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Abstract. Let h be a harmonic function on RN . Then

there exists an entire function f on C such that f(u) = h(u,

0, · · · , 0) for all real u. The results connecting the (p, q)-order and

generalized (p, q)-type in terms of Hm(e∗), of f to that of h have

been proved. Finally, we have obtained a saturation theorem for h

which can be extened to an entire harmonic function of (p, q)-order

0 or 1 and for entire harmonic functions of minimal generalized

(p, q)-type. All these results also have been characterized in terms

of derivatives of h.

1. Introduction. If h is a function that is harmonic on the whole of

the Euclidean space RN , N ≥ 2, then there is a unique entire (holomorphic)

function f on the complex plane C such that f(u) = h(u, 0, · · · , 0) for all real

u. This fact has been used to deduce theorems for hormonic function on RN

from classical results about entire functions [5, 12]. The space of functions

that are harmonic on RN is denoted by ℵN and the space of entire functions

on C is denoted by E . If f ∈ ℵN (respectively E), then we write M∞(f, r)

for the maximum value of |f | on the sphere of radius r centred at otigin.

Let ℵm,N denote the vector space of all homogenous harmonic polynomi-

als of degree m on RN . Suppose that h ∈ ℵN . Then h has a unique expansion
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of the form h =
∑∞

j=0 Hj, where Hj ∈ ℵj,N such that the series
∑∞

j=0 |Hj|
is locally uniformly convergent on RN (1, p, 84). We then say

∑∞
j=0 Hj is the

polynomial expansion of h. Write e∗ for the vector (1, 0, · · · , 0) in RN , we

have

h(ue∗) =
∞
∑

j=0

Hj(ue∗) =
∞
∑

j=0

Hj(e
∗)uj for all real u.

Let

f(z) =
∞
∑

j=0

Hj(e
∗)zj .(1.1)

The power series converges for all real numbers and hence all complex z, so

f ∈ E .

The concepts of index-pair (p, q) p ≥ q ≥ 1 and (p, q)-order, (p-q)-type

etc. of an entire function were introduced by Juneja et al. ([6], [7]). Thus if

we denote by log[p] x the quantity log log · · · log x, where logarithm is taken

p times, then an entire function f is said to be of (p, q)-order ρ(p, q) if it is

of index-pair (p, q) such that

lim sup
r→∞

log[p] M∞(f, r)

log r
= ρ(p, q),

and the function f having (p, q)-order ρ(p, q) (b < ρ(p, q) < ∞) is said to be

of (p, q)-type T (p, q) if

lim sup
r→∞

log[p−1] M∞(f, r)

(log[q−1] r)ρ(p,q)
= T (p, q), 0 ≤ T (p, q) ≤ ∞,

where b = 1 if p = q, b = 0 if p > q.

Definition. An entire function f(z) is said to have index-pair (p, q),

p ≥ q ≥ 1, if b < ρ(p, q) < ∞ and ρ(p − 1, q − 1) is not a non zero finite

number, where b = 1 if p = q and b = 0 if p > q. If ρ(p, q) is never greater

than 1 and ρ(p′, p′) = 1 for some integer p′ ≥ 1 than the index - pair of f(z)

is defined as (m,m) where m = inf{p : ρ(p′, p′) = 1}. If ρ(p, q) is never non
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zero finite and ρ(p′′, 1) = 0 for some integer p′′ ≥ 1 then the index-pair of

f(z) is defined as (n, 1) where n = inf{p′′ : ρ(p′′, 1) = 0}. If ρ(p, q) is always

infinite then the index - pair of f(z) is defined to be (∞,∞) if f(z) has the

index-pair (p, q) then ρ = ρ(p, q) is called its (p, q) order.

Nandan et al. [11] has extended the idea of proximate order to entire

functions with (p, q)-growth as follows.

A positive function ρp,q(r) defined on (r0,∞), r0 > exp[q−1] 1, is said to

be of the proximate order of an entire function with index-pair (p, q) if

(i) ρp,q(r) → ρ(p, q) as r → ∞, b < ρ(p, q) < ∞,

(ii) ∆[q](r)ρ
′
p,q(r) = 0 as r → ∞, ρ′p,q(r) denotes the derivative of ρp,q(r).

It is known [11] that (log[q−1] r)ρp,q(r)−A is a monotonically increasing

function of r for r > r0, where A = 1 if (p, q) = (2, 2) and A = 0 otherwire.

Hence, we can define the function φ(x) for x > x0 to be the unique

solution of the equaion,

x = (log[q−1] r)ρp,q(r)−A ⇔ φ(x) = log[q−1] r.

Let f be an entire function of (p, q)-order ρ(p, q) (b < ρ(p, q) < ∞) such that

lim sup
r→∞

log[p−1] M∞(f, r)

(log[q−1] r)ρp,q(r)
= T ∗(p, q), 0 ≤ T ∗(p, q) ≤ ∞.

If the quantity T ∗(p, q) is different from zero and infinite then ρp,q(r)

is said to be the proximate order of a given entire function f and T ∗(p, q)

as its generalized (p, q)-type. Clearly, proximate order and corresponding

generalized (p, q)-type of f are not uniquely determined. For example, if

we add c/ log[q] r, 0 < c < ∞, to the proximate order ρp,q(r) then ρp,q(r) +

c/ log[q] r is also a proximate order satifying (i) & (ii) and consequently, the

generalized (p, q)-type turns to be ecT ∗(p, q).
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An entire function f with index-pair(p, q) is said to be of minimal, nor-

mal and maximal (p, q)-type with respect to a proximate order according as

T ∗(p, q) is zero, positive finite and infinite respectively.

Fugard [4] connected classcal order and type of an entire harmonic func-

tion h in terms of its derivatives at the origin in RN , N ≥ 2. These results

obviously leave a big class of entire harmonic functions, such as entire har-

monic functions of slow growth or of fast growth etc. Also it has been noticed

that these results fail to compare the derivatives of those h which have same

positive finite order but their types are infinity. In order to include this

important class of functions we shall utilize the concept of proximate order

due to Levin [10]. In this paper we extend the results of Fugard [4] in terms

of Hm(e∗) and derivatives of h in RN , N ≥ 2. Moreover, for the inclusion of

those h of slow growth and fast growth these results will also be extended to

(p, q)-scale introduced by Juneja et al. [6,7]. It is significant to mention that

Shah [13] and Kapoor and Nautiyal [8] have studied the results for (α, β)-

growth. However, for entire functions of slow growth Shah’s results fail to

exist and for such functions separate studies has been done. That’s why

in our studies the (p, q)-growth has been preferred to (α, β)-growth. Our

method is different from those of Fugard [4].

The text has been devided in three parts, Section 1, contains the in-

troductory exposition of the topic and in Section 2, the results have been

obtained in terms of Hm(e∗). A saturation theorem has been proved for

(p, q)-order 0 or 1 and of minimal generalized (p, q)-type. Finally, in Section

3, we obtained the results in terms of the derivatives of h in RN .

We shall use the following notations throughout the paper.

Notations:

exp[m] x = log[−m] x = exp(exp[m−1] x) = log(log[−m−1] x),m = ±1,±2, · · · ,
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∆[r]x =
r

∏

i=0

log[i] x for r = 0, 1, · · · ,

P (L(p, q)) =











































L(p, q) if q < p < ∞,

1 + L(p, q) if p = q = 2,

max(1, L(p, q)) if 3 ≤ p = q,

∞ if p = q = ∞,

It is more convenient to measure growth in terms of L2-norm defined by

M2(f, r) =
(

∫

S
|f(rx)|2dσ(x)

)1/2
,

where S is the unit sphere in RN (or the unit circle in C) and σ is (N − 1)-

dimensional surface measure (or length measure) normalized so that σ(s) =

1. The value of order and type are uneffected if M∞(f, r) is replaced by

M2(f, r) in their definitions ([4, Lemma 2.2] for harmonic function h).

2. In this section, we have generalized the concepts of index-pair (p, q),

p ≥ q ≥ 1 to entire harmonic functions on RN (instead of entire holomorphic

functions on C), and the results were characterized in terms of Hm(e∗).

Theorem 1. If h ∈ ℵN can be extended to an entire function with

index - pair (p, q), (p, q)-order ρ(p, q)(b < ρ(p, q) < ∞), generalized (p, q)-

type T ∗(p, q), then for every Hm(e∗), there exists a unique entire function

f(u) = h(ue∗) =
∞
∑

m=0

Hm(e∗)um such that(2.1)

ρ(p, q, h) = ρ(p, q, f) and T ∗(p, q, h) = βT ∗(p, q, f),

where β = 2−ρ(p,1) for q = 1 and β = 1 for q > 1.



196 DEVENDRA KUMAR [September

Proof. Let

f(z) =
∞
∑

m=0

Hm(e∗)zm.(2.2)

The power series converges for all real numbers and hence all complex

z, so f ∈ E and clearly (2,1) holds for all real u, The uniqueness of f is also

clear, since entire functions that agree on the real line are identical.

We have by Brelot and Choquet [2, Prop. 4]

|Hm(e∗)| ≤
√

dmr−mM2(H, r) (H ∈ ℵm,N , r > 0),(2.3)

where dm = dimℵm,N . The spaces ℵm,N are mutualy orthogonal in the sense

∫

S
Hm(rx)Hn(rx)dσ(x)

=







0 for m 6=n
√

dm|Hm(e∗)| for m=n
, r > 0,Hm∈ℵm,N ,Hn∈ℵn,N







[1, pp.75]. Since the series h =
∑∞

j=0 Hj converges uniformly on every sphere,

we have

M2
2 (h, r) =

∞
∑

j=0

M2
2 (Hj,r) (r > 0).(2.4)

Using (2.3) and (2.4), we get

|Hm(e∗)| ≤
√

dmr−mM2(h, r).(2.5)

Using (2.5) in the power series expansion of f(z), we obtain

M∞(f, r) =
∞
∑

m=0

|Hm(e∗)|rm ≤ M2(h, r)
∞
∑

m=0

√

dm(2.6)

Since dm → 2m(N−2)

(N−2)! as m → ∞, it follows that there is a constant K0 =
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K0(h ∈ N) such that

M∞(f, r) ≤ M2(h, r)
∞
∑

m=0

K0m
(N−2)/2 (m ≥ 1, r > 0)

or

log M∞(f, r) ≤ o(1) + log M2(h, r).(2.7)

Thus in view of above inequality with definition of (p, q)-order and gen-

eralized (p, q)-type for p ≥ 2 and q = 1, we get

and

ρ(p, 1, f) ≤ ρ(p, 1, h)

for p ≥ 2 and q > 1,
and T ∗(p, 1, f) ≤ 2ρ(p,1)T ∗(p, 1, h)

ρ(p, q, f) ≤ ρ(p, q, h) and T ∗(p, q, f) ≤ T ∗(p, q, h).

.

Combining both inequalities for all (p, q), we have

ρ(p, q, f) ≤ ρ(p, q, h) and βT ∗(p, q, f) ≤ T ∗(p, q, h).(2.8)

Now we have

h(xe∗) =
∞
∑

m=0

Hm(xe∗),

M(h, r) = max
|x|=r

|h(xe∗)| ≤
∞
∑

m=0

‖Hm(e∗)‖∞rm ≤
∞
∑

m=0

√

dm‖Hm(e∗)‖2r
m

≤
∞
∑

m=0

|Hm(e∗)|rm = M∞(f, r).

Thus

M(h, r) ≤ M∞(f, r).(2.9)

We observe that q = 1,

ρ(p, 1, h) ≤ ρ(p, 1, f) and T ∗(p, 1, h) ≤ 2−ρ(p,1)T ∗(p, 1, f)
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and for q > 1,

ρ(p, q, h) ≤ ρ(p, q, f) and T ∗(p, q, h) ≤ T ∗(p, q, f).

Hence for all index-pair (p, q),

ρ(p, q, h) ≤ ρ(p, q, f) and T ∗(p, q, h) ≤ βT ∗(p, 1, f).(2.10)

Combining (2.8) and (2.10), we have

ρ(p, q, h) = ρ(p, q, f) and T ∗(p, q, h) = T ∗(p, q, f).

Theorem 2. Let h ∈ ℵN and satisfies (2.1). Then h can be extended to

an entire harmonic function of (p, q)-order ρ(p, q) (b < ρ(p, q) < ∞) if and

only if

ρ(p, q) = P (L(p, q))

where

L(p, q) = lim sup
m→∞

log[p−1] m

log[q−1] |Hm(e∗)|−1/m
.

Proof. We have seen that if h ∈ ℵN and satifies (2.1), then f is an

entire function. Moreover, by Theorem 1, h and f have the same (p, q)-

order, Applying Corollary 1 to the function f(z) =
∑∞

m=0 Hm(e∗)zm and by

Juneja et al. [6, pp. 62], Theorem 2 is established.

Theorem 3. If h ∈ ℵN and satisfies (2.1). Then h can be extended

to an entire harmonic function of (p, q)-order ρ(p, q) (b < ρ(p, q) < ∞) and

generalized (p, q)-type T ∗(p, q) (0 < T ∗(p, q) < ∞) if and only if

T ∗(p, q)

βM(p, q)
= lim sup

m→∞

[ φ(log[p−2] m)

log[q−1] |Hm(e∗)|−1/m

]ρ(p,q)−A
,
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where β is defined as in Theorem 1 and

M(p, q) =



















(ρ(2, 2) − 1)ρ(2.2)−1/(ρ(2.2))ρ(2.2) if (p, q) = (2, 2),

1/eρ(2, 1) if (p, q) = (2, 1),

1 otherwise.

Proof. This Theorem follows by Kasana [9] and applying Theorem 1 to

the function f(z) and the resulting characterization of T ∗(p, q, f) in terms

of Hm(e∗) and the relation T ∗(p, q, h) = βT ∗(p, q, f).

If we take ρp,q(r) = ρ(p, q)r > r0 and φ(x) = xΓ/ρ(p,q)−A, the following

corollary for (p, q)-type T (p, q) in terms of Hm(e∗) can be obtained.

Corollary. Let h ∈ ℵN and satifies (2, 1). The h can be extended to an

entire harmonic function having (p, q)-order ρ(p, q) (b < ρ(p, q) < ∞) and

(p, q)-type T (p, q) (0 < T (p, q) < ∞) if and only if

T (p, q)

βM(p, q)
= lim sup

m→∞

log[p−2] m

[log[q−1] |Hm(e∗)|−1/m]ρ(p,q)−A
.

Saturation Theorem. If h ∈ ℵN can be extended to an entire har-

monic function of (p, q)-order ρ(p, q) such that ρ(p, q) = b, then for every

δ > 0,

lim sup
m→∞

φ(log[p−2] m)δ

[log[q−1] |Hm(e∗)|−1/m]
= 0

Further, if ρ(p, q) > b and h is of minimal generalized (p, q)-type, then

lim sup
m→∞

φ(log[p−2] m)

[log[q−1] |Hm(e∗)|−1/m]
= 0

Proof. Since ρ(p, q) = b, it follows from Theorem 1, by definition of



200 DEVENDRA KUMAR [September

(p, q) order of h ∈ ℵN for given ε > 0 and r > r0.

log M(h, r) < exp[p−2](log[q−1] r)b+ε.

Using (2.5) and the fact that M(h, r) can be replaced by M2(h, r) [4,

Lemma 2.2] in above, we get,

log |Hm(e∗)|−1/m <
1

2m
log dm − log r +

exp[p−2](log[q−1] r)b+ε

m
.(2.11)

Choose the value of r satisfying

r = exp[q−1]
(

log[p−2] m

b + ε

)1/b+ε
.(2.12)

For (p, q) = (2, 1), (2.11) yields r = (m/ε)1/ε, and by using (2.10), we obtain

|Hm(e∗)| <
√

dm

(eε

m

)m/ε
,

|Hm(e∗)|1/m < (dm)1/2m
(eε

m

)1/ε
,

lim sup
m→∞

m1/ε|Hm(e∗)|1/m < ∞.(2.13)

For (p, q) = (2, 2) we observe that log r =
(

m
1+ε

)1/(1+ε)
which reduces to

(2.4) & (2.5) to the expression

log |Hm(e∗)| < m log
√

dm − m
( m

1 + ε

)1/(1+ε)
+

m

1 + ε

or

log |Hm(e∗)|−1/m >
( m

1+ε

)
1

(1+ε)
[

1− m−1(1+ε)

(1+ε)ε/(1+ε)
−

(1+ε

m

)
1

(1+ε) log
√

dm

]

=
(

1 + o(1)
( m

1 + ε

)1/(1+ε))

.
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Thus

lim sup
m→∞

m1/(1+ε)

log |Hm(e∗)|−1/m
≤ 1.(2.14)

Finally, for (p, q) 6= (2, 1) and (2,2), (2.11) and (2.12) is reduced to

log[q−1] |Hm(e∗)|−1/m > (1 + o(1))
(

log[p−2] m

ε

)1/ε
, p > q,

and

log[q−1] |Hm(e∗)|−1/m > (1 + o(1))
(

log[p−2] m

1 + ε

)1/(1+ε)
, p = q.

Thus, for all p ≥ q ≥ 3, we have

lim sup
m→∞

(log[p−2] m)1/(b+ε)

log[q−1] |Hm(e∗)|−1/m
≤ 1.(2.15)

Clearly, combining (2.13), (2.14) and (2.15) we have.

lim sup
m→∞

(log[p−2] m)δ

log[q−1] |Hm(e∗)|−1/m
≤ ∞.(2.16)

for every δ > 0. If limit superior in (2.16) is finite positive for some δ > 0,

then for every α > 0, we get

lim sup
m→∞

(log[p−2] m)δ+α

log[q−1] |Hm(e∗)|−1/m
= ∞.(2.17)

This is a contradiction to (2.16) and hence the first part is proved.

For the second part, by taking T ∗(p, q) = 0 in Theorem 2, we obtain the

required result.

3. In this section we obtain the results in terms of derivatives of h. But
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first, we define the m-gradient of h(ue∗) which is similar to that of Fugard [4],

|∇mh(ue∗)| =
[

m!
∑

|a|=m

(Dah(ue∗))2/a!
]1/2

,

where for each n-tuple a = (a1, a2, · · · , an) of non-negative integers, let

|a| = a1 + a2 + · · ·+ an, a! = a1!a2! · · · an! and Da =
∂|a|

∂xa1
1 ∂xa2

2 · · · ∂xan
n

.

Now we prove

Lemma 1. Let h ∈ ℵN and satisfies (2.1). Then for all r < R

[

Γ
(N

2

)

∞
∑

m=0

|∇m(h(ue∗)|2

m!Γ
(

m+ N
2

) r2m
]1/2

≤ M∞(h, r)

≤
[

Γ
(N

2

)

∞
∑

m=0

dm
|∇m(h(ue∗)|2

m!Γ
(

m+ N
2

) r2m
]1/2

.

Proof. By inequalities (2.6) and (2.9), we have

M(h, r) ≤ M∞(f, r) ≤ M2(h, r)
∞
∑

m=0

√

dm.

This lemma follows by applying [3, Lemma 2] and by (2.1). We see that

bm =
Γ

(

N
2

)

|∇mh(ue∗)|2

m!Γ
(

m + N
2

)

log b−1
m ∼ log

m!Γ
(

m + N
2

)

|∇mh(ue∗)|2 .

It follows by using Stiriling formula,

∼ log

{

m!

|∇mh(ue∗)|

}2

as m → ∞.(3.1)
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Also from

am =
Γ

(

N
2

)

dm|∇mh(ue∗)|2

m!Γ
(

m + N
2

) ,

we have

log a−1
m ∼ log

m!Γ
(

m + N
2

)

|∇mh(ue∗)|2 .

and hence

∼ log

{

m!

|∇mh(ue∗)|

}2

as m → ∞.(3.2)

Remark. Theorem 1, 2, 3 and Saturation theorem can be characterized

in terms of |∇mh(ue∗)|
m! in place of Hm(e∗) using Lemma 1 (3.1), (3.2) and note

that the growth of M∞(h, r) is equal to that of h(ue∗).
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