
BULLETIN OF THE

INSTITUTE OF MATHEMATICS

ACADEMIA SINICA

Volume 30, Number 2, June 2002

HOMOGENEOUS MAXIMAL ESTIMATES FOR

SOLUTIONS TO THE SCHRÖDINGER EQUATION
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Abstract. Homogeneous maximal estimates are consid-

ered for solutions to an initial value problem for the Schrödinger

equation. Also more general oscillatory integrals are studied.

1. Introduction. Let f belong to the Schwartz space S(Rn) and set

Stf(x) = u(x, t) = (2π)−n
∫

R
n

eix·ξeit|ξ|a f̂(ξ)dξ, x ∈ R
n, t ∈ R,

where a > 1. Here f̂ denotes the Fourier transform of f , defined by

f̂(ξ) =

∫

R
n

e−iξ·xf(x)dx.

It then follows that u(x, 0) = f(x) and in the case a = 2 u is a solution to

the Schrödinger equation i∂u/∂t = ∆u.

We shall here consider maximal functions

S∗f(x) = sup
0<t<1

|Stf(x)|, x ∈ R
n,
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and

S∗∗f(x) = sup
t>0

|Stf(x)|, x ∈ R
n.

We also introduce Sobolev spaces Hs by setting

Hs = {f ∈ S ′; ‖f‖Hs < ∞}, s ∈ R,

where

‖f‖Hs =

(
∫

R
n

(1 + |ξ|2)s|f̂(ξ)|2dξ

)1/2

.

We shall also consider homogeneous Sobolev spaces Ḣs defined by

Ḣs = {f ∈ S ′; ‖f‖Ḣs
< ∞}, s ∈ R,

where

‖f‖Ḣs
=

(
∫

R
n
|ξ|2s|f̂(ξ)|2dξ

)1/2

.

It is of interest to study local estimates

‖S∗f‖Lq(B) ≤ CB‖f‖H

and

‖S∗∗f‖Lq(B) ≤ CB‖f‖H

where B is an arbitrary ball in R
n and H denotes Hs or Ḣs, and global

estimates

‖S∗f‖Lq(Rn ) ≤ C‖f‖H

and

‖S∗∗f‖Lq(Rn ) ≤ C‖f‖H .

Estimates of this type have been considered in P. Sjölin [6], [7], [8],

[9], [10], and F. Gülkan [2], and in several other papers. We do not give
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a complete list of references but refer to the references in the mentioned

papers. We shall here concentrate on the estimate

‖S∗∗f‖Lq(Rn ) ≤ C‖f‖Ḣs
.(1)

We shall always assume 1 ≤ q ≤ ∞ and s ∈ R. We shall obtain the following

theorem as a consequence of results and methods in the papers [6], [7], [9],

[10], and [2].

Theorem 1. In the case n = 1 the estimate (1) holds if and only if

1/4 ≤ s < 1/2 and q = 2/(1 − 2s). In the case n ≥ 2 and f radial the

estimate (1) holds if and only if 1/4 ≤ s < n/2 and q = 2n/(n − 2s).

Remark 1. In the case n ≥ 2 and f general (not necessarily radial)

we have only the following partial results. If the estimate (1) holds then

n/2(n + 1) ≤ s < n/2 and q = 2n/(n − 2s). If n/4 ≤ s < n/2 and

q = 2n/(n − 2s) then the estimate (1) holds.

Remark 2. Special cases of the above results are contained in C. E.

Kenig, G. Ponce, and L. Vega [3], [4], [5], but we have not been able to find

the complete results in the literature.

2. Proofs.

Proof of the Theorem. We first observe that a necessary condition for

(1) to hold is s ≥ 1/4. This follows from counter-examples in [6], p. 712–

713, and [9], p. 55–58. These counter-examples are originally constructed

in the case of inhomogeneous Sobolev spaces Hs but they also work for

homogeneous spaces Ḣs.

We shall then prove that q = 2n/(n−2s) is a necessary condition for (1).

For f ∈ S we set fR(x) = f(Rx), R > 0, and then have f̂R(ξ) = R−nf̂(ξ/R).
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It is easy to see that StfR(x) = StRa(Rx) and we therefore have

S∗∗fR(x) = S∗∗f(Rx).

Now assume that (1) holds. Then

‖S∗∗fR‖q ≤ C‖fR‖Ḣs
,

where we have written ‖ ‖q instead of ‖ ‖Lq(Rn ). The left hand side above

equals R−n/q‖S∗∗f‖q and the right hand side is equal to R−n/2+s‖f‖Ḣs
. It

follows that

R−n/q‖S∗∗f‖q ≤ CR−n/2+s‖f‖Ḣs
.

This can hold for all R > 0 only if

−
n

q
= −

n

2
+ s,

which gives the equality q = 2n/(n − 2s).

Since 1 ≤ q ≤ ∞ it follows that s ≤ n/2 is a necessary condition for (1).

However, it is easy to see that the case s = n/2, q = ∞ is impossible (cf.

[9]), and we have therefore proved that 1/4 ≤ s < n/2 and q = 2n/(n − 2s)

is a necessary condition for (1) (also in the case of radial functions).

By use of an extension of a method in [6], it is proved in [2] that (1)

holds if n/4 ≤ s < n/2 and q = 2n/(n− 2s) (see Theorems 2.5, 2.6 and 2.12

in [2]). The proof of the Theorem in the case n = 1 is therefore complete.

We now turn to the case n ≥ 2 and f radial. We shall prove that

‖S∗∗f‖Lq(Rn ) ≤ C‖f‖Hs(2)

in the case s = 1/4 and q = 4n/(2n − 1). The sufficiency part of the result

in the Theorem will then follow from interpolation between this result and
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the case s = n/4, q = 4.

To study the case s = 1/4, q = 4n/(2n − 1) we shall extend a method

in [7]. It is proved in [7] that the estimate

‖S∗f‖Lq(B) ≤ CB‖f‖H1/4

holds for the above value of q and f radial. It is observed in [2] that one

also has

‖S∗∗f‖Lq(B) ≤ CB‖f‖H1/4

and we shall prove that also

‖S∗∗f‖Lq(Rn ) ≤ C‖f‖H1/4
.(3)

Following [7] we set

P ∗g(r) = (1 + r2)−1/8r1/2
∫ ∞

0
Jn/2−1(rs)e

−it(s)ra
s(n+1)/4ng(s)ds

for 0 < r < ∞, where g ∈ L1(0,∞) and has compact support. Here Jn/2−1

denotes a Bessel function and t(s) is a positive measurable function on (0,∞).

For q = 4n/(2n − 1) we define p by the formula 1/p + 1/q = 1, so that

4/3 < p < 2. Arguing as in [7] we then conclude that to prove (3) it is

sufficient to prove that

(
∫ ∞

0
|P ∗g(r)|2dr

)1/2

≤ C

(
∫ ∞

0
|g(s)|pds

)1/p

(4)

for all g ∈ Lp(0,∞) with compact support.

Following [7] we write

P ∗g(r) = b1A(r) + b2B(r) + Q(r),
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where

A(r) = (1 + r2)−1/8
∫ ∞

0
eirse−it(s)ra

s−γg(s)ds,

B(r) = (1 + r2)−1/8
∫ ∞

0
e−irse−it(s)ra

s−γg(s)ds

and

|Q(r)| ≤ C(1 + r2)−1/8
∫ ∞

0
min

(

1,
1

rs

)

s−γ |g(s)|ds.

Here γ = 1/q − 1/4 = (n − 1)/4n and b1 and b2 denote constants.

A and B can then be estimated as in [7]. The proof in [7] treats the

case 0 < t(s) < 1 but the same proof works in our case t(s) > 0. Also the

estimate
(

∫ ∞

1
|Q(r)|2dr

)1/2

≤ C‖g‖p

can be proved by use of the method in [7]. To prove that also

(
∫ 1

0
|Q(r)|2dr

)1/2

≤ C‖g‖p(5)

we can argue in the following way. For 0 < r < 1 we have

|Q(r)| ≤ C

∫ 1/r

0
s−γ |g(s)|ds + C

∫ ∞

1/r

1

rs
s−γ|g(s)|ds.

Observing that γq = 1 − q/4 and (−1 − γ)q = −1 − 3q/4 we obtain

|Q(r)| ≤ C

(
∫ 1/r

0
s−γqds

)1/q

‖g‖p + C
1

r

(
∫ ∞

1/r
s(−1−γ)qds

)1/q

‖g‖p

= C1

(1

r

)(1−γq)/q
‖g‖p + C2

1

r

(1

r

)[(−1−γ)q+1]/q
‖g‖p

= C1r
−1/4‖g‖p + C2r

−1+3/4‖g‖p = Cr−1/4‖g‖p

for 0 < r < 1, and (5) follows. Thus (4) and (3) are proved.

Interpolating between (3) and the corresponding estimate in the case

s = n/4, q = 4, we obtain (2) for 1/4 ≤ s ≤ n/4 and q = 2n/(n − 2s) (see
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J. Bergh and J. Löfström [1], p. 120). Using the proof of Theorem 2.6 in [2]

we can then conclude that we also have the homogeneous estimate (1) for the

same values of s and q. Thus we have proved that the homogeneous estimate

(1) for radial functions holds for 1/4 ≤ s < n/2 and q = 2n/(n − 2s). The

proof of the Theorem is complete.

The sufficiency condition in Remark 1 follows from the proof of the

Theorem. To obtain the necessary condition in Remark 1 we argue as follows.

We know from the proof of the Theorem that 1/4 ≤ s < n/2 and q =

2n/(n − 2s) is a necessary condition for the homogeneous estimate (1). To

obtain also the necessary condition s ≥ n/2(n + 1) we invoke a result from

Sjölin [10], which states that if

(
∫

B
|S∗f |qdx

)1/q

≤ CB‖f‖Hs(6)

for every ball B, then

s +
n − 1

2q
≥

n

4
.(7)

Since the homogeneous estimate (1) is stronger than (6) we conclude that

(1) implies (7). Combining (7) with the equality q = 2n/(n− 2s), we obtain

s +
(n − 1)(n − 2s)

4n
≥

n

4

and

4ns + (n − 1)(n − 2s) ≥ n2.

Simplifying this inequality we obtain s ≥ n/2(n + 1) and hence the results

in Remark 1 are proved.
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