right\}$
$+\sum_{\ell=3}^{j-1}\left(\frac{\sin 2 u_{\ell}}{2} \prod_{i=\ell+1}^{j-1} \cos ^{2} u_{i}\right) L_{u_{\ell}}, j=4, \ldots, k+1$,
(4.72) $L_{u_{j} u_{\beta}}=0, \quad 3 \leq j \leq k+1 ; \quad k+2 \leq \beta \leq n$,
(4.73) $L_{u_{\alpha} u_{\beta}}=-\tan u_{\alpha} L_{u_{\beta}}, \quad k+2 \leq \alpha<\beta \leq n$,

$$
\begin{align*}
L_{u_{k+2} u_{k+2}}= & \left(i \mu f^{2}-f f^{\prime}\right) \cosh ^{2} u_{k+1} L_{s}+\frac{\sinh \left(2 u_{k+1}\right)}{2} L_{u_{2}} \tag{4.74}\\
L_{u_{\alpha} u_{\alpha}}= & \prod_{\ell=k+2}^{\alpha-1} \cos ^{2} u_{\ell}\left\{\left(i \mu f^{2}-f f^{\prime}\right) \cosh ^{2} u_{2} L_{s}+\frac{\sinh \left(2 u_{k+1}\right)}{2} L_{u_{k+1}}\right\} \tag{4.75}\\
& +\sum_{\beta=k+2}^{\alpha-1}\left(\frac{\sin 2 u_{\beta}}{2} \prod_{l=\beta+1}^{\alpha-1} \cos ^{2} u_{l}\right) L_{u_{\beta}}
\end{align*}
$$

Since $L_{s s u_{t}}=L_{s u_{t} s}$ and $L_{u_{2} u_{2} u_{3}}=L_{u_{2} u_{3} u_{2}}$, (4.64)-(4.66) and (4.69) imply

$$
\begin{equation*}
\kappa^{\prime}+\kappa^{2}=\mu^{2}-\lambda \mu, \quad \kappa=\frac{f^{\prime}}{f}=\frac{\mu^{\prime}}{\lambda-2 \mu}, \quad f^{2}=1 /\left(\kappa^{2}+\mu^{2}\right) . \tag{4.76}
\end{equation*}
$$

After solving the system (4.64)-(4.75) with the help of (4.76) as in Case (1-b), we obtain

$$
L=F(s)\left\{c_{1} \sin u_{3}+c_{2} \sin u_{4} \cos u_{3}+\cdots\right.
$$

$$
\begin{align*}
& \left.+c_{k} \sin u_{k+1} \prod_{j=3}^{k} \cos u_{j}+c_{k} \prod_{j=3}^{k+1} \cos u_{j}\right\} \sinh u_{2} \tag{4.77}\\
& +F(s)\left\{c_{k+1} \sin u_{k+2}+c_{k+2} \sin u_{k+3} \cos u_{k+2}+\cdots\right. \\
& \left.+c_{n-1} \sin u_{n} \prod_{\alpha=k+2}^{n-1} \cos u_{\alpha}+c_{n} \prod_{\alpha=2}^{n} \cos u_{\alpha}\right\} \cosh u_{2}
\end{align*}
$$

for some constant vectors c_{1}, \ldots, c_{n} in \mathbf{C}_{k}^{n}, where $F(s)$ is the unit speed curve defined by (4.43). By choosing the same initial conditions (4.52) as Case (1-b), we obtain
(4.78) $L=F(s)\left(\sinh u_{2} \sin u_{3}, \sinh u_{2} \sin u_{4} \cos u_{3}, \ldots\right.$,

$$
\sinh u_{2} \sin u_{k+1} \prod_{j=3}^{k} \cos u_{j}, \sinh u_{2} \prod_{j=3}^{k+1} \cos u_{j}, \cosh u_{2} \sin u_{k+2}
$$

$$
\begin{aligned}
& \cosh u_{2} \sin u_{k+3} \cos u_{k+2}, \ldots, \cosh u_{2} \sin u_{n} \prod_{\alpha=k+2}^{n-1} \cos u_{\alpha} \\
& \left.\cosh u_{2} \prod_{\alpha=k+2}^{n} \cos u_{\alpha}\right) .
\end{aligned}
$$

This shows that, up to rigid motions, the Lagrangian submanifold is the complex extensor of the unit pseudo-Riemannian sphere via the unit speed curve F. Hence, we obtain Case (ii-b) of Theorem 4.1.

The converse is easy to verified.
Theorem 4.1 implies immediately the following.
Corollary 4.1. Let M be a Lagrangian submanifold of \mathbf{C}_{k}^{n} with $n \geq 3$ and $k \geq 1$. Then, up to rigid motions, M is an open portion of a Lagrangian pseudo-Riemannian sphere or of a Lagrangian pseudo-hyperbolic space if and only if M is a Lagrangian H-umbilical submanifold with nonzero constant curvature.

Corollary 4.2. Let $L: M \rightarrow \mathbf{C}_{1}^{n}$ be a Lagrangian H-umbilical submanifold in the Lorentzian complex Euclidean n-space with $n \geq 3$.
(i) If M is of constant curvature, then, up to rigid motions of \mathbf{C}_{1}^{n}, one of the following three cases occurs:
(i-a) M is a flat Lorentzian n-manifold.
(i-b) M is an open portion of a Lagrangian hyperbolic space in \mathbf{C}_{1}^{n}.
(i-c) M is an open portion of a Lagrangian de Sitter spacetime in \mathbf{C}_{1}^{n}.
(ii) If M contains no open subset of constant curvature, then, up to rigid motions, L is locally one of the following two Lagrangian submanifolds:
(ii-a) L is a complex extensor of the unit hyperbolic space H^{n-1} via a unit speed curve in \mathbf{C}^{*}.
(ii-b) L is a complex extensor of the unit de Sitter spacetime S_{1}^{n-1} via a unit speed curve in \mathbf{C}^{*}.

References

1. M. Barros and A. Romero. Indefinite Kähler manifolds, Math. Ann., 261 (1982), 55-62.
2. V. Borrelli, B. Y. Chen and J. M. Morvan, Une caractérisation gómétrique de la sphère de Whitney, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 1485-1490.
3. I. Castro and C. R. Montealegre, Lagrangian submanifolds with zero scalar curvature in complex Euclidean space, Geom. Dedicata, 86 (2001), 179-183.
4. I. Castro, C. R. Montealegre and F. Urbano, Closed conformal vector fields and Lagrangian submanifolds in complex space forms, Pacific J. Math., 199 (2001), 269-302.
5. B. Y. Chen, Geometry of Submanifolds, M. Dekker, New York, 1973.
6. B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J., 49 (1997), 277-297.
7. B. Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math., 99 (1997), 69-108.
8. B. Y. Chen, Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces, Tohoku Math. J., 51 (1999), 13-20.
9. B. Y. Chen, Riemannian Submanifolds, Handbook of Differential Geometry, Vol. I, North Holland Publ., 2000, pp.187-418.
10. B. Y. Chen, Riemannian geometry of Lagrangian submanifolds, Taiwanese J. Math., 5 (2001), 681-723.
11. B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, An exotic totally real minimal immersion of S^{3} in $C P^{3}$ and its characterization, Proc. Roy. Soc. Edinburgh Sec. A, 126 (1996), 153-165.
12. B. Y. Chen and C. S. Houh, Totally real submanifolds of a quaternion projective space, Ann. Mat. Pura Appl., 120 (1979), 185-199.
13. B. Y. Chen, C. S. Houh and H. S. Lue, Totally real submanifolds, J. Differential Geometry, 12 (1977), 473-480.
14. B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257-266.
15. B. Y. Chen and L. Vrancken, Lagrangian minimal isometric immersions of a Lorentzian real space form into a Lorentzian complex space form, Tohoku Math. J. 54 (2002), 121-143.
16. F. Dillen, S. Nölker, Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine. Angew. Math., 241 (1993), 33-63.
17. S. Hiepko, Eine innere Kennzeichung der verzerrten Produkte, Math. Ann., 241 (1979), 209-215.
18. M. Kriele and L. Vrancken, Minimal Lagrangian submanifolds of Lorentzian complex space forms with constant sectional curvature, Arch. Math., 72 (1999), 223-232.
19. C. R. Montealegre and L. Vrancken, Lagrangian submanifolds of the three dimensional complex projective space, J. Math. Soc. Japan, 53 (2001), 603-631.
20. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
21. R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata, 48 (1993), 15-25.
22. A. Ros and F. Urbano, Lagrangian submanifolds of \mathbf{C}^{n} with conformal Maslov form and the Whitney sphere, J. Math. Soc. Japan, 50 (1998), 203-226.

Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, U.S.A.

E-mail: bychen@math.msu.edu

