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Abstract. In this paper, we establish the existence and

uniqueness solutions of the two-point boundary value problem as-

sociated with a system of first order rectangular matrix differential

equations involving kronecker products. The solution of the two-

point boundary value problem is presented in terms of the Green’s

matrix. The properties of the Green’s matrix are also studied.

1. Introduction. Boundary value problems play an important role in

a variety of real world problems. In finding solutions to two-point boundary

value problems involving kronecker products, the construction of a Green’s

matrix is vital. It is sufficiently known about the construction of a Green’s

matrix for problems involving nonsingular square matrices. However the

theory for rectangular matrices involves significant difficulties as the inverse

of the matrix in the usual sense, does not exist. In this paper, we establish

the solutions of boundary value problems associated with kronecker product

system of first order rectangular matrix differential equations. By a suitable

transformation, the rectangular matrices are transformaed into non-singular

square matrices and solutions are finally expressed in terms of the rectan-

gular matrices. In 1992, Murty, K. N., Fausett, D. W. and Fausett, L. V.
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[3] established the solutions of two-point boundary value problems involving

a kronecker product system of first order differential equations. In 1992,

Murty, K. N, Prasad, K. R. and Rao, Y. S. [4] established the existence

and uniqueness of solutions to a kronecker product three point (multi point)

boundary value problems associated with a system of first order matrix dif-

ferential operator involving kronecker products.

In this paper, we consider the following kronecker product two-point

boundary value problem:

(P (t) ⊗ Q(t))y′(t) + (R(t) ⊗ S(t))y(t) = f(t, y(t)), a ≤ t ≤ b(1.1)

(M1 ⊗ N1)y(a) + (M2 ⊗ N2)y(b) = α,(1.2)

where P (t), Q(t), R(t) and S(t) are rectangular matrices of order (m × n),

y(t) is of order (n2 × 1), f : [a, b]×Rn2

→ Rm2

and the components of P (t),

Q(t), R(t), S(t) and f are continuous on [a, b], we assume that f(t, 0) ≡ 0 for

all t ∈ [a, b] and f satisfies a Lipschitz condition on [a, b]. We also assume

that the rows of P (t) and Q(t) are linearly independent on [a, b] and the

system (1.1) is consistent. M1, N1, M2 and N2 are matrices of order (m×n)

and α is a column matrix of order (m2 × 1).

This paper is organised as follows: In section 2, we develop the gen-

eral solution of the homogeneous kronecker product system corresponding

to (1.1) in terms of a fundamental matrix. We then establish the variation

of parameters formula to find the solution of non-homogeneous kronecker

product system (1.1). Section 3, presents a criteria for the existence and

uniqueness of solutions to a two-point boundary value problem. We estab-

lish the general solution of the two-point kronecker product boundary value

problem in terms of an integral representation involving the Green’s matrix

and we also verify the properties of the Green’s matrix. The results obtained

in this paper are exemplified at the end of this paper by a suitable example.
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2. General Solution of the Non-linear Kronecker Product Sys-

tem. In this section, the general solution of the homogeneous kronecker

product system

(P (t) ⊗ Q(t))y′(t) + (R(t) ⊗ S(t))y(t) = 0(2.1)

is obtained and thereby establishes the general solution of the non-linear

kronecker product system (1.1) using variation of parameters method. Let

y(t) = (P T (t)⊗QT (t))z(t). Then the transformed equation of (2.1) is of the

form

(P (t)P T (t) ⊗ Q(t)QT (t))z′(t) + [(P (t) ⊗ Q(t)) · (P T (t) ⊗ QT (t))′

+(R(t)P T (t) ⊗ S(t)QT (t))]z(t) = 0.

Since P (t)P T (t) ⊗ Q(t)QT (t) is non-singular, follows that

z′(t) = −(P (t)P T (t) ⊗ Q(t)QT (t))−1[(P (t) ⊗ Q(t))

·(P T (t) ⊗ QT (t))′ + (R(t)P T (t) ⊗ S(t)QT (t))]z(t),

i.e. z′(t) = −A−1(t)B(t)z(t),(2.2)

where

A(t) = (P (t)P T (t) ⊗ Q(t)QT (t)),

B(t) = [(P (t) ⊗ Q(t)) · (P T (t) ⊗ QT (t))′ + (R(t)P T (t) ⊗ S(t)QT (t))]

and P T (t), QT (t) are the transposes of the matrices P (t) and Q(t).

Theorem 2.1. If the system of equations (2.1) is consistent, then any

solution of (2.1) is of the form (P T (t) ⊗ QT (t))Φ(t)c, where Φ(t) is a fun-

damental matrix of (2.2) and c is a constant vector of order (m2 × 1).
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Proof. The transformation y(t) = (P T (t)⊗QT (t))z(t) transforms (2.1)

into (2.2). Since Φ(t) is a fundamental matrix of (2.2) it follows that any

solution z(t) is of the form z(t) = Φ(t)c, where c is a constant vector of order

(m2 × 1). Hence y(t) = (P T (t) ⊗ QT (t))Φ(t)c.

Theorem 2.2. A particular solution ȳ(t) of (1.1), is of the form

ȳ(t)=(P T (t)⊗QT (t))Φ(t)

∫ t

a
Φ−1(s)(P (s)P T (s)⊗Q(s)QT (s))−1f(s, y(s))ds.

Proof. The transformation y(t) = (P T (t) ⊗ QT (t))z(t) transforms the

equation (1.1) into

z′(t) + A−1(t)B(t)z(t) = A−1(t)f(t, (P T (t) ⊗ QT (t))z(t)).(2.3)

Now we seek a particular solution of (2.3) in the form z̄(t) = Φ(t)K(t).

Then Φ′(t)K(t) + Φ(t)K ′(t) + A−1(t)B(t)Φ(t)K(t) = A−1(t)f(t, (P T (t) ⊗

QT (t))z(t)).

⇔ Φ(t)K ′(t) = A−1(t)f(t, (P T (t) ⊗ QT (t))z(t))

⇔ K ′(t) = Φ−1(t)A−1(t)f(t, (P T (t) ⊗ QT (t))z(t))

K(t) =

∫ t

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1

·f(s, (P T (s) ⊗ QT (s))z(s))ds.

Hence a particular solution of (2.3) is given by

z̄(t)=Φ(t)

∫ t

a
Φ−1(s)(P (s)P T (s)⊗Q(s)QT (s))−1f(s, (P T (s)⊗QT (s))z(s))ds.

And hence a particular solution of (1.1) is of the form

ȳ(t) = (P T (t) ⊗ QT (t))Φ(t)

·

∫ t

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1(s)f(s, y(s))ds.
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Theorem 2.3. Any solution of (1.1) is of the form y(t) = (P T (t) ⊗

QT (t))Φ(t)c + ȳ(t), where ȳ(t) is a particular solution of (1.1) and is given

by

ȳ(t)=(P T (t)⊗QT (t))Φ(t)

∫ t

a
Φ−1(s)(P (s)P T (s)⊗Q(s)QT (s))−1f(s, y(s))ds.

3. Existence and Uniqueness of Solutions to Boundary Value

Problems. In this section, we obtain our main result on existence and

uniqueness of solutions associated with the kronecker product two point

boundary value problem in terms of an integral equation involving Green’s

matrix.

Definition 3.1. If (P T (t) ⊗ QT (t))Φ(t)c is a fundamental matrix of

(1.1), then the matrix D defined by D = (M1 ⊗N1)(P
T (a)⊗QT (a))Φ(a) +

(M2 ⊗ N2)(P
T (b) ⊗ QT (b))Φ(b) is called the characteristic matrix for the

kronecker product boundary value problem (1.1) and (1.2).

Definition 3.2. The dimension of the solution space of the kronecker

product boundary value problem is the index of compatibility of the problem.

A kronecker product boundary value problem is said to be incompatible if

its index of compatibility is zero.

Theorem 3.1. Suppose the kronecker product homogeneous two-point

boundary value problem is incompatible and their exists a constant K such

that

||f(t, y1) − f(t, y2)|| ≤ K||(y1 − y2)|| (Lipschitz condition)

for all (t, y1), (t, y2) ∈ [a, b]×Rn2

and a constant M > 0 such that ||G(t, s)||

≤ M and further suppose that MK(b − a) < 1. Then there exists a unique
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solution of the kronecker product two-point boundary value problem (1.1) &

(1.2).

Proof. From theorems (2.2) and (2.3), any solution of (1.1) is of the

form

y(t) = (P T (t) ⊗ QT (t))Φ(t)c + (P T (t) ⊗ QT (t))

·Φ(t)

∫ t

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds.

Substituting the general form of y(t) in the matrix boundary condition (1.2),

we get,

(M1P
T (a) ⊗ N1Q

T (a))Φ(a)c + (M2P
T (b) ⊗ N2Q

T (b))Φ(b)c

+(M2P
T (b) ⊗ N2Q

T (b))Φ(b)

∫ b

a
Φ−1(s)

(

P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s)
)

ds = α,

c = D−1α−D−1(M2P
T (b) ⊗ N2Q

T (b))

·Φ(b)

∫ b

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds,

where D = (M1P
T (a) ⊗ N1Q

T (a))Φ(a) + (M2P
T (b) ⊗ N2Q

T (b))φ(b).

Substituting the form of c in the general solution of y(t) in (1.1), we get

y(t) = (P T (t) ⊗ QT (t))Φ(t)D−1α−(P T (t) ⊗ QT (t))Φ(t)D−1

·(M2P
T(b)⊗N2Q

T(b))Φ(b)

∫ b

a
Φ−1(s)(P (s)P T(s)⊗Q(s)QT(s))−1f(s, y(s))ds

+(P T (t)⊗QT (t)Φ(t)

∫ t

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds.

= (P T (t) ⊗ QT (t))Φ(t)D−1α+(P T (t) ⊗ QT (t))Φ(t)

·[−D−1(M2P
T (b) ⊗ N2Q

T (b))Φ(b) + I]

·

∫ t

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds

−(P T (t) ⊗ QT (t))Φ(t)D−1(M2P
T (b) ⊗ N2Q

T (b))Φ(b)
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·

∫ b

t
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds

+(P T (t) ⊗ QT (t))Φ(t)

∫ t

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds.

= (P T (t) ⊗ QT (t))Φ(t)D−1α+(P T (t) ⊗ QT (t))Φ(t)

·D−1(M1P
T (a) ⊗ N1Q

T (a))Φ(a)

·

∫ t

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds

−(P T (t) ⊗ QT (t))Φ(t)D−1(M2P
T (b) ⊗ N2Q

T (b))Φ(b)

·

∫ b

a
Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1f(s, y(s))ds.

=

∫ b

a
G(t, s)f(s, y(s))ds + (P T (t) ⊗ QT (t))Φ(t)D−1α,

where G(t, s) the Green’s matrix, is given by

G(t, s) =











































(P T (t) ⊗ QT (t))Φ(t)D−1(M1P
T (a) ⊗ N1Q

T (a))Φ(a)Φ−1(s)

(P (s)P T (s) ⊗ Q(s)QT (s))−1 a ≤ s < t ≤ b,

−(P T (t) ⊗ QT (t))Φ(t)D−1(M2P
T (b) ⊗ N2Q

T (b))Φ(b)Φ−1(s)

(P (s)P T (s) ⊗ Q(s)QT (s))−1 a ≤ t < s ≤ b

Let S be a closed subset of a Banach space B. Define an operator H : S → S

by

H(y(i)(t)) =

∫ b

a
G(t, s)f(s, y(i−1)(s))ds + (P T (t) ⊗ QT (t))Φ(t)D−1α.

Then

||H(y(i)(t)) − H(y(i−1)(t))||

≤

∫ b

a
||G(t, s)||

[

||f(s, y(i−1)(s)) − f(s, y(i−2)(s))||
]

ds.

≤ MK||y(i−1)(s) − y(i−2)(s)||(b − a)
...

≤ M (i−1)K(i−1)(b − a)(i−1)||y(1)(s) − y(0)(s)||
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where M , K are positive constants.

Thus if MK(b − a) < 1, H is a contraction operator. Hence by the

Banach fixed point theorem, H has a unique fixed point and this fixed point

is the unique solution of the two-point kronecker product boundary value

problem (1.1) and (1.2).

Theorem 3.2. The Green’s matrix G(t, s) has the following proper-

ties:

(i) The components of G(t, s) regarded as functions of t with s fixed have

continuous first derivatives everywhere except at t = s. At the point

t = s, G has an upward jump-discontinuity of magnitude (P T (t) ⊗

QT (t))(P (t)P T (t) ⊗ Q(t)QT (t))−1. i.e.,

G(s+, s)−G(s−, s)=(P T (s) ⊗ QT (s))(P (s)P T (s) ⊗ Q(s)QT (s))−1.

(ii) G(t, s) is a formal solution of the kronecker product homogeneous boun-

dary value problem (2.1) satisfying (1.2). G fails to be a true solution

because of its discontinuity at t = s.

(iii) G(t, s) satisfying properties (i) and (ii) is unique.

Proof. For fixed s define G(t, s) as

G(t, s) =











(P T (t) ⊗ QT (t))Φ(t)H+, a ≤ s < t ≤ b,

(P T (t) ⊗ QT (t))Φ(t)H−, a ≤ t < s ≤ b

where H+ and H− are free from t. Therefore the components of G(t, s) have

continuous first derviatives with respect to t on each of the intervals [a, s)

and (s, b]. Further

H+−H−

= D−1(M1P
T (a) ⊗ N1Q

T (a))Φ(a)Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1
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+D−1(M2P
T (b) ⊗ N2Q

T (b))Φ(b)Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1

= D−1[(M1P
T (a) ⊗ N1Q

T (a))Φ(a)+(M2P
T (b) ⊗ N2Q

T (b))Φ(b)]

Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1.

= D−1DΦ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1.

= Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1.

Therefore

G(s+, s)−G(s−, s)

= (P T (s) ⊗ QT (s))Φ(s)H+−(P T (s) ⊗ QT (s))Φ(s)H−

= (P T (s) ⊗ QT (s))Φ(s)[H+−H−]

= (P T (s) ⊗ QT (s))Φ(s)Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1

= (P T (s) ⊗ QT (s))(P (s)P T (s) ⊗ Q(s)QT (s))−1.

ii)The representation of G(t, s) clearly shows that G(t, s) is a matrix solution

of the kronecker product homogeneous system (2.1) on [a, s) and (s, b]. Now

to show that G(t, s) satisfies the given matrix boundary condition (1.2); we

have

(M1 ⊗ N1)G(a, s)+(M2 ⊗ N2)G(b, s)

= (M1P
T (a) ⊗ N1Q

T (a))Φ(a)H−+(M2P
T (b) ⊗ N2Q

T (b))Φ(b)H+.

Since (M1P
T (a)⊗N1Q

T (a))Φ(a) = D−(M2P
T (b)⊗N2Q

T (b))Φ(b), we have

(M1 ⊗ N1)G(a, s)+(M2 ⊗ N2)G(b, s)

= [D−(M2P
T (b) ⊗ N2Q

T (b))Φ(b)]H−+(M2P
T (b) ⊗ N2Q

T (b))Φ(b)H+

= DH−+(M2P
T (b) ⊗ N2Q

T (b))Φ(b)[H−−H+]

= DH−+(M2P
T (b) ⊗ N2Q

T (b))Φ(b)Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1

= −DD−1(M2P
T (b) ⊗ N2Q

T (b))Φ(b)Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1

+(M2P
T (b) ⊗ N2Q

T (b))Φ(b)Φ−1(s)(P (s)P T (s) ⊗ Q(s)QT (s))−1
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= 0.

Thus G is a formal solution of the homogeneous kronecker product

boundary value problem.

iii) Now to prove that G is unique, let G1(t, s) and G2(t, s) be continuous

matrices with properties (i), (ii). Write

H(t, s) = G1(t, s)−G2(t, s). Clearly G is continuous on [a, s) and (s, b],

and H satisfies the kronecker product homogeneous system (2.1) on [a, s)

and (s, b]. At the point t = s.

H(s+, s)−H(s−, s) = G1(s
+, s)−G2(s

+, s)−G1(s
−, s)+G2(s

−, s)

= [G1(s
+, s)−G1(s

−, s)]−[G2(s
+, s)−G2(s

−, s)]=0

Therefore H has a removable discontinuity at t = s. By defining H

appropriately at this point, we ensure that it is continuous for all t ∈ [a, b].

Since the matrix boundary condition is linear and H is a linear combination

of G1 and G2, we have

(M1 ⊗ N1)H(a, s) + (M2 ⊗ N2)H(b, s) = 0

i.e., (M1 ⊗ N1)[G1(a, s) − G1(a, s)] + (M2 ⊗ N2)[G2(b, s) − G2(b, s)] = 0.

Since H is a solution of (2.1), it satisfies the homogeneous matrix bound-

ary condition and from our inital assumption that the homogeneous two

point boundary value problem has only a trivial solution, it follows that

H(t, s) = 0. i.e., G1(t, s)−G2(t, s) = 0 implies G1(t, s) = G2(t, s). Thus G

is unique.

Example 3.1. Consider the boundary value problem

(P ⊗ Q)y′ + (R ⊗ S)y = f(t, y(t))(3.1)

(M1 ⊗ N1)y(a) + (M2 ⊗ N2)y(b) = 0,(3.2)
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where

P =





1 0 0

0 1 0



 , Q=





0 1 0

1 0 0



 , R=





1 0 0

0 3 0



 ,

S =





−1 0 0

−3 2 0



 , M1 =





0 1 0

−1 0 0



 , M2 =





1 0 0

0 1 1



 ,

N1 =





0 1 1

1 0 0



 , N2 =





0 0 1

1 1 0



 .

Now the transformation y(t) = (P T ⊗QT )z(t) transforms the equation (3.1)

into

Az′ + Bz = 0(3.3)

where

A = PP T ⊗ QQT =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













,

B = (P ⊗ Q)(P T ⊗ QT )′ + (RP T ⊗ SQT )=













0 −1 0 0

2 −3 0 0

0 0 0 −3

0 0 6 −9













.

i.e. z′ =













0 1 0 0

−2 3 0 0

0 0 0 3

0 0 −6 9













z.

Now the fundamental matrix Φ(t) for the system (3.3) is given by

Φ(t) =













et e2t 0 0

et 2e2t 0 0

0 0 e3t e6t

0 0 e3t 2e6t













.
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The characteristic matrix D is given by

D = (M1 ⊗ N1)(P
T ⊗ QT )Φ(0) + (M2 ⊗ N2)(P

T ⊗ QT )Φ(1)

=













0 0 1 1

4 12 1 2

−1 −1 0 0

−1 −2 16 192













and D−1 =













A B C D

E F G H

I J K L

M N P Q













where A =
160

1409
, B=

−176

1409
, C =

−2114

1409
, D=

1

1409
, E=

−160

1409
,

F =
176

1409
, G=

705

1409
, H =

−1

1409
, I =

1538

1409
, J =

−1

1409
, K =

4

1409
,

L =
−8

1409
, M =

−129

1409
, N =

1

1409
, P =

−4

1409
, Q=

8

1409
.

Now the solution will be in the form

y(t) =

∫ 1

0
G(t, s)f(s, y(s))ds

where G(t, s) = [aij ]9×4, a ≤ s < t ≤ b

and are given by

a11 = −2(C+D)et−s+(C+2D)et−2s−4(G + H)e2t−s+2(G + 2H)e2t−2s,

a12 = (C+D)et−s−(C+2D)et−2s+2(G+H)e2t−s−2(G+2H)e2t−2s,

a13 = (2A+2B)et−3s−(A+2B)et−6s+4(E+F )e2t−3s−2(E+2F )e2t−3s,

a14 = −(A+B)et−3s+(A+2B)et−6s−2(E+F )e2t−3s+2(E+2F )e2t−6s,

a21 = −2(C+D)et−s+(C+2D)et−2ts−2(G+H)e2t−s+(G+2H)e2t−2s,

a22 = (C+D)et−s−(C+2D)et−2s+(G + H)e2t−s−(G + 2H)e2t−2s,

a23 = 2(A+B)et−3s−(A+2B)et−6s+2(E+F )e2t−3s−(E+2F )e2t−6s,

a24 = −(A+B)et−3s+(A+2B)et−6s−(E+F )e2t−3s+(E+2F )e2t−6s,

aij = 0, i = 3, j = 1, 2, 3, 4.

a41 = −2(k+L)e3t−s+(k+2L)e3t−2s−4(P +Q)e6t−s+2(P +2Q)e6t−2s,
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a42 = (k+L)e3t−s+(k+2L)e3t−2s+2(P +Q)e6t−s−2(P +2Q)e6t−2s,

a43 = 2(I+J)e3t−3s−(I+2J)e3t−6s−4(M+N)e6t−3s−2(M+2N)e6t−6s,

a44 = −(I+J)e3t−3s+(I+2J)e3t−6s−2(M+N)e6t−3s+2(M+2N)e6t−6s,

a51 = −2(k+L)e3t−s+(k+2L)e3t−2s−2(P +Q)e6t−s+(P +2Q)e6t−2s,

a52 = (k+L)e3t−s−(k+2L)e3t−2s+(P +Q)e6t−s−(P +2Q)e6t−2s,

a53 = 2(I+J)e3t−3s−(I+2J)e3t−6s+2(M+N)e6t−3s−(M+2N)e6t−6s,

a54 = −(I+J)e3t−3s+(I+2J)e3t−6s+(M+N)e6t−3s+(M+N)e6t−6s,

aij = 0, i = 6, 7, 8, 9. j = 1, 2, 3, 4.

And G(t, s) = [bij ]9×4, a ≤ t < s ≤ b,

where b11 = 8Bet−s − 12Bet−2s + 10Fe2t−s − 24Fe2t−2s,

b12 = −4Bet−s − 12Bet−2s − 8Fe2t−s − 24Fe2t−2s,

b13 = 32Det−3s − 192Det−6s + 64He2t−3s − 384e2t−6s,

b14 = −16Det−3s + 192Det−6s − 32He2t−3s + 384e2t−6s,

b21 = 8(B + F )et−s − 12(B + F )et−2s,

b22 = −4(B + F )et−s − 12(B + F )et−2s,

b23 = 32(D + H)et−3s − 192(D + H)et−6s,

b24 = −16(D + H)et−3s + 192(D + H)et−6s,

bij = 0, i = 3, j = 1, 2, 3, 4,

b41 = 8Je3t−s − 12Je3t−2s + 16Ne3t−s − 24Ne6t−2s,

b42 = −4Je3t−s − 12Je3t−2s − 8Ne6t−s − 24Ne6t−2s,

b43 = 32Le3t−3s − 192Le3t−6s + 64Qe6t−3s − 384Qe6t−6s,

b44 = −16Le3t−3s + 192Le3t−6s − 32Qe6t−3s + 384Qe6t−6s,

b51 = 8Je3t−s − 12Je3t−2s + 8Ne6t−2s − 12Ne6t−2s,

b52 = −4Je3t−s − 12Je3t−2s − 4Ne6t−s − 12Ne6t−2s,

b53 = 32Le3t−3s − 192e3t−6s + 32Qe6t−3s − 192Qe6t−6s,
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b54 = −16Le3t−3s + 192Le3t−6s − 16Qe6t−3s + 192Qe6t−6s,

bij = 0, i = 6, 7, 8, 9. j = 1, 2, 3, 4.
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