HOMOGENEOUS MAXIMAL ESTIMATES FOR SOLUTIONS TO THE SCHRÖDINGER EQUATION

BY

PER SJÖLIN

Abstract

Homogeneous maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation. Also more general oscillatory integrals are studied.

1. Introduction. Let f belong to the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and set

$$
S_{t} f(x)=u(x, t)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{i t|\xi|^{a}} \hat{f}(\xi) d \xi, \quad x \in \mathbb{R}^{n}, t \in \mathbb{R}
$$

where $a>1$. Here \hat{f} denotes the Fourier transform of f, defined by

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} f(x) d x
$$

It then follows that $u(x, 0)=f(x)$ and in the case $a=2 u$ is a solution to the Schrödinger equation $i \partial u / \partial t=\Delta u$.

We shall here consider maximal functions

$$
S^{*} f(x)=\sup _{0<t<1}\left|S_{t} f(x)\right|, \quad x \in \mathbb{R}^{n},
$$

[^0]and
$$
S^{* *} f(x)=\sup _{t>0}\left|S_{t} f(x)\right|, \quad x \in \mathbb{R}^{n}
$$

We also introduce Sobolev spaces H_{s} by setting

$$
H_{s}=\left\{f \in \mathcal{S}^{\prime} ;\|f\|_{H_{s}}<\infty\right\}, \quad s \in \mathbb{R},
$$

where

$$
\|f\|_{H_{s}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

We shall also consider homogeneous Sobolev spaces \dot{H}_{s} defined by

$$
\dot{H}_{s}=\left\{f \in \mathcal{S}^{\prime} ;\|f\|_{\dot{H}_{s}}<\infty\right\}, \quad s \in \mathbb{R},
$$

where

$$
\|f\|_{\dot{H}_{s}}=\left(\int_{\mathbb{R}^{n}}|\xi|^{2 s}|\hat{f}(\xi)|^{2} d \xi\right)^{1 / 2}
$$

It is of interest to study local estimates

$$
\left\|S^{*} f\right\|_{L^{q(B)}} \leq C_{B}\|f\|_{H}
$$

and

$$
\left\|S^{* *} f\right\|_{L^{q}(B)} \leq C_{B}\|f\|_{H}
$$

where B is an arbitrary ball in \mathbb{R}^{n} and H denotes H_{s} or \dot{H}_{s}, and global estimates

$$
\left\|S^{*} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{H}
$$

and

$$
\left\|S^{* *} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{H}
$$

Estimates of this type have been considered in P. Sjölin [6], [7], [8], [9], [10], and F. Gülkan [2], and in several other papers. We do not give
a complete list of references but refer to the references in the mentioned papers. We shall here concentrate on the estimate

$$
\begin{equation*}
\left\|S^{* *} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{\dot{H}_{s}} . \tag{1}
\end{equation*}
$$

We shall always assume $1 \leq q \leq \infty$ and $s \in \mathbb{R}$. We shall obtain the following theorem as a consequence of results and methods in the papers [6], [7], [9], [10], and [2].

Theorem 1. In the case $n=1$ the estimate (1) holds if and only if $1 / 4 \leq s<1 / 2$ and $q=2 /(1-2 s)$. In the case $n \geq 2$ and f radial the estimate (1) holds if and only if $1 / 4 \leq s<n / 2$ and $q=2 n /(n-2 s)$.

Remark 1. In the case $n \geq 2$ and f general (not necessarily radial) we have only the following partial results. If the estimate (1) holds then $n / 2(n+1) \leq s<n / 2$ and $q=2 n /(n-2 s)$. If $n / 4 \leq s<n / 2$ and $q=2 n /(n-2 s)$ then the estimate (1) holds.

Remark 2. Special cases of the above results are contained in C. E. Kenig, G. Ponce, and L. Vega [3], [4], [5], but we have not been able to find the complete results in the literature.

2. Proofs.

Proof of the Theorem. We first observe that a necessary condition for (1) to hold is $s \geq 1 / 4$. This follows from counter-examples in [6], p. 712713, and [9], p. 55-58. These counter-examples are originally constructed in the case of inhomogeneous Sobolev spaces H_{s} but they also work for homogeneous spaces \dot{H}_{s}.

We shall then prove that $q=2 n /(n-2 s)$ is a necessary condition for (1). For $f \in \mathcal{S}$ we set $f_{R}(x)=f(R x), R>0$, and then have $\hat{f}_{R}(\xi)=R^{-n} \hat{f}(\xi / R)$.

It is easy to see that $S_{t} f_{R}(x)=S_{t R^{a}}(R x)$ and we therefore have

$$
S^{* *} f_{R}(x)=S^{* *} f(R x)
$$

Now assume that (1) holds. Then

$$
\left\|S^{* *} f_{R}\right\|_{q} \leq C\left\|f_{R}\right\|_{\dot{H}_{s}},
$$

where we have written $\|\quad\|_{q}$ instead of $\left\|\|_{L^{q}\left(\mathbb{R}^{n}\right)}\right.$. The left hand side above equals $R^{-n / q}\left\|S^{* *} f\right\|_{q}$ and the right hand side is equal to $R^{-n / 2+s}\|f\|_{\dot{H}_{s}}$. It follows that

$$
R^{-n / q}\left\|S^{* *} f\right\|_{q} \leq C R^{-n / 2+s}\|f\|_{\dot{H}_{s}} .
$$

This can hold for all $R>0$ only if

$$
-\frac{n}{q}=-\frac{n}{2}+s
$$

which gives the equality $q=2 n /(n-2 s)$.
Since $1 \leq q \leq \infty$ it follows that $s \leq n / 2$ is a necessary condition for (1). However, it is easy to see that the case $s=n / 2, q=\infty$ is impossible (cf. [9]), and we have therefore proved that $1 / 4 \leq s<n / 2$ and $q=2 n /(n-2 s)$ is a necessary condition for (1) (also in the case of radial functions).

By use of an extension of a method in [6], it is proved in [2] that (1) holds if $n / 4 \leq s<n / 2$ and $q=2 n /(n-2 s)$ (see Theorems 2.5, 2.6 and 2.12 in [2]). The proof of the Theorem in the case $n=1$ is therefore complete.

We now turn to the case $n \geq 2$ and f radial. We shall prove that

$$
\begin{equation*}
\left\|S^{* *} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{H_{s}} \tag{2}
\end{equation*}
$$

in the case $s=1 / 4$ and $q=4 n /(2 n-1)$. The sufficiency part of the result in the Theorem will then follow from interpolation between this result and
the case $s=n / 4, q=4$.
To study the case $s=1 / 4, q=4 n /(2 n-1)$ we shall extend a method in [7]. It is proved in [7] that the estimate

$$
\left\|S^{*} f\right\|_{L^{q}(B)} \leq C_{B}\|f\|_{H_{1 / 4}}
$$

holds for the above value of q and f radial. It is observed in [2] that one also has

$$
\left\|S^{* *} f\right\|_{L^{q}(B)} \leq C_{B}\|f\|_{H_{1 / 4}}
$$

and we shall prove that also

$$
\begin{equation*}
\left\|S^{* *} f\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{H_{1 / 4}} \tag{3}
\end{equation*}
$$

Following [7] we set

$$
P^{*} g(r)=\left(1+r^{2}\right)^{-1 / 8} r^{1 / 2} \int_{0}^{\infty} J_{n / 2-1}(r s) e^{-i t(s) r^{a}} s^{(n+1) / 4 n} g(s) d s
$$

for $0<r<\infty$, where $g \in L^{1}(0, \infty)$ and has compact support. Here $J_{n / 2-1}$ denotes a Bessel function and $t(s)$ is a positive measurable function on $(0, \infty)$. For $q=4 n /(2 n-1)$ we define p by the formula $1 / p+1 / q=1$, so that $4 / 3<p<2$. Arguing as in [7] we then conclude that to prove (3) it is sufficient to prove that

$$
\begin{equation*}
\left(\int_{0}^{\infty}\left|P^{*} g(r)\right|^{2} d r\right)^{1 / 2} \leq C\left(\int_{0}^{\infty}|g(s)|^{p} d s\right)^{1 / p} \tag{4}
\end{equation*}
$$

for all $g \in L^{p}(0, \infty)$ with compact support.
Following [7] we write

$$
P^{*} g(r)=b_{1} A(r)+b_{2} B(r)+Q(r),
$$

where

$$
\begin{aligned}
& A(r)=\left(1+r^{2}\right)^{-1 / 8} \int_{0}^{\infty} e^{i r s} e^{-i t(s) r^{a}} s^{-\gamma} g(s) d s \\
& B(r)=\left(1+r^{2}\right)^{-1 / 8} \int_{0}^{\infty} e^{-i r s} e^{-i t(s) r^{a}} s^{-\gamma} g(s) d s
\end{aligned}
$$

and

$$
|Q(r)| \leq C\left(1+r^{2}\right)^{-1 / 8} \int_{0}^{\infty} \min \left(1, \frac{1}{r s}\right) s^{-\gamma}|g(s)| d s
$$

Here $\gamma=1 / q-1 / 4=(n-1) / 4 n$ and b_{1} and b_{2} denote constants.
A and B can then be estimated as in [7]. The proof in [7] treats the case $0<t(s)<1$ but the same proof works in our case $t(s)>0$. Also the estimate

$$
\left(\int_{1}^{\infty}|Q(r)|^{2} d r\right)^{1 / 2} \leq C\|g\|_{p}
$$

can be proved by use of the method in [7]. To prove that also

$$
\begin{equation*}
\left(\int_{0}^{1}|Q(r)|^{2} d r\right)^{1 / 2} \leq C\|g\|_{p} \tag{5}
\end{equation*}
$$

we can argue in the following way. For $0<r<1$ we have

$$
|Q(r)| \leq C \int_{0}^{1 / r} s^{-\gamma}|g(s)| d s+C \int_{1 / r}^{\infty} \frac{1}{r s} s^{-\gamma}|g(s)| d s
$$

Observing that $\gamma q=1-q / 4$ and $(-1-\gamma) q=-1-3 q / 4$ we obtain

$$
\begin{aligned}
|Q(r)| & \leq C\left(\int_{0}^{1 / r} s^{-\gamma q} d s\right)^{1 / q}\|g\|_{p}+C \frac{1}{r}\left(\int_{1 / r}^{\infty} s^{(-1-\gamma) q} d s\right)^{1 / q}\|g\|_{p} \\
& =C_{1}\left(\frac{1}{r}\right)^{(1-\gamma q) / q}\|g\|_{p}+C_{2} \frac{1}{r}\left(\frac{1}{r}\right)^{[(-1-\gamma) q+1] / q}\|g\|_{p} \\
& =C_{1} r^{-1 / 4}\|g\|_{p}+C_{2} r^{-1+3 / 4}\|g\|_{p}=C r^{-1 / 4}\|g\|_{p}
\end{aligned}
$$

for $0<r<1$, and (5) follows. Thus (4) and (3) are proved.
Interpolating between (3) and the corresponding estimate in the case $s=n / 4, q=4$, we obtain (2) for $1 / 4 \leq s \leq n / 4$ and $q=2 n /(n-2 s)$ (see
J. Bergh and J. Löfström [1], p. 120). Using the proof of Theorem 2.6 in [2] we can then conclude that we also have the homogeneous estimate (1) for the same values of s and q. Thus we have proved that the homogeneous estimate (1) for radial functions holds for $1 / 4 \leq s<n / 2$ and $q=2 n /(n-2 s)$. The proof of the Theorem is complete.

The sufficiency condition in Remark 1 follows from the proof of the Theorem. To obtain the necessary condition in Remark 1 we argue as follows. We know from the proof of the Theorem that $1 / 4 \leq s<n / 2$ and $q=$ $2 n /(n-2 s)$ is a necessary condition for the homogeneous estimate (1). To obtain also the necessary condition $s \geq n / 2(n+1)$ we invoke a result from Sjölin [10], which states that if

$$
\begin{equation*}
\left(\int_{B}\left|S^{*} f\right|^{q} d x\right)^{1 / q} \leq C_{B}\|f\|_{H_{s}} \tag{6}
\end{equation*}
$$

for every ball B, then

$$
\begin{equation*}
s+\frac{n-1}{2 q} \geq \frac{n}{4} . \tag{7}
\end{equation*}
$$

Since the homogeneous estimate (1) is stronger than (6) we conclude that (1) implies (7). Combining (7) with the equality $q=2 n /(n-2 s)$, we obtain

$$
s+\frac{(n-1)(n-2 s)}{4 n} \geq \frac{n}{4}
$$

and

$$
4 n s+(n-1)(n-2 s) \geq n^{2}
$$

Simplifying this inequality we obtain $s \geq n / 2(n+1)$ and hence the results in Remark 1 are proved.

References

1. J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss., 223, Springer-Verlag, 1976.
2. F. Gülkan, Maximal estimates for solutions to Schrödinger equations, TRITA-MAT-1999-06, Dept. of Math, Royal Institute of Technology, Stockholm.
3. C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.
4. C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. on Pure and Applied Math., 46 (1993), 527-620.
5. C. E. Kenig, G. Ponce and L. Vega, On the IVP for the nonlinear Schrödinger equations, Harmonic analysis and operator theory (Caracas 1994), 353-367, Contemp. Math., 189, Amer. Math. Soc., 1995.
6. P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699-715.
7. P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. (Series A), 59 (1995), 134-142.
8. P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia Math., 110 (1994), 105-114.
9. P. Sjölin, L^{p} maximal estimates for solutions to the Schrödinger equation, Math. Scand., 81 (1997), 35-68.
10. P. Sjölin, A counter-example concerning maximal estimates for solutions to equations of Schrödinger type, Indiana Univ. Math. J., 47 (1998), 593-599.

Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm, Sweden.
E-mail: pers@math.kth.se

[^0]: Received by the editors March 20, 2001 and in revised form May 23, 2001.
 AMS 2000 Subject Classification: 42B25, 35Q40.
 Key words and phrases: Schrödinger equation, initial value problems, oscillatory integrals, maximal estimates, Sobolev spaces.

