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Abstract. In this paper sufficient conditions are obtained

for every solution of

(∗) (y(t) − p(t)y(t− τ ))(n) + Q(t)G(y(t− σ)) = f(t), t ≥ 0,

to oscillate or tend to zero as t → ∞, for both n odd or even.

Here 0 ≤ p(t) ≤ p or −p ≤ p(t) ≤ 0, where p is a positive scalar.

The results of this paper hold for linear, super linear or sublinear

equations, and answer an open problem suggested by Ladas and

Gyori in [1]. The results of the paper are also true for the homoge-

neous equation associated with (∗), and generalize/improve some

known results.

1. Introduction. In the present work the author has obtained suffi-

cient conditions for every solution of

(E) (y(t) − p(t)y(t − τ))(n) + Q(t)G(y(t − σ)) = f(t).

to oscillate or tend to zero as t → ∞, where p and f ∈ C([0,∞), R), Q ∈

C([0,∞), [0,∞)), G ∈ C(R,R), τ > 0 and σ ≥ 0. Following assumptions

are needed in the sequel.
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(H1) There exists F ∈C(n)([0,∞), R) such that F (n)(t)=f(t) and limt→∞ F (t)

= 0

(H2) G is non-decreasing and u G(u) > 0 for u 6= 0.

(H3) For u > 0, v > 0, ∃ a scalar δ > 0 such that G(u) + G(v) ≥ δ G(u + v)

(H4) lim|u|→∞G(u)/u ≥ α > 0,where α is a scalar.

(H5) For u > 0, v > 0, G(u)G(v) ≥ G(uv)

(H6) G(−u) = −G(u)

(H7)
∫ ∞
0 tn−2Q(t)dt = ∞, n ≥ 2.

(H8)
∫ ∞
0 Q(t)dt = ∞

(H9) Suppose that, for every sequence < σi >⊂ (0,∞), σi → ∞ as i → ∞

and for every β > 0 such that the intervals (σi − β, σi + β), i = 1, 2, . . .,

are non overlapping,

∞∑
i=1

∫ σi+β

σi−β
tn−1Q(t)dt = ∞, for n ≥ 1.

(H10) In (H9) replace tn−1 by tn−2 i.e

∞∑
i=1

∫ σi+β

σi−β
tn−2Q(t)dt = ∞, for n ≥ 2.

In recent years a good deal of work is done on the oscillation theory of

higher order neutral delay-differential equations. Most of these results are

concerned with (E) where f(t) ≡ 0 and G(u) ≡ u. It seems that little work

is done for the oscillatory and asymptotic behaviour of solutions of (E). In

particular still less work is done, when p ≥ p(t) ≥ 1. The author is motivated

for the present work due to this observation and an open problem of [1,pp-

287]. The problem 10.10.2 of above reference suggested by Ladas and Gyori

is “Extend the results of section 10.4 to equations where the coefficient p(t)

lies in different ranges”. The following ranges for p(t) are considered in

section 10.4 of [1].
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(A1) 1 ≤ p(t) ≤ p1 (A2) 0 ≤ p(t) ≤ p2 < 1

(A3) −1 < −p3 ≤ p(t) ≤ 0 (A4) p(t) ≡ −1

(A5) 0 < p(t) ≤ 1.

Where pi is a positive scalar for i=1, 2, 3. In this paper the following two

ranges are considered for p(t) which are different from the above mentioned

ranges.

(B1) 0 ≤ p(t) ≤ p (B2) − p ≤ p(t) ≤ 0

where p is a positive scalar.

The present study deals with Eq. (E) with n ≥ 2 (also true for n = 1,

with little modification) and super linear assumption (H4). It may be noted

that (H4) includes linear case. The prototype of G satisfying (H2)− (H6) is

G(u) = (β + |u|λ)|u|µsgn u, β ≥ 1, λ ≥ 0, µ ≥ 0 and λ + µ ≥ 1.

See [8, p. 292]. This work also hold for homogeneous neutral delay equations

of order n.

By a solution of (E) we mean a real-valued continuous function y on

[Ty−ρ,∞) for some Ty ≥ 0, where ρ = max{τ, σ}, such that y(t)−p(t) y(t−τ)

is n-time continuously differentiable and (E) is satisfied for t ∈ [Ty,∞).

A solution of (E) is said to be oscillatory if it has arbitrarily large zeros,

otherwise, it is called non-oscillatory.

In the sequel, for convenience, when we write a functional inequality

without specifying its domain of validity, we assume that it holds for all

sufficiently large t.

2. Main Results. First we state some Lemmas which are needed in

the sequel,
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Lemma 2.1. Q ∈ C([0,∞), [0,∞)) and Q(t) 6≡ 0 on any interval of

the form [T,∞), T ≥ 0, and G ∈ C(R,R) with u G(u) > 0 for u 6= 0. Let

y ∈ C([0,∞), R) with y(t) > 0 for t ≥ t0 ≥ 0. If w ∈ C(n)([0,∞), R), with

w(n)(t) = −Q(t)G(y(t − σ)), t ≥ t0 + σ, σ ≥ 0,(1)

and there exists an integer n∗ ∈ {0, 1, 2, . . . , n − 1} such that limt→∞wn∗

(t)

exists and limt→∞wi(t) = 0 for i ∈ {n∗ + 1, . . . , n − 1},then

wn∗

(t) = wn∗

(∞) −
(−1)n−n∗

(n − n∗ − 1)!

∫ ∞

t
(s − t)n−n∗−1Q(s)G(y(s − σ))ds(2)

for large t.

If y(t) < 0 for t ≥ t0 then also (2) holds.

The proof follows by integrating (1), n−n∗ times and it is found in [5].

Lemma 2.2. Suppose that p(t) is in the range (B1). Let (H1), (H2),

(H4) and (H7) hold. If y(t) is a positive solution of (E) for t ≥ t0 >

0 then either w(t) = −∞ or lim w(t) = 0, (−1)n+kw(k)(t) < 0 for k =

0, 1, 2, . . . , n − 1, for large t, where

w(t) = y(t) − p(t)y(t − τ) − F (t).

If y(t) < 0 for t ≥ t0 then either limt→∞w(t) = ∞, or limt→∞w(t) = 0 and

(−1)n+kw(k)(t) > 0 for k = 0, 1, 2, . . . , n − 1.

The proof is simple and it follows directly from Lemma 2.5 of [5].

Remak 2.1. Lemma 2.2 hold for n ≥ 2. However, if n = 1, then one

can replace (H7) by (H8) and see that it is true.

Theorem 2.3. Let p(t) be in the range (B1). Suppose that (H1), (H2),

(H4), (H7), and (H9) hold. Then every bounded solution of (E) oscillates
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or tends to zero as t → ∞ and every unbounded solution of (E) oscillates or

tends to ±∞.

Proof. Let y(t) be an unbounded solution of (E). If y(t) is oscillatory,

then there is nothing of prove. If y(t) is non-oscillatory, then y(t) > 0 or

y(t) < 0 for t ≥ t0 > 0. Let y(t) > 0, t ≥ t0. Setting

z(t) = y(t) − p(t)y(t − τ) and w(t) = z(t) − F (t) for t > t1 > t0 + ρ,(3)

we obtain

w(n)(t) = −Q(t)G(y(t − σ)) ≤ 0.(4)

From Lemma 2.2 if follows that either limt→∞w(t) = −∞ or limt→∞w(t) =

0 and (−1)n+kw(k)(t) < 0 for k=0, 1, 2, . . . , n − 1 If the latter holds, then

since y(t) is unbounded, there exits a sequence < tn >⊂ [t2,∞) where t2 > t1

such that tn → ∞ and y(tn) → ∞ as n → ∞. Let M > 0. Then y(tn) > M

for n ≥ N1 > 0. From the continuity of y it follows that there exists δn > 0

with lim infn→∞δn > 0 such that y(t) > M for t ∈ (tn − δn, tn + δn). Then

choosing n large enough such that δn > δ > 0 for n ≥ N > N1, we obtain

∫ ∞

t2

tn−1Q(t)G(y(t − σ))dt ≥
∞∑

n=N

∫ tn+δn+σ

tn−δn+σ
tn−1Q(t)G(y(t − σ))dt

≥ G(M)
∞∑

n=N

∫ tn+δn+σ

tn−δn+σ
tn−1Q(t)G(y(t−σ))dt

> G(M)
∞∑

n=N

∫ tn+δ+σ

tn−δ+σ
tn−1Q(t)dt.

Hence from (H9), it follows that

∫ ∞

t2

tn−1Q(t)G(y(t − σ))dt = ∞(5)

On the other hand since limt→∞ w(t) = 0; by using Lemma 2.1 for n∗ = 0,
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we obtain for large t

w(t) = −
(−1)n

(n − 1)!

∫ ∞

t
(s − t)n−1Q(s)G(y(s − σ))ds.(6)

From (6) it follows that.

∫ ∞

t2

tn−1Q(t)G(y(t − σ))dt < ∞,(7)

a contradiction. Hence the only possibility left is limt→∞ w(t) = −∞. If

p(t) = 0, then w(t) = y(t) − F (t) ≥ −F (t), which implies F (t) ≥ −w(t).

Then limt→∞ F (t) = ∞ a contradiction to (H1). If p(t) > 0, then from (3)

we get z(t) ≥ −p(t)y(t − τ) ≥ −py(t − τ). Hence y(t − τ) ≥ z(t)
(−p) , which

implies lim inft→∞ y(t) = ∞ because limt→∞ z(t) = −∞ by (H1). Hence

limt→∞ y(t) = ∞.

Next let us assume that y(t) is a bounded solution of (E) for t > t0 > 0.

Suppose y(t) is non oscillatory. Then y(t) > 0 or y(t) < 0 for large t. Let

y(t) > 0 for t > t1. Then using Lemma 2.2 and boundedness of y(t) we

obtain limt→∞ w(t) = 0. Hence using Lemma 2.1 for n∗ = 0, we obtain (6).

Consequently (7) holds. Then we claim that lim supt→∞ y(t) = 0. If not

then lim supt→∞ y(t) = α, α > 0. Then there exists a sequence < tn > such

that y(tn) > M > 0 for large n. proceeding as above we arrive at (5), which

contradicts (7). Hence limt→∞ y(t) = 0. The proof for the case y(t) < 0 is

similar. Hence the theorem is proved.

Remark 2.2. Since (H10) ⇒ (H9) and (H7) therefore we can assume

(H10) in place of (H9) and (H7) in Theorem 2.3. It may be noted that

Theorem 2.3 holds for n ≥ 2, but it also holds for n = 1, if we assume (H8)

in place of (H7).

Remark 2.3. Theorem 2.3 improves Theorem 2.9 of [6] and generalizes

Theorem 2.2 in [4].



2002] SOLUTIONS OF HIGHER ORDER NEUTRAL EQUATIONS 225

Remark 2.4. Theorem 2.3 is true for both n odd and even. It holds

when f(t) ≡ 0 and G(u) ≡ u.

Example 1. Consider

(y(t) − py(t − ln 2))(n) + (p − 2 + e−2t)y(t − ln 2) = (e−t)/2

t ≥ 0, where p > 2 and n ≥ 2. If F (t) = 1
2 (−1)ne−t then F (n)(t) = 1

2e(−t) =

f(t) and F (t) → 0 as t → ∞. Since Q(t) = p− 2 + e−2t > p− 2 > 0 then all

the conditions of Theorem 2.3 are satisfied. Clearly, y(t) = et is a solution

of the equation tending to +∞ as t → ∞.

Example 2. From Theorem 2.3 it follows that all bounded solutions of

(y(t) − 2y(t − π))(Iv) + 3y(t − π) = 0

oscillate or tend to zero. In particular y(t) = sin t is a bounded oscillatory

solution of the equation.

Theorem 2.4. Let (H1), (H2), (H3), (H5), (H6) and (H8) hold. Sup-

pose that Q(t) is monotonic decreasing. If p(t) lies in the range (B2), then

every solution of (E) oscillates or tends to zero as t → ∞.

Proof. If y(t) is a non-oscillatory solution of (E), then y(t) > 0 or

y(t) < 0 for t ≥ t0 > 0. Let y(t) > 0 for t > t0. The case y(t) < 0

for t > t0 may be dealt with similarly. Setting z(t) and w(t) as in (3) for

t > t1 > t0 + ρ, we obtain z(t) > 0 and (4). Hence w,w′, w′′, . . . w(n−1) are

monotonic and each is of constant sign for large t. Thus limt→∞ w(t) = ℓ

where −∞ ≤ l ≤ ∞. If −∞ ≤ ℓ < 0 then z(t) < 0 for large t, a contradiction.

If ℓ = 0 then z(t) > y(t) implies that limt→∞ y(t) = 0. Suppose that

0 < ℓ ≤ ∞. Then w(n−1)(t) > 0 for large t and hence limt→∞ w(n−1)(t)

exists finitely. Further, z(t) > λ > 0 for t > t2 > t1. Integrating (4) from t2
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to s(s > t2) and then taking limit as s → ∞, we obtain

∫ ∞

t2

Q(s)G(y(s − σ))ds < ∞(8)

On the other hand, for t3 > t2 + ρ,

∫ ∞

t3

Q(s)G(z(s − σ))ds ≥ G(λ)

∫ ∞

t3

Q(s)ds

implies that
∫ ∞

t3

Q(s)G(z(s − σ))ds = ∞

due to (H8). Hence using (H3) and (H5) we obtain

∞ =

∫ ∞

t3

Q(s)G(y(s − σ) − p(s − σ)y(s − τ − σ))ds

≤
1

δ

∫ ∞

t3

Q(s){G(y(s − σ)) + G(−p(s − σ)y(s − τ − σ))}ds

(9)

≤
1

δ

∫ ∞

t3

Q(s)G(y(s−σ))ds+
1

δ

∫ ∞

t3

Q(s)G(−p(s−σ))G(y(s−τ−σ))ds

≤
1

δ

∫ ∞

t3

Q(s)G(y(s − σ))ds +
G(p)

δ

∫ ∞

t
Q(s)G(y(s − τ − σ))ds

From (8) and (9) it follows that

∫ δ

t3

Q(t)G(y(t − σ − τ))dt = ∞,

that is (since Q(t) is decreasing),

∞ =

∫ ∞

t3−τ
Q(s + τ)G(y(s − σ))ds <

∫ ∞

t3−τ
Q(s)G(y(s − σ))ds < ∞

a contradiction. Hence ℓ = 0 is the only possibility. If y(t) < 0 for t > t0

then setting x(t) = −y(t) for t ≥ t0 we obtain

(x(t) − p(t)x(t − τ))(n) + Q(t)Ḡ(x(t − σ)) = f̄(t)
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where f̄(t) = −f(t) and Ḡ(u) = −G(−u) = G(u) by (H6) and F̄ (t) = −F (t).

Then (H1) is satisfied by F̄ . Also the conditions satisfied by G are satisfied

by Ḡ. Hence limt→∞ x(t) = 0, that is limt→∞ y(t) = 0. Thus the theorem is

proved.

Corollary 2.5. If all conditions of Theorem 2.4 are satisfied then every

unbounded solution of (E) oscillates.

Remark 2.5. Theorem 2.4 holds for linear, sublinear and super linear

G. It is true for n ≥ 1 (odd or even). Also it holds when f(t) ≡ 0.

Example 3.

(y(t)−py(t−ln 2))(Iv)+((2p−1) exp(−(1+2t)/3)+1)y
1
3 (t−1)=exp((1−t)/3), t≥ t0,

where p < 0 and t0 > 0 such that exp(1+2t0
3 ) > 1 − 2p.

Here F (t) = 81 exp((1−t)/3) and Q(t) is monotonic decreasing, where

Q(t) = 1+(2p−1)exp(−(1 + 2t)/3) > 0 for t ≥ t0. From Theorem 2.4

it follows that every solution of the equation oscillates or tends to zero as

t → ∞. In particular y(t) = e−t is a solution of the equation which tends to

zero as t → ∞.

Remark 2.6. Theorem 2.4. improves and generalizes Theorem 2.5 in

[6], and generalizes Theorem 2.1 in [4].

Remark 2.7. In [7] the author has solved one open problem with an

extra condition. Indeed, he showed that every nonoscillatory solution of

(y(t) + y(t − τ))′ + Q(t)y(t − σ) = 0

tends to zero as t → ∞ if (H8) holds and Q(t + τ/n) ≤ Q(t) for t ∈ [0,∞)

where n is any fixed, positive integer. Theorem 2.4 of this paper improves
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and generalizes the work in [7] not only to nonlinear nonhomogeneous equa-

tions but also to a greater range of p(t).
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