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1. Introduction. We shall discuss results concerning the behaviour of

differential operators of the form

∆X = X2
1 + · · · + X2

m,

with a view to their inversion. Here X1, . . . ,Xn are linearly independent

vector fields on an n-dimensional manifold Mn. ∆X is elliptic when m = n.

If m < n, but X = {X1, . . . ,Xn} and their brackets generate TMn, we say

that ∆X is subelliptic. An elliptic operator is clearly subelliptic. ∆X is said

to be of step k, if the minimum number of brackets needed to generate TMn

is k − 1. A subelliptic operator is automatically hypoelliptic by a result of

Hörmander, i.e., ∆Xu = f ∈ C∞ ⇒ u ∈ C∞. Interest in such operators

arose in the 1950s from the study of the ∂̄-Neumann problem in several

complex variables, although analogous operators make their appearance in

earlier problems from quantum mechanics.
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The most studied subelliptic operator is constructed from the vector

fields

Xj =
∂

∂xj
+ 2ajxj+n

∂

∂t
,

Xj+n =
∂

∂xj+n
− 2ajxj

∂

∂t
.

where aj > 0, j = 1, . . . , n. ∆X is step 2 subelliptic in R2n+1. Xj are

left-invariant with respect to the Heisenberg translation

(x, t) ◦ (y, s) =


x + y, t + s + 2

n∑

j=1

aj(xj+nyj − xjyj+n)


 ,

where (x, t) = (x1, . . . , x2n, t) and (y, s) = (y1, . . . , y2n, s). R2n+1 with this

group law is called the Heisenberg group Hn, and

∆H =
n∑

j=1

(X2
j + X2

j+n)

is the Heisenberg sublaplacian. Hn and ∆H play the role of testing ground

for ideas and concepts that appear useful in inverting subelliptic operators

on general Heisenberg manifolds, see [6]; this is similar to the role played by

the Euclidean Laplacian in the study of the Laplace-Beltrami operator in

Riemannian geometry. These concepts may be crudely classified under two

separate headings

(1) Harmonic analysis,

(2) Geometry.

Under harmonic analysis we are mainly interested in multiplicative sym-

bolic calculi for left-invariant convolution operators on Hn. Of course they

are equivalent and usually amount to the study of the partial Fourier trans-

form along the center of Hn, the group Fourier transform, although different

versions are useful in different contexts. One of these versions is called the
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Laguerre calculus and uses the full Euclidean Fourier transform on Hn. This

is somewhat unusual, since Fourier transforms are useful for differential op-

erators with constant coefficients, which ∆H is not, except in the t-variable.

In spite of this, the full Fourier tansform ∧ leads to the following curious

fact (on H1 for simplicity):

F ∗H φ(x, t) =
1

(2π)3

∫

R3
eix·ξ+itτ F̂ (ξ1 + 2x2τ, ξ2 − 2x1τ, τ)φ̂(ξ1, ξ2, τ)dξdτ,

that is, a convolution operator is a pseudo-differential operator, whose sym-

bol is a function of the Heisenberg vector fields, see [15]. This remark led to

a calculus for step 2 pseudo-differential operators on Heisenberg manifolds,

see [6].

To understand subelliptic opertors ∆H in general we make use of the

subriemannian geometry induced by ∆H: metrics, distances, geodesics, real

and complex Hamiltonian mechanics, action integrals, etc. One of the sur-

prises in subriemannian geometry, {X} $ TMn, is the multitude of geodesic

between two points, all of them playing a role in the construction of heat

kernels, wave kernels and fundamental solutions for subelliptic operators.

In section 2 we show that the study of differential operators may be re-

duced to the study of integral operators. In section 3 we discuss the Laguerre

calculus and in section 4 we shall study some geometric concepts induced by

subelliptic operators.

This article is based on the lectures presented by the authors at the “Sec-

ond Workshop in Several Complex Variables” and “Symposium in Analysis

on the Heisenberg Group”, held on June 18-21 at the Mathematics Insti-

tute of the Academia Sinica and Fu Jen Catholic University. The authors

would like to thank Professor Tai-Ping Liu, the Director of the Mathemat-

ics Institute of the Academia Sinica, Professor Hsuan-Pei Lee and Professor

Nanping Yang for organizing these activities and their strong support. The

authors would also like to thank many colleagues at the Academia Sinica
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and at Fu Jen Catholic University for their warm hospitality during their

visits to Taiwan.

We hope this workshop will continue to be held every summer in Taiwan,

permitting for the participants to exchange mathematical ideas. In addition,

they have very useful discussions concerning research on function theory in

several complex variables as well as related topics with mathematicians in

Taiwan.

2. Laplace operator and elliptic estimates. Let us start with the

Heaviside function:

H(x) = 1 when x > 0 and 0 when x < 0.

It is obvious that the function H has a jump at x = 0 and hence is not

differentiable. However, we may define H ′(x) by

∫

R
H ′(x)g(x)dx = −

∫

R
H(x)g′(x)dx = −

∫ ∞

0
g′(x)dx = g(0)

where g ∈ C∞
c (R). Therefore, H ′(x) is a “function” defined by

∫

R
H ′(x)g(x)dx = g(0).

Let us now consider the convolution operator, for f, g ∈ C∞
c (R),

f ∗ g(x) =

∫

R
f(x − y)g(y)dy.

Given f , f∗ is an operator which acts on functions by convolution

([f∗]g)(x) =

∫

R
f(x − y)g(y)dy.

Actually, given any “generalized function”, we may consider it as a convo-
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lution operator. For g ∈ C∞
c (R),

g(x) =

∫

R
δ(x − y)g(y)dy

and

dg

dx
(x) =

∫

R
δ′(x − y)g(y)dy

Therefore, we may define the differential operator d
dx as follows:

d

dx
= (δ)′∗

and
∫

R
δ′(x)φ(x)dx = −

∫

R
δ(x)φ′(x)dx = −φ′(0)

for φ ∈ C∞
c (R).

Example 2.1. Solve du
dx = f(x) where f ∈ C∞

c (R) is given. Assume

u(x) =

∫

R
K(x − y)f(y)dy

where K is a kernel to be determined. Since u is a solution, we have

d

dx

∫

R
K(x − y)f(y)dy = f(x).

This implies that
∫

R
K ′(x − y)f(y)dy = f(x).

We may conclude that K ′(x) = δ(x) or K(x) = H(x). Hence

u(x) =

∫

R
H(x − y)f(y)dy =

∫ x

−∞
f(y)dy.
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Example 2.2. Solve d2u
dx2 = f(x) where f ∈ C∞

c (R) is given. Indeed,

du

dx2
=

d

dx

(
du

dx

)
= f(x)

Hence, Example 2.1 implies

du

dx
=

∫ x

−∞
f(y)dy,

and we may conclude that

u(x) =

∫ x

−∞
dy

∫ y

−∞
f(z)dz.

We rewrite this as

u(x) =

∫ x

−∞
f(z)dz

∫ x

z
dy =

∫ x

−∞
(x − z)f(z)dz.

It follows that

u = (x+) ∗ f.

Hence
(

d2

dx2

)−1

= (x+) ∗ .

Example 2.3. Let us now turn to several variables. Consider the

Laplace operator

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

It is well known that the Newton potential

C3

|x| =
C3√

x2
1 + x2

2 + x2
3
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is the fundamental solution of the operator ∆. Here C3 is a constant. Then

u(x) = C3

∫

R3

f(y)

|x − y|dy

is a solution of the equation ∆u = f . To see this we write:

u(x) = C3

∫

R3

f(y)

|x − y|dy = C3

∫

R3

f(x − y)

|y| dy.

Then

∆u(x) = C3

∫

R3

∆xf(x − y)

(|y|2)1/2
dy

= lim
ε→0

C3

∫

R3

∆xf(x − y)

(|y|2 + ε2)1/2
dy

= lim
ε→0

C3

∫

R3

∆yf(x − y)

(|y|2 + ε2)1/2
dy.

Now

3∑

j=1

∫

R3

(
∂2f

∂y2
j

)
(x − y)

1

(|y|2 + ε2)1/2
dy

=
3∑

j=1

∫

R3
f(x − y)

∂2

∂y2
j

1

(|y|2 + ε2)1/2
dy

=

∫

R3

−3ε2

(|y|2 + ε2)5/2
f(x − y)dy

→ −4πf(x) as ε → 0.

It follows that C3 = − 1
4π and

∆−1f(x) = − 1

4π

∫

R3

f(y)dy

|x − y| = u(x).

How do we find − 1
4π|x|? We first consider ∆−1 as a convolution operator.
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Consider the Fourier transform:

f̂(ξ) =

∫

R3
e−ix·ξf(x)dx

and the inverse Fourier transform

f(x) =

∫

R3
eix·ξf̂(ξ)

dξ

(2π)3
.

Then

∆f(x) = ∆

∫

R3
eix·ξf̂(ξ)

dξ

(2π)3

=
3∑

j=1

∂2

∂x2
j

∫

R3
ei(x1ξ1+x2ξ2+x3ξ3)f̂(ξ)

dξ

(2π)3

=

∫

R3
eix·ξ(−|ξ|2)f̂(ξ)

dξ

(2π)3
.

This implies that

∆−1f(x) =

∫

R3
eix·ξ f̂(ξ)

−|ξ|2
dξ

(2π)3

=

∫

R3
eix·ξ

(
− 1

|ξ|2
)∫

R3
e−y·ξf(y)dy

dξ

(2π)3

=

∫

R3
f(y)dy

∫

R3
ei(x−y)·ξ

(
− 1

|ξ|2
)

dξ

(2π)3
.

Claim:

1

4π|x| =
1

(2π)3

∫

R3
eix·ξ dξ

|ξ|2 .

Proof.

∫

R3
eix·ξ dξ

|ξ|2 =

∫

R3
eix·ξdξ

∫ ∞

0
e−s|ξ|2ds

=

∫

R3
eix·ξ−s|ξ|2dξ =

3∏

j=1

∫ ∞

−∞
e−sξ2

j
+ixjξjdξj
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But

∫ ∞

−∞
e−sξ2

j
+ixjξjdξj =

∫ ∞

−∞
e

{
−s

[
ξ2
j
−2ξj

ixj

2s
+

(
ixj

2s

)2
]
−

x2
j

4s

}

dξj

= e−
x2

j

4s

∫ ∞

−∞
e
−s

(
ξ− ixj

2s

)2

dξ

= e−
x2

j

4s

∫ ∞

−∞
e−sσ2

dσ =

√
π√
s
e−

x2
j

4s .

Hence,

3∏

j=1

∫ ∞

−∞
e−sξ2

j +ixjξjdξj =
π3/2

s3/2
e−

|x|2

4s .

Finally, we have

1

(2π)3

∫ ∞

0

π3/2

s3/2
e−

|x|2

4s ds =
π3/2

(2π)3

∫ ∞

0
e−

|x|2u

4
du√

u

= 2
π3/2

(2π)3

∫ ∞

0
e−

σ2|x|2

4 dσ

=
4

|x|
π3/2

(2π)3

∫ ∞

0
e−v2

dv

=
4

|x|
π3/2

(2π)3

√
π

2
=

1

4π|x| .

Similarly, the inverse of the n-dimensional Laplacian is given by

u(x) = ∆−1f(x) =
1

(2 − n)Ωn

∫

Rn

f(y)

|x − y|n−2
dy, n > 2.

Here Ωn is the surface area of the n-dimensional unit sphere. Since

K(x) =
1

(2 − n)Ωn

1

|x|n−2

is a locally integrable function, one has

‖u‖Lp

loc
(Rn) ≤ Cp‖f‖Lp

loc
(Rn)
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for 1 ≤ p ≤ ∞. Moreover, by the Mikhlin-Calderón-Zygmund theory of

singular integrals, one has

∥∥∥∥∥
∂2u

∂xj∂xℓ

∥∥∥∥∥
Hp(Rn)

≤ Cp‖f‖Hp(Rn) and

∥∥∥∥∥
∂2u

∂xj∂xℓ

∥∥∥∥∥
BMO(Rn)

≤ Cp‖f‖BMO(Rn)

for 0 < p < ∞ and 1 ≤ j, ℓ ≤ n. Here Hp(Rn) is the real Hardy space

and BMO(Rn) is the space of all functions with bounded mean oscillations

(see Chapter 3 in Stein [22]). In other words, the solution u for the Laplace

operator has “full gain” in all directions. This is an elliptic estimate. We

may consider this problem in a more general setting.

Suppose one has n linearly independent vector fields X1, . . . ,Xn on Mn.

Then

∆X =
n∑

j=1

X2
j

is an elliptic differential operator. For n > 2,

∆−1
X (f)(x) =

∫

Mn

f(y)

(2 − n)Ωndn−2(x, y)
+ · · ·

where + · · · stands for negligible error. d stands for the distance and we can

calculate it as follows. We define a metric by

Xj ⊥ Xk, 1 ≤ j, k ≤ n, j 6= k, and ‖Xj‖ = 1.

Let γ(s) denote a curve connecting x and y in the time τ :

γ : [0, τ ] → Mn, γ(0) = x, γ(τ) = y.

The length of γ is

ℓ =

∫ τ

0

√√√√
n∑

j=1

σ2
j (s)ds,
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where

γ′(s) =
n∑

j=1

σj(s)Xj(s),

and the distance between x and y is the minimum of the lengths of such

curves.

The Hamiltonian formalism yields a slightly different way of calculating

distances. For illustration, we restrict ourselves to R3 and

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

The Hamiltonian function is

H = ξ2
1 + ξ2

2 + ξ2
3

and Hamilton’s equations for the bicharacteristics are

ẋj(s) =
∂H

∂ξj
and ξ̇j(s) = −∂H

∂xj
,

where s ∈ [0, τ ], with x(0) = 0 and x(τ) = x. Then

ẋj(s) = 2ξj and ξ̇j(s) = 0

This implies that ξj(s) = Cj, a constant. Hence

ẋj(s) = 2Cj ⇒ xj(s) = 2Cjs + dj ,

xj(0) = 0 ⇒ dj = 0,

xj(τ) = xj ⇒ Cj =
xj

2τ
,

so

xj(s) =
xj

τ
s, ξj(s) =

xj

2τ
.
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The projection of the bicharacteristic on the base is called the geodesic, i.e.,

curve with shortest, or extremal, length between x and y. According to our

calculations they are straight lines, which we all know. The action integral

is

S =

∫ τ

0




3∑

j=1

ξj(s)ẋj(s) − H((x(s), ξ(s))


 ds

=

∫ τ

0

[
|x|2
2τ2

− |x|2
4τ2

]
ds

=
1

4

|x|2
τ

,

which yields the distance and is the solution of the Hamilton-Jacobi equation

∂S

∂τ
+ H(x,▽S) = 0.

Let us look at the heat kernel for the Euclidean Laplacian ∆ in R3. Since

∆ is invariant with respect to Euclidean translation, it suffices to construct

the heat kernel P (x, y, t) with singularity at the origin, i.e., P (x, t). From

our earlier calculation we know that

P (x, t) =
1

(2
√

πt)3
e−

|x|2

4t .

Then

u(x, t) = P (f)(x, t) = (e∆tf)(x, t) =
1

(2
√

πt)3

∫

R3
e−

|x−y|2

4t f(y)dy.

These results may be generalized to strongly elliptic operators:

D =
1

2

n∑

j,k=1

αjk(x)
∂2

∂xj∂xk
+

n∑

j=1

βj(x)
∂

∂xj
+ γ0(x),

where
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• A = [ajk(x)] is symmetric and A ≥ CIn×n for all x ∈ Rn. Here C is a

positive constant and In×n is the n × n identity matrix;

• ajk, bj, γ0 ∈ C∞
0 (Rn).

Then a heat kernel Pt(x, y) exists, and

u(x, t) =

∫

Rn
Pt(x, y)f(y)dy

yields

∂

∂t
u(x, t) = Du(x, t), t > 0, x ∈ Rn,

lim
t→0+

u(x, t) = f(x).

The principal part of D yields a Riemannian distance d and one has the

following estimates: for any k = (k1, . . . , kn) ∈ (Z+)n, there exists constants

Ck such that

∣∣∣∣∣
∂|k|Pt(x, y)

∂xk1
1 · · · ∂xkn

n

∣∣∣∣∣ ≤ Ckt−
n+|k|

2 e−
d2(x,y)

4t , t > 0.

3. The Heisenberg group and the sub-Laplacian. In our talks,

we want to generalize the above elliptic case to sub-elliptic case. Let us

consider the following two vector fields defined on R3 with coordinates

(x, t) = (x1, x2, t):

X1 =
∂

∂x1
+ 2ax2

∂

∂t

X2 =
∂

∂x2
− 2ax1

∂

∂t

with a > 0. It is easy to see that X1 and X2 satisfy the Heisenberg uncer-

tainty principle:

[X1,X2] = −4a
∂

∂t
.
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Now we consider the following operator:

L =
1

2
(X2

1 + X2
2 )

Unlike the Laplace operator ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂t2 or the Casimir operator

L = L +
1

2

∂2

∂t2
,

the operator L is not elliptic. It is easy to see that the vector fields X1,

X2 and T = ∂
∂t and the operator L are left-invariant with respect to the

“Heisenberg translation”: for (x, t) = (x1, x2, t) and (y, s) = (y1, y2, s) ∈ R3,

(x, t) ◦ (y, s) = (x1 + y1, x2 + y2, t + s + 2a[x2y1 − x1y2]).

Actually, the above multiplicative law defines a group sturcture on R3 which

we call the 1-dimensional Heisenberg group with (x, t)−1 = (−x,−t). . In

general, we may define the n-dimensional Heisenberg group Hn which is the

Lie group whose underlying manifold is Cn × R equipped with the group

law:

(x, t) ◦ (y, s) =


x + y, t + s + 2

n∑

j=1

aj [xj+nyj − xjyj+n]




with aj > 0 for 1 < j < n. Moreover, the non-isotropic dilaton

(x1, . . . , x2n, t) 7→ (δx1, . . . , δx2n, δ2t, ), δ > 0

defines an automorphism on the group Hn. The vector fields

Xj =
∂

∂xj
+ 2ajxj+n

∂

∂t
,

Xj+n =
∂

∂xj+n
− 2ajxj

∂

∂t
,
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and

T =
∂

∂t

form a basis of the Lie algebra of Hn. It is obvious that Hn is a non-

commutative Lie group of step 2, i.e., X1, . . . ,X2n and their first brackets

yield THn.

Similarly, we define the sub-Laplacian on Hn as follows:

L = −
2n∑

j=1

X2
j .

This operator is a sum of squares of 2n “horizontal” vector fields, and it is

therefore not elliptic, although it is hypoelliptic, see Hörmander [17], i.e., the

solution u of Lu = f is smooth whenever f ∈ C∞(Hn). (We will see later

that the inverse L−1 doesn’t have full gain. This is a so-called sub-elliptic

estimate.)

Before we go further, let us give some background for the Laguerre

calculus on Hn. We first recall a beautiful idea of Mikhlin, contained in his

1936 study of convolution operators on R2. Let K denote a principal value

convolution operator on R2:

K(f)(x) = lim
ε→0

∫

|y|>ε
K(y)f(x − y)dy,

where f ∈ C∞
0 (R2) and K ∈ C∞(R2 \ {(0, 0)}) is homogeneous of degree

−2 with vanishing mean value, i.e.,

∫

|x|=1
K(x)dx = 0.

Thus we can write

K(x) =
f(θ)

r2
, x = x1 + ix2 = reiθ,
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where

f(θ) =
∑

m∈Z,m6=0

fmeimθ.

Suppose that g is another smooth function on [0, 2π] with

g(θ) =
∑

m∈Z,m6=0

gmeimθ.

Then g induces a principal value convolution operator, G, on R2 with kernel
g(θ)
r2 . In [19], Mikhlin found the following identity:

Proposition 3.1.

|m|i−|m|

2π

eimθ

r2
∗E

|k|i−|k|

2π

eikθ

r2
=

|m + k|i−|m+k|

2π

ei(m+k)θ

r2
.

Here “∗E” stands for the Euclidean convolution.

Definition 3.2. Let

f(θ) =
∑

m∈Z,m6=0

fmeimθ

induce a principal value convolution operator K, with kernel f(θ)
r2 , on

C∞
0 (R2). Then the symbol σ(K) of K is defined by

σ(K) =
∑

m∈Z,m6=0

(
|m|i−|m|

2π

)−1

fmeimθ.

With this definition we may rewrite Proposition 3.1 as follows:

Theorem 3.3. Let K and G be two principal value convolution opera-

tors on C∞
0 (R2). Then

σ(K ∗E G) = σ(K) · σ(G).
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Later σ(K) turned out to be the Fourier transform of K. One of the purposes

of this section is to find a multiplicative calculus for the convolution operator

on Hn. Readers may consult the book [8] for detailed discussion on this

subject. For f ∈ L1(Hn), denote by

f̃λ(z) = f̂(z, λ) =

∫

R
f(z, t)e−iλtdt.

For f, g ∈ L1(Hn), define the left-invariant convolution f ∗ g of f and g by:

(f ∗ g)(x, t) =

∫

Hn

f(y, s)g((y, s)−1 · (x, t))dyds.

For λ ∈ R∗ = R \ {0}, we define the twisted convolution of f and g by

(f ∗λ g)(z) =

∫

Cn
f(z− w)g(w)e−2iλIm z·w̄dm(w).

Here dm is the Lebesgue measure on Cn. Then we have ˜(f ∗ g)λ = f̃λ ∗λ g̃λ.

The generalized Laguerre polynomials L
(p)
k (x) are defined by the generating

function formula:

∞∑

k=1

L
(p)
k (x)wk =

1

(1 − w)p+1
exp

{
− xw

1 − w

}

for p ∈ Z+ = {0, 1, 2, . . .}, x ≥ 0, and |w| < 1. We also define the Laguerre

functions:

ℓ
(p)
k (x) =

[
Γ(k + 1)

Γ(k + p + 1)

] 1
2

x
p

2 L
(p)
k (x)e−

x
2 ,

where x ≥ 0 and p, k ∈ Z+. It is well known that for each p = 0, 1, 2, . . .,

{ℓ(p)
k (x), k ∈ Z+} form a complete orthonormal basis of the space L2([0,∞)).

Let z = |z|eiθ and k, p ∈ Z+. Then we define the exponential Laguerre

functions as follows:

W̃(±p)
k (z, λ) = (±1)p

2|λ|
π

ℓ
(p)
k (2|λ||z|2)e±ipθ.
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Let us first recall a result due to Greiner [15]:

Theorem 3.4. Let p, k, q,m = 1, 2, . . .. Then

W̃(p−k)
p∧k−1 ∗|λ| W̃

(q−m)
q∧m−1 = δ

(q)
k · W̃(p−m)

p∧m−1,

and

W̃(p−k)
p∧k−1 ∗−|λ| W̃(q−m)

q∧m−1 = δ(p)
m · W̃(q−k)

q∧k−1,

where a ∧ b = min(a, b).

Let W(p)
k (z, t), ±p, k = 0, 1, 2, . . ., denote the inverse Fourier transform

of W̃(p)
k (z, λ) with respect to λ, i.e.,

W(p)
k (z, t) =

1

2π

∫

R
eiλtW̃(p)

k (z, λ)dλ.

These are the kernels of the generalized Cauchy-Szegö projection operators

on H1. In particular,

W(0)
0 (z, t) = S+ + S−

where

S± =
1

π2

1

(|z|2 ∓ it)2
.

Let K induce a left-invariant convolution operator K on Hn,

K(φ)(x, t) =

∫

Hn

K(y, s)φ((y, s)−1 · (x, t))dyds.

Now, K̃(z, λ) has a Laguerre series expansion:

K̃(z, λ) =
∞∑

|p|,|k|=1

K
(p)
k (λ)

n∏

j=1

W̃(pj)
kj

(zj , λ).
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Define the Laguerre tensor M(K) of K:

M(K) = M+(K) ⊕M−(K)

where

M+(K) =
(
K

(p)
k (λ)

)
, λ > 0

and

M−(K) =
(
K

(p)
k (λ)

)T
, λ < 0.

Here the upper indices represent the diagonal and the lower indices the posi-

tion in that diagonal. The following theorem is the cornerstone for Laguerre

calculus on Hn which was first proved by Greiner (see [15]) in H1 and later

generalized by Beals, Gaveau, Greiner and Vauthier (see [5]) to Hn:

Theorem 3.5. Let F and G induce two convolution operators on Hn.

M(F ) and M(G) denote the Laguerre tensors of F and G respectively. Then

M(F ∗ G) = M+(F ) · M+(G) ⊕M−(F ) ·M−(G).

Corollary 3.6. The identity operator I on C∞
0 (Hn) is induced by the

identity Laguerre tensor

M±(I) = (δ
(p1)
k1

· · · δ(pn)
kn

).

Let f ∈ Lp(Hn), 1 < p < ∞. Then

lim
r→1−

∞∑

|k|=0

r|k|f ∗ W(0)
k = f

in Lp-norm (see [5], [9] and [24]).
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A left-invariant differential operator P on Hn is a polynomial P(Z, Z̄,T)

with constant coefficents. Then

P = PI =
∞∑

|k|=0

PW(0,...,0)
k1,...,kn

∗

where I =
∑∞

|k|=0 W
(0)
k ∗ is the identity operator on C∞

0 (Hn).

In particular, we have the following:

• M(T) = iτ(δ
(p1)
k1

· · · δ(pn)
kn

).

• M(Zj) = M+(Zj) ⊕M−(Zj) where

M−(Zj)
(p1,...,pn)
k1,...,kn

=
√

2|λ|pjδ
(p1)
k1

· · · δ(pj+1)
kj

· · · δ(pn)
kn

and M+(Zj) = M−(Zj)
T .

• M(Z̄j) = −M(Zj)
T .

Here Zj = 1
2(Xj + iXn+j) and Z̄j = 1

2(Xj − iXn+j), j = 1, . . . , n.

Example 3.7. When n = 1 and a = 1, we have

M+(Z1) =
√

2|τ |




0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
...

...
...

...
. . .




(1)

and

M−(Z1) = [M+(Z1)]
t.
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Now we may set

M+(K) =
1√
2|τ |




0 0 0 0 · · ·
1√
1

0 0 0 · · ·
0 1√

2
0 0 · · ·

0 0 1√
3

0 · · ·
...

...
...

...
. . .




(2)

and

M−(K) = [M+(K)]t.

Thus

K̃±(z, τ) =
1√
2|τ |

∞∑

k=0

1√
k + 1

W̃(1)
±,k(z, τ).

Using the defintion of W̃(1)
±,k(z, τ), we sum the series

K̃(z, τ) =
2|τ |ze−|τ ||z|2

π

∫ 1

0

∞∑

k=0

rkL
(1)
k (2|τ ||z|2)dr.

We have
∞∑

k=0

rkL
(1)
k (x) =

ex

(1 − r)2
e−x/(1−r),

so

K̃(z, τ) =
1

π

e−|τ ||z|2

z̄
,

and

K(z, t) =
1

2π2z̄

∫

R
eitτ−|τ ||z|2dτ =

z

π2(|z|4 + t2)
.

This recovers the Greiner, Kohn, Stein Theorem [16] on the Heisenberg

group:

Z1K = I −W(0)
−,0 = I − S−,

KZ1 = I −W(0)
+,0 = I − S+.
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The Heisenberg group and its sub-Laplacian are at the cross-roads of

many domains of analysis and geometry: nilpotent Lie group theory, hy-

poelliptic second order partial differential equations, strongly pseudoconvex

domains in complex analysis, probability theory of degenerate diffusion pro-

cess, subriemannian geometry, control theory and semiclassical analysis of

quantum mechanics, see e.g., [1], [2], [3], [4], [5], [6], [9], [11], [13], [14],

[21], [24]; we note that M± are the annihilation and creation operators in

quantum mechanics.

Now let us turn to the sub-Laplacian:

L = −1

2

n∑

j=1

(ZjZ̄j + Z̄jZj) = −1

4

2n∑

j=1

X2
j .

In fact, we may handle problem in a much more general setting. Let us

consider the following operator:

Lm
α =


1

2

n∑

j=1

(ZjZ̄j + Z̄jZj) − iαT




m

,

with 1 ≤ m < n. First we will find the Laguerre tensor of the operator

Lm
α . We can take the Fourier transform with respect to t, and write L̃m

α as

a twisted convolution:

L̃m
α = L̃m

α Ĩ =
∞∑

|k|=0


−1

2

n∑

j=1

(Z̃j
˜̄Zj + ˜̄ZjZ̃j) − ατ




m
n∏

j=1

ajW̃(0)
kj

(
√

ajzj , τ)∗τ

Then, the Laguerre tensors of Zj , Z̄j and T yield

L̃m
α =

∞∑

|k|=0




n∑

j=1

(2kj + 1)|τ |aj − ατ




m
n∏

j=1

ajW̃(0)
kj

(
√

ajzj , τ) ∗τ .

Consequently the Laguerre tensor of the convolution operator induced by
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Lm
α is

M(L̃m
α ) = |τ |m






n∑

j=1

(2kj + 1)aj − αsgn(τ)




m

δ
(p1)
k1

· · · δ(pn)
kn


 ,(3)

which is invertible as long as α does not belong to the exceptional set Eα,

where

Eα =



±

n∑

j=1

(2kj + 1)aj : k = (k1, k2, · · · , kn) ∈ Zn
+



 .

According to Theorem 3.5, the inverse Laguerre tensor of (3) is

M(L̃−m
α ) = |τ |−m






n∑

j=1

(2kj + 1)aj − αsgn(τ)



−m

δ
(p1)
k1

· · · δ(pn)
kn


 ,(4)

and we write its kernel Ψ̃m(z, τ) in the Laguerre series expansion:

Ψ̃m(z, τ)= |τ |−m
∞∑

|k|=0




n∑

j=1

(2kj +1)aj−αsgn(τ)




−m
n∏

j=1

ajW̃(0)
kj

(
√

ajzj , τ).(5)

To find the fundamental solution of Lm
α , we can sum this series and

take the inverse Fourier transform with respect to τ . First we introduce the

following integral representation of A−m:

1

Am
=

1

Γ(m)

∫ ∞

0
sm−1e−Asds for Re (A) > 0.

Then we can write (5) in the following form:

Ψ̃m(z, τ) =
|τ |−m

Γ(m)

∞∑

|k|=0

∫ ∞

0
sm−1e

−
(∑n

j=1
(2kj+1)aj−αsgn(τ)

)
s
ds

(6)

·
n∏

j=1

ajW̃(0)
kj

(
√

ajzj , τ).
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Next we interchange the summation and integration, and use the definitions

of W̃(0)
kj

,

Ψ̃m(z, τ) =
|τ |−m

Γ(m)

∫ ∞

0
sm−1

∞∑

|k|=0

e
−
(∑n

j=1
(2kj+1)aj−αsgn(τ)

)
s
ds

·
n∏

j=1

ajW̃(0)
kj

(
√

ajzj , τ)

=
|τ |n−m

πnΓ(m)

∫ ∞

0
sm−1

∞∑

|k|=0

e
−
(∑n

j=1
(2kj+1)aj−αsgn(τ)

)
s
ds

·
n∏

j=1

2aje
−aj |τ ||zj|2L(0)

kj
(2aj |τ ||zj |2)

=
|τ |n−m

πnΓ(m)

∫ ∞

0
sm−1eαsgn(τ)s

n∏

j=1

2aje
−ajs−aj |τ ||zj|2

·
∞∑

kj=0

(e−2ajs)kjL
(0)
kj

(2aj |τ ||zj |2)ds

Apply the generating formula for the Laguerre polynomials

∞∑

k=0

L
(p)
k (x)zk =

1

(1 − z)p+1
exp

{
− xz

1 − z

}

to the last formula for Ψ̃m(z, τ), we obtain

Ψ̃m(z, τ) =
|τ |n−m

πnΓ(m)

∫ ∞

0
sm−1eαsgn(τ)s

n∏

j=1

2aje
−ajs

1 − e−2ajs

· exp

{
−aj|τ ||zj |2

[
1 +

2e−2ajs

1 − e−2ajs

]}
ds

=
|τ |n−m

πnΓ(m)

∫ ∞

0
sm−1eαsgn(τ)s




n∏

j=1

aj

sinh(ajs)




· exp



−|τ |

n∑

j=1

aj |zj |2 coth(ajs)



 ds

Set γ(s; z) =
∑n

j=1 aj |zj |2 coth(ajs) and take the inverse Fourier transform
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with respect to τ ,

Ψm(z, t) =
Γ(n−m+1)

2πn+1Γ(m)

[ ∫ ∞

0
sm−1eαs




n∏

j=1

aj

sinh(ajs)


 ds

[γ(s; z)−it]n−m+1

+

∫ ∞

0
sm−1e−αs




n∏

j=1

aj

sinh(ajs)


 ds

[γ(s; z) + it]n−m+1

]
,(7)

=
Γ(n − m)

2πn+1Γ(m)

∫ ∞

−∞




n∏

j=1

aj

sinh(ajs)


 eαssm−1ds

[γ(s; z) − it]n−m+1
,(8)

1 ≤ m < n.

Here we used the following identity:

∫ ∞

−∞
|τ |n−meαsgn(τ)s+itτ−|τ |γ(s;z)dτ

=
Γ(n − m + 1)eαs

[γ(s; z) − it]n−m+1
+

Γ(n − m + 1)e−αs

[γ(s; z) + it]n−m+1

to obtain (7), then switched the sign of s in the second integral of (7) to get

(8), since γ(−s; z) = −γ(s; z).

Following the notation in [2] (see also Section 4 below), we introduce

the complex distance and volume element on the Heisenberg group:

g(s; z, t) = γ(2s; z) − it and v(s) =
n∏

j=1

2aj

sinh(2ajs)
.(9)

With this notation we have

Ψm(z, t) =
2m(n − m)!

(2π)n+1Γ(m)

∫ ∞

−∞
e2αssm−1 v(s)ds

[g(s; z, t)]n−m+1
(10)

When |z| = 0, t 6= 0, then g(s; z, t) = −it. The integrand of (10) is

not integrable at s = 0. To regularize the integral we deform its path from
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(−∞,∞) to

(−∞ + iεsgnt,∞ + iεsgnt), where 0 < ε < min
1≤j≤n

π

2aj
,

see [6]. Then

Ψm(z, t) =
2m(n − m)!

(2π)n+1Γ(m)

∫ ∞+iεsgnt

−∞+iεsgnt
e2αssm−1 v(s)ds

[g(s; z, t)]n−m+1
.

Remark. When aj = a, j = 1, . . . , n, the unitary group U(n) acts on

Hn via

U(z, t) = (U(z), t) for U ∈ U(n), (z, t) ∈ Hn.

The operator Lm
α is invariant under the U(n)-action. In this case,

L−m
0 = L−m =

(n − m)!

2πn+1Γ(m)

∫ ∞

−∞

(
a

sinh(aτ)

)n τm−1dτ

[a|z|2 coth(aτ) − it]n−m+1

=
an−m+1(n − m)!

2πn+1Γ(m)

∫ ∞

−∞

(
aτ

sinh(aτ)

)m−1

·
[
a|z|2 cosh(aτ) − it sinh(aτ)

]n−m+1
dτ.

This coincides with a result of Benson, Dolley and Ratcliff [7], a = 1
4 . In

particular, when m = 1,

L−1 =
22n−2P 2

(n
2

)

πn+1

1

(|z|4 + t2)
n
2

.

This recovers a result of Folland [12].

It can be shown that the operator

Tm(f)(z, t) = f ∗ Km(z, t) = f ∗ P2m(Z, Z̄)Ψm(z, t)

orginally defined on C∞
0 (Hn) can be extended as a bounded operator from

Hp(Hn) into itself for 0 < p < ∞. Here, P2m(Z, Z̄) is any monomial of
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degree 2m in the “good” vector fields Z1, . . . ,Zn, Z̄1, . . . , Z̄n and Hp is the

atomic Hardy space defined on Hn. In particular, when m = 1,

T (f)(z, t) = f ∗ K1(z, t) = f ∗ P2(Z, Z̄)Ψ1(z, t)

orginally defined on C∞
0 (Hn) can be extended as bounded operator from

Hp(Hn) into itself for 0 < p < ∞. Since T = 1
2iaj

[Z̄j ,Zj], it is easy to see

that

‖L−1(f)‖Hp

k+1,loc
(Hn) ≤ Cn,p‖f‖Hp

k,loc
(Hn)

for 0 < p < ∞ and k ∈ Z+. Here Hp
k(Hn) is the local version Hardy-Sobolev

space of order k (see Chang and Tie [10], Folland and Stein [13]). The inverse

L−1
α of the sub-Laplacian gains two in all “good” directions but only gains

one in the “bad” direction. This is the so-called sub-elliptic estimate.

Next, we will compute the heat kernel hu(z, t) = exp{−uLα}δ0. Here u

is the time variable. In the isotropic case, the heat kernel was independently

studied by Gaveau [14] and Hulanicki [18] via probability. Later, Beals and

Greiner [6] solved the general case by a different method. We will see that

hu(z, t) can be obtained easily via the Laguerre calculus.

We first take the Fourier transform with respect to the t-variable and

write the heat kernel h̃u(z, t) as a twisted convolution operator.

h̃u(z, τ) = exp{−sL̃α}Ĩ =
∞∑

|k|=0

exp{−uL̃α}



n∏

j=1

ajW̃(0)
kj

(
√

ajzj , τ)




=
∞∑

|k|=0

e
−u
∑n

j=1
aj |τ |(2kj+1)+uατ

n∏

j=1

ajW̃(0)
kj

(
√

ajzj , τ).

Next, a computation similar to those above leads to

h̃u(z, τ) =
eατu

πn




n∏

j=1

aj|τ |
sinh(aj |τ |u)


exp



−|τ |

n∑

j=1

aj |zj |2 coth(aj |τ |u)



 .(11)
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Since

n∏

j=1

aj|τ |
sinh(aj |τ |u)

=
n∏

j=1

ajτ

sinh(ajτu)
and |τ | coth(aj |τ |u) = τ coth(ajτu),

we can simplify (11),

h̃u(z, τ) =
eατu

πn




n∏

j=1

ajτ

sinh(ajτu)


 e−τγ(τu;z),

where, again γ(τu; z) =
∑n

j=1 aj|zj |2 coth(ajτu).

Then the inverse Fourier transform with respect to the τ -variable yields

the heat kernel:

hu(z, t) =
1

2πn+1

∫ +∞

−∞




n∏

j=1

ajτ

sinh(ajτu)


 eατu+itτ−τγ(τu;z)dτ

=
1

2(πu)n+1

∫ +∞

−∞




n∏

j=1

ajτ

sinh(ajτ)


 eατ+i τ

u
t− τ

u
γ(z,τ)dτ,

and replacing τ by 2τ one has

hu(z, t) =
1

(πu)n+1

∫ +∞

−∞
v(τ)e2ατ− 2τ

u
g(τ ;z,t)dτ.(12)

4. The Hamilton-Jacobi equation and the heat kernel. The

heat kernel is closely associated to Hamiltonian mechanics on Hn. In fact,

the heat kernel hu(z, t) we just calculated can be interpreted in terms of

an action function associated to complex Hamiltonian mechanics. In this

case, the Hamiltonian function is the symbol of L (see [4]). To simplify the

calculations, we shall concentrate on the 1-dimensional Heisenberg group:

HL(x, ξ, θ) =
1

2
(ξ1 + 2ax2θ)2 +

1

2
(ξ2 − 2ax1θ)2 =

1

2
(ζ2

1 + ζ2
2 ),
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where ζ1 = ξ1+2ax2θ and ζ2 = ξ2−2ax1θ. In this notation Hamilton-Jacobi

equations for a curve (x1(s), x2(s), t(s), ξ1(s), ξ2(s), θ(s)) take the form:

ẋ1(s) =
∂HL
∂ξ1

=ξ1+2ax2θ=ζ1(s), ẋ2(s)=
∂HL
∂ξ2

=ξ2−2ax1θ=ζ2(s),(13)

ṫ(s) =
∂HL
∂θ

=(ξ1+2ax2θ)(2ax2)−(ξ2−2ax1θ)(2ax1)(14)

= 2a(ζ1x1−ζ2x2),

ξ̇1(s) = −∂HL
∂x1

= (2aθ)(ξ2 − 2ax1θ) = (2aθ)ζ2,(15)

ξ̇2(s) = −∂HL
∂x2

= −(2aθ)(ξ1 + 2ax2θ) = −(2aθ)ζ1,(16)

θ̇(s) = −∂HL
∂t

= 0,(17)

where the dot denotes d
ds . We let s run along the ray from 0 to a point τ ∈ C.

Because of group invariance we need to consider paths relative to the origin

and a point (x, t) = (x1, x2, t)only, and assume boundary conditions

x1(0) = 0, x2(0) = 0, x1(τ) = x1, x2(τ) = x2, t(τ) = t.(18)

From (13), the Hamiltonian,

1

2
ẋ2

1(s) +
1

2
ẋ2

2(s) = HL(x, ξ, θ) = H0 ≡ 1

2
(ζ1(0)ζ1(0) + ζ2(0)ζ2(0)).

is constant along a given bicharacteristic. Form (17), we know that θ(s) =

θ(0) = θ and we may take it to be the free parameter. The equations (13),

(15) and (16) imply that

ζ̇1 = ξ̇1 + 2aθẋ2 = 2aθζ2 + 2aθζ2 = 4aθζ2,

ζ̇2 = ξ̇2 − 2aθẋ1 = −2aθζ1 − 2aθζ1 = −4aθζ1.

Hence,

ζ1(s) = cos(4aθs)ζ1(0) + sin(4aθs)ζ2(0),
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ζ2(s) = −sin(4aθs)ζ1(0) + cos(4aθs)ζ2(0).

Therefore, we may solve for x(s) as a function of x, τ and θ, and then solve

for t(s) as a function of x, t, τ and θ. Here are the calculations.

x1(s) =

∫ s

0
ζ1(ρ)dρ

=

{∫ s

0
cos(4aθρ)dρ

}
ζ1(0) +

{∫ s

0
sin(4aθρ)dρ

}
ζ2(0)

= − 1

4aθ
{−sin(4aθs)ζ1(0) + cos(4aθs)ζ2(0) − ζ2(0)}

= − 1

4aθ
{ζ2(s) − ζ2(0)}

= − 1

4aθ
{−sin(4aθs)ζ1(0) + [cos(4aθs) − 1]ζ2(0)} .

and

x2(s) =
1

4aθ
{ζ1(s) − ζ1(0)}

=
1

4aθ
{[cos(4aθs) − 1]ζ1(0) + sin(4aθs)ζ2(0)} ,

Therefore,


 ζ1(0)

ζ2(0)


=

4aθ

sin2(2aθτ)


 sin(4aθτ) cos(4aθτ) − 1

−cos(4aθτ) + 1 sin(4aθτ)




 x1

x2


(19)

It follows that

H0 =
1

2
(ζ1(0)ζ1(0) + ζ2(0)ζ2(0))=

(2aθ)2

2 sin2(2aθτ)
(x2

1 +x2
2)=

(2aθ)2

2 sin2(2aθτ)
‖x‖2.

When θ = 0, we have ζ(s) = ζ(0), x(s) = ζ(0)s and t(s) = t(0). Substituting

these calculations into (14), we have

t − t(s) = 2a

∫ τ

s
[ζ1(ρ)x2(ρ) − ζ2(ρ)x1(ρ)] dρ

=
2a

4aθ

∫ τ

s
{cos(4aθρ)ζ1(0) + sin(4aθρ)ζ2(0)}
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×{[cos(4aθρ) − 1]ζ1(0) + sin(4aθρ)ζ2(0)} dρ

+
2a

4aθ

∫ τ

s
{− sin(4aθρ)ζ1(0) + cos(4aθρ)ζ2(0)}

×{− sin(4aθρ)ζ1(0) + [cos(4aθρ) − 1]ζ2(0)} dρ(20)

=
1

2θ

∫ τ

s
[1 − cos(4aθρ)]dρ ·

[
ζ2
1 (0) + ζ2

2 (0)
]

=
(τ − s)

2θ

[
ζ2
1 (0) + ζ2

2 (0)
]

+
1

2θ
· 1

4aθ
[sin(4aθτ) − sin(4aθs)]

×
[
ζ2
1 (0) + ζ2

2 (0)
]

= (τ − s)
2a2θ

sin2(2aθτ)
‖x‖2 − a

2
· sin(4aθτ) − sin(4aθs)

sin2(2aθτ)
‖x‖2.

Theorem 4.1. The solution of equations (13) and (14) with boundary

conditions (18) is

x1(s) =
sin(2aθs)

sin(2aθτ)
{cos[2aθ(s − τ)]x1 + sin[2aθ(s − τ)]x2} ,(21)

x2(s) =
sin(2aθs)

sin(2aθτ)
{− sin[2aθ(s − τ)]x1 + cos[2aθ(s − τ)]x2}(22)

t(s) =

[
a

2

sin(4aθτ)−sin(4aθs)

sin2(2aθτ)
−(τ−s)

2a2θ

sin2(2aθτ)

]
(x2

1+x2
2)−t.(23)

The value of the Hamiltonian HL on this path is

H0 =
2a2θ2

sin2(2aθτ)
(x2

1 + x2
2).

Next (20) yields

t − t(0) = aµ(2aθτ)‖x‖2,

where we set

µ(z) =
z

sin2 z
− cot z.
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The action integral associated to the Hamiltonian curve is

S(x, t, τ, θ) =

∫ τ

0





2∑

j=1

ξj(s)ẋj(s) + θṫ(s) − HL(x(s), ξ(s), θ)



 ds.

H is homogeneous of degree 2 with respect to (ξ1, ξ2, θ), so

S =

∫ τ

0





2∑

j=1

ξj
∂HL
∂ξj

+ θ
∂HL
∂θ

− HL



 ds =

∫ τ

0
(2HL − HL)ds = τH0.(24)

From (21)-(24), we have the following theorem:

Theorem 4.2. The action integral S(x, t, τ, θ) is given by

S(x, t, τ, θ) =
τ(2aθ)2

2 sin2(2aθτ)
‖x‖2,

= [t − t(0)]θ + aθ cot(2aθτ)(x2
1 + x2

2), θ ∈
[
0,

π

a

)
.

It is convenient to fix τ , τ = 1. Then the Hamiltonian paths are deter-

mined entirely by the parameter θ. We may take the end points to be (0, 0)

and (x, t). Then θ must satisfy

t = aµ(2aθ)(x2
1 + x2

2) = aµ(2aθ)‖x‖2.

It can be shown that µ is a monotone increasing diffeomorphism of the

interval (−π, π) onto R. On each interval (mπ, (m + 1)π), m = 1, 2, . . ., µ

has a unique critical point zm. On this interval µ decreases strictly from +∞
to µ(zm) and then increases strictly from µ(zm) to +∞. Now the complete

picture of the geodesics is given in the following two theorems.

Theorem 4.3. There are finitely many geodesics that join the origin to

(x, t) if and only if x 6= 0. These geodesics are parametrized by the solutions
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θ of

aµ(2aθ)‖x‖2 = |t|,(25)

and their lengths increase strictly with θ. There is exactly one such geodesic

if and only if

|t| < aµ(z1)‖x‖2,

and the number of geodesics increases without bound as
|t|

a‖x‖2 → ∞.

The square of the length of the geodesic associated to a solution θ of

(25) is

2S(x, |t|, 1, θ) =
(2aθ)2

sin2(2aθ)
(x2

1 + x2
2)

=
(2aθ)2

sin2(2aθ)

(x2
1 + x2

2)

(x2
1 + x2

2) + |t|/a

[ |t|
a

+ (x2
1 + x2

2)

]

=
(2aθ)2

sin2(2aθ)

1

1 + µ(2aθ)

[ |t|
a

+ (x2
1 + x2

2)

]

= ν(2aθ)

( |t|
a

+ ‖x‖2
)

,

where ν(0) = 2 and otherwise

ν(z) =
z2

z + sin2 z − sin z cos z
.

Consequently, if 2aθ ∈ (mπ, (m + 1)π) the length dθ of the geodesic satisfies

m2π2

(m + 1)π + 2

( |t|
a

+ ‖x‖2
)

< (dθ)
2 <

(m + 1)2π2

mπ

( |t|
a

+ ‖x‖2
)

.

When x = 0, we need to find the Hamiltonian paths connecting the origin

to (0, t), i.e., x1(1) = 0, x2(1) = 0, t(1) = t. This implies that ζ1(1) = ζ1(0)

and ζ2(1) = ζ2(0). It follows that

ζ1(1) = cos(4aθ)ζ1(0) + sin(4aθ)ζ2(0) = ζ1(0),
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ζ2(1) = − sin(4aθ)ζ1(0) + cos(4aθ)ζ2(0) = ζ2(0)

This implies that

sin(4aθ) = 0, and cos(4aθ) = 1

i.e.,

2aθ = mπ, with m = 1, 2, 3, . . . .(26)

In this case,

t =
1

2θ
(ζ2

1 (0) + ζ2
2 (0)),

therefore, θ 6= 0 and m 6= 0 in (26). We also know that

d2
m =

mπ|t|
a

.

Summaring, we have the following theorem.

Theorem 4.4. The geodesics that join the origin to a point (0, t) have

lengths d1, d2, d3, . . ., where

d2
m =

mπ|t|
a

.

Since x1(1) = x2(1) = 0, we may use (26) and (ζ1(0), ζ2(0)) to obtain

the geodesics as follows:

x
(m)
1 (s) = − 1

2mπ
{− sin(2mπs)ζ1(0) + [cos(2mπs) − 1]ζ2(0)}

=

(
t

4amπ

) 1
2
{

sin(2mπs)
ζ1(0)

‖ζ(0)‖ + [1 − cos(2mπs)]
ζ2(0)

‖ζ(0)‖

}
,
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where ‖ζ(0)‖ =
√

ζ2
1 (0) + ζ2

2 (0). Similarly, we have

x
(m)
2 (s) =

1

2mπ
{[cos(2mπs) − 1]ζ1(0) + sin(2mπs)ζ2(0)}

=

(
t

4amπ

) 1
2
{

[cos(2mπs) − 1]
ζ1(0)

‖ζ(0)‖ + sin(2mπs)
ζ2(0)

‖ζ(0)‖

}
,

and

t(m)(s) = [2mπs − sin(2mπs)]
t

2mπ
.

This shows that for each fixed m, m = 1, 2, . . ., the geodesics (x
(m)
1 (s),

x
(m)
2 (s), t(m)(s)) can be parametrized by a unit vector ζ(0)/‖ζ(0)‖ on the

unit circle. These curves lie in a cylinder around the t-axis whose radius is

O(1/
√

m). To consider the complex action, we fix θ,

θ = −i.

The complex action integral is defined by:

g(x, t, τ) = −it +

∫ 1

0
[ẋ1ξ1 + ẋ2ξ2 − HL] ds

= −it + a coth(2aτ)(x2
1 + x2

2).

Moreover, g satisfies the Hamilton-Jacobi equation

∂g

∂τ
+

1

2
(X1g)2 +

1

2
(X2g)2 =

∂g

∂τ
+ 2(Zg)(Z̄g) = 0.

From classical calculations one has

∂g

∂x1
= ξ1,

∂g

∂x2
= ξ2, and

∂g

∂t
= θ.

Therefore,

HL

(
x1, x2,

∂g

∂x1
,

∂g

∂x2

)
=

1

2
(ζ2

1 (0) + ζ2
2 (0)) = H0,
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and the Hamilton-Jacobi equation yields

0 =
∂g

∂τ
+ H0 =

∂g

∂τ
+

S

τ
=

∂g

∂τ
+

1

τ
[g(x, t, τ) + it(0)].

Theorem 4.5. Suppose x 6= 0. Then the unique critical point with

respect to τ of the modified complex action function

f(x, t, τ) = τg(x, t, τ) = −iτ t + aτ coth(2aτ)(x2
1 + x2

2)

in the strip {|Im (τ)| < π/2a} is the point τc(x, t) = iθc(x, t), where θc is the

solution of the equation (25) in this interval. At the critical point

f(x, t, τc(x, t)) = S(x, t, 1; θc) =
1

2
d2(x, t).(27)

The identity (27) is also valid at points (0, t), t 6= 0.

Comparing the above calculations with (12), we can rewrite the heat

kernel associated to the sub-Laplacian L = L0 as follows:

PLf(x, t, u) = e−Luf(x, t, u) =

∫

Hn

hu((y, s)−1 ◦ (x, t))f(y, s)dyds,

where

hu(x, t) =
1

(2πu)n+1

∫

R
e−

f(x,t,τ)
u V (r)dτ.

Here

f(x, t, τ) = τg(x, t, τ) = −iτu + aτ(x2
1 + x2

2) coth(2aτ),

and

V (r) =
2aτ

sinh(2aτ)
.

Using the complex action function f(x, t, τ), we may discuss the small

time behavior of the heat kernel. To simplify the problem, we assume that

aj = a for all j = 1, . . . , n (see [4]).
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Theorem 4.6. Given a fixed point (x, t), x 6= 0, let θc denote the

solution of equation (25) in the interval [0, π/2a). Then the heat kernel for

isotropic Heisenberg groups has the following small time behavior:

hu(x, t) =
1

(2πu)n+1
e−

d2(x,t)
2u

{
Θ(x, t)

√
2πu + O(u)

}
, u → 0+,

where

Θ(x, t)=
( 1

f ′′(iθc)

) 1
2 ν(iθc)=

θc√
[1−2aθc cot(2aθc)](x2

1+x2
2)

{ 2aθc

sin(2aθc)

}n−1
,

with f ′′(τ) = d2f
dτ2 .

Theorem 4.7. At point (0, t), t 6= 0, we have

hu(x, t) =
tn−1

(n − 1)!(2
√

au)2n
e−

d2(0,t)
2u {1 + O(u)} , u → 0+.
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