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Abstract. Let Γ be a Fuchsian group generated by two

elliptic generators whose product is parabolic. One of the most

interesting classes of subgroups of Γ is known as the principal

congruence subgroups and the level plays a very important role in

their study. A subgroup containing a principal congruence sub-

group is called a congruence subgroup. In the modular group

case, there are two methods of obtaining principal congruence

subgroups and Wohlfahrt proved that these two methods give the

same normal subgroup by showing the equality of the kernel of

the reduction homomorphism and the classical definition of the

principal congruence subgroup.

Hecke groups can be thought as a generalisation of the mod-

ular group in some sense. In [1] and [2], many results concerning

modular group had been generalised to Hecke groups. This sug-

gests that one can also generalise the above result, i.e., the two

methods in Hecke group case also coincide. But we give exam-

ples in which the above two methods give different subgroups. By

showing this, we actually show that not all of the two genera-

tor Fuchsian groups act like modular group when the congruence

subgroups are considered.

The principal congruence and congruence subgroups of the

two important Hecke groups H(
√

m), for m = 2 or 3, are classified

and the quotients of H(
√

m) with these normal subgroups are

given. The method used to obtain these quotients depends on [4].

Also the indices of these two classes of subgroups are listed.
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1. Congruence Subgroups of Modular Group. Classical modular

group Γ is a discrete subgroup of PSL(2,R) with generators

R(z) = −1

z
and T (z) = z + 1.

It is a Fuchsian group with signature (0; 2, 3,∞) and is isomorphic to the

free product of two cyclic groups of orders 2 and 3.

Let Γ1 be a subgroup of Γ. The level of Γ1 is defined to be the least

positive integer n so that T n ∈ Γ1. Perhaps the most interesting and dif-

ficult normal subgroups of modular group Γ are the principal congruence

subgroups. A complete classification of these groups is given by Newman

[6] and Mc Quillan [5]. The principal congruence subgroup of level n of Γ is

defined by

Γ(n) =
{

T (z) =
az + b

cz + d
∈ Γ : ad − bc = 1, a ≡ d ≡ ∓1, b ≡ c ≡ o(n)

}

.

A subgroup of Γ containing Γ(n) is called a congruence subgroup of level n.

Γ(n) is a normal subgroup of Γ, but in general, not all congruence sub-

groups are normal in Γ.

There is another way of obtaining Γ(n): If we use the reduction homo-

morphism mod n which reduces everything in Γ modulo n, then Γ(n) can be

considered as the kernel of this homomorphism.

In [7], Wohlfahrt showed the equality of the two methods of obtaining

Γ(n).

2. Congruence Subgroups of Hecke Groups. Hecke groups H(
√

m),

for m = 2 or 3, are discrete subgroups of the group PSL(2,R) of isometries

of the hyperbolic plane U, generated by

R(z) = −1

z
and T (z) = z +

√
m.
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Here R is of order 2 and S = RT is of order 2m. Therefore H(
√

m), is a

Fuchsian group with signature (0; 2, 2m,∞).

The principal congruence subgroups of level p of H(
√

m) are defined by

Cangül, [1], as

Γp(
√

m) = {T ∈ H(
√

m) : T ≡ ∓I(p)}

=
{

(

a
√

mb
√

mc d

)

: a ≡ d ≡ ∓1, b ≡ c ≡ o(p), ad − mbc=1
}

for prime p. (There are many algebraic problems in defining these subgroups

for any level n ∈ N). Γp(
√

m) is always normal in H(
√

m).

Congruence subgroups are possibly the most interesting ones amongst

the infinitely many normal subgroups of H(
√

m). Interestingly, although

most results for the modular group can easily be generalised to H(
√

m), we

can not always get the equality of the two classes of above subgroups in the

case of H(
√

m).

3. Some Results of Macbeath. Let k = GF (pn)− a field with pn

elements and k1 be its unique quadratic extension. Let G0 = SL(2,k) and

G = PSL(2,k) so that G ∼= G0/{±I}. We shall also consider the subgroup

G1 of SL(2,k1) consisting of the matrices of the form

(

a b

bq aq

)

where a, b ∈ k1 and aq+1 − bq+1 = 1. Macbeath classifies the G0-triples

(A,B,C), C = (AB)−1, of elements of G0 finding out what kind of subgroup

they generate. The ordered triple of the traces of the elements of the G0-

triple (A,B,C) will be a k-triple (α, β, γ). Also to each G0-triple (A,B,C),

there is an associated N-triple (l,m, n) where l, m, n are the orders of A, B

and C in G.
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Macbeath first considers the G0-triples and then using the natural ho-

momorphism

φ : G0 → G,

passes to the G-triples in the following way: If H is the subgroup generated

by φ(A), φ(B) and φ(C), we shall say, by slight abuse of language, that H

is the subgroup generated by the G0-triple (A,B,C).

In the H(
√

m) case, we have A = rp, B = sp and C = tp, where rp, sp

and tp denotes the image of R, S and T , respectively, under the homomor-

phism ϕ∗

p reducing all elements of H(
√

m) modulo p. Hence the correspond-

ing k-triple is (0, u, 2) where u is a root of the minimal polynomial P (
√

m)

modulo p in GF (p) or in a suitable extension field. Also the corresponding

N-triple is (2, 2m,n) where n is the level (i.e., the least positive integer so

that T n belongs to the subgroup) of the normal subgroup.

Macbeath obtained three kinds of subgroups of G: affine, exceptional

and projective groups. We now consider them in connection with H(
√

m).

Let p > 2. A k-triple (α, β, γ) is called singular if the quadratic form

Qα,β,γ(ξ, η, ζ) = ξ2 + η2 + ζ2 + αηζ + βξζ + γξη

is singular, i.e., if
∣

∣

∣

∣

∣

∣

∣

∣

1 γ/2 β/2

γ/2 1 α/2

β/2 α/2 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Now consider the set of matrices of the form

(

a b

0 a−1

)

. They form a

subgroup of G0. By mapping it to G with the natural homomorphism φ we

obtain a subgroup A1 of G. Now consider the set of matrices





t 0

0 tq



,

t ∈ k1, tq+1 = 1 in G1, where k1 is the unique quadratic extension of k.

This is conjugate to a subgroup of SL(2,k1). It is mapped, firstly by the
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isomorphism from G1 to G0, and then by the natural homomorphism φ from

G0 to G, to a subgroup A2 of G. Any subgroup of a group conjugate, in G,

to either A1 or A2 will be called an affine subgroup of G.

A G0-triple is called singular if the associated k-triple (α, β, γ) is singu-

lar. Any group associated with a singular G0-triple is an affine group.

We now restrict ourselves to the case k = GF (p), p prime.

For H(
√

m), the above determinant is equal to −m/4 and therefore

vanishes only when m ≡ 0 modulo p. Therefore, it only vanishes when

p = m.

The triples (2, 2, n), n ∈ N, (2, 3, 3), (2, 3, 4), (2, 3, 5) and (2, 5, 5)- as

(2, 3, 5) is a homomorphic image of (2, 5, 5) — which are the associated N-

triples of the finite triangle groups, are called the exceptional triples. The

exceptional groups are those which are isomorphic images of the finite triangle

groups. Therefore for H(
√

m), the only exceptional triples are obtained for

p = 2 and 3.

The final class of the subgroups of G is the class of the projective sub-

groups. It is known that there are two kinds of them: PSL(2,ks) and

PGL(2,ks) where ks < k, the latter containing the former with index two,

except for p = 2 where two groups are equal. The groups PSL(2,ks) for all

subfields of k, and whenever possible, the groups PGL(2,k2), together with

their conjugates in PGL(2,k) will be called projective subgroups of G.

Dickson, [3], proved that every subgroup of G is either affine, exceptional

or projective. Therefore the remaining thing to do is to determine which one

of these three kinds of subgroups is generated by the G0-triple (rp, sp, tp).

We shall see that in most cases it is a projective group, and our problem

will be to determine this subgroup. In doing this, we shall make use of the

following results of Macbeath.

Theorem 3.1. A G0-triple which is neither singular nor exceptional

generates a projective subgroup of G.
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Theorem 3.2. If a G0-triple generates a projective subgroup of G,

then it generates either a subgroup isomorphic to PSL(2, κ) or a subgroup

isomorphic to PGL(2, κ0) where κ is the smallest subgield of k containing

α, β and γ, and κ0 is the subfield, if any, of which, κ is a quadratic extension.

There are some k-triples which are neither exceptional nor singular.

These are called irregular by Macbeath, i.e., a k-triples is called irregular

if the subfield generated by its elements, say κ, is a quadratic extension of

another subfield κ0, and if one of the elements of the triple lies in κ0 while

the others are both square roots in κ of non-squares in κ0, or zero. Then we

have

Theorem 3.3. [4] A G0-triple which is neither singular, exceptional nor

irregular generates in G a projective group isomorphic to PSL(2, κ) where

κ is the subfield generated by the traces of its matrices.

4. On Klein’s Level Concept. Let us once more consider the re-

duction homomorphism modulo p, for prime p. In the modular group case

we mentioned that the kernel of this homomorphism is Γ(p). Now we shall

show that the situation for Hecke groups H(
√

m) is more complex as there

is not usually a unique way of defining the reduction homomorphism.

Let ℘ be an ideal of Z[
√

m]. Then the natural map

Q℘ : Z[
√

m] → Z[
√

m]/℘

induces a map

H(
√

m) → PSL(2, Z[
√

m]/℘)

whose kernel is going to be called the principal congruence subgroup of level

℘.
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Let now s be an integer so that the minimal polynomial P (
√

m) of
√

m has solutions in GF (ps). We know that such an s exists and satisfies

1 ≤ s ≤ d = deg P (
√

m). Let u be a root of P (
√

m) in GF (ps). Let us take

℘ to be the ideal generated by u in Z[
√

m]. As above we can define

Θp,u,m : H(
√

m) → PSL(2, ps)

as the homomorphism induced by
√

m → u. Let

Kp,u(
√

m) = Ker(Θp,u,m).

Kp,u(
√

m) is then a normal subgroup of H(
√

m).

Let now p be a given prime. As Kp,u(
√

m) depends on p and u, we have

a chance of having a different kernel for each root u. However sometimes

they coincide:

Lemma 4.1. If u and v correspond to the same irreducible factor f of

P (
√

m) over GF (p), then

Kp,u(
√

m) = Kp,v(
√

m).

Proof. Note that A ∈ Kp,u(
√

m) if and only if

A = ±
(

1 + g(
√

m) h(
√

m)

k(
√

m) 1 + l(
√

m)

)

with g(u) = h(u) = k(u) = l(u) = 0 in GF (ps). Therefore as f is irreducible,

(g, f) = 1 or (g, f) = f . If it is 1, then there are polynomials a and b such

that ag + bf = 1. But f(u) = g(u) = 0. Therefore (g, f) = f , and g is a

multiple of f . Similarly, h, k and l are all multiples of f . As v is another

root of the same factor of P (
√

m), g(v) = h(v) = k(v) = l(v) = 0 in GF (ps);

i.e., A ∈ Kp,v(
√

m).
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Even when u, v give different factors of P (
√

m), we may have Kp,u(
√

m)

= Kp,v(
√

m). For example

4.2. Example. For the two roots 3 and 4 of P (
√

2) = x2 − 2 modulo

7, we have the odd elements

A =

(

5
√

2 7

7 5
√

2

)

and B =

(

2
√

2 7

21 37
√

2

)

in K7,3(
√

2) − Γ7(
√

2) and K7,4(
√

2) − Γ7(
√

2), respectively. But

A · B−1 =

(

5
√

2 7

7 5
√

2

)(

37
√

2 −7

−21 2
√

2

)

≡ -I mod 7,

i.e., A · Γ7(
√

2) = B · Γ7(
√

2), so that K7,3(
√

2) = K7,4(
√

2).

To show that unlike modular group, the kernel Kp,u(
√

m) is actually not

a principal congruence subgroup, but only a congruence subgroup, we first

give the relation between Kp,u(
√

m) and Γp(
√

m) in the following result:

4.3. Theorem. Kp,u(
√

m) is a normal congruence subgroup of level p

of H(
√

m), i.e.,

Γp(
√

m) ⊳ Kp,u(
√

m).

Therefore

Γp(
√

m) ≤
⋂

all u

Kp,u(
√

m).

Proof. Let T =

(

p1 p2

p3 p4

)

∈ Γp(
√

m) with each pi is a polynomial

of degree less than the degree of the minimal polynomial of
√

m. By the

definition of Γp(
√

m), we have

p1 ≡ p4 ≡ ±1 mod p, p2 ≡ p3 ≡ 0 mod p.
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Therefore T is an element of the kernel Kp,u(
√

m) defined above. Hence

Γp(
√

m) is a subgroup of Kp,u(
√

m). Furthermore as Γp(
√

m) and Kp,u(
√

m)

are both normal in H(
√

m),

Γp(
√

m) ⊳ Kp,u(
√

m).

By this theorem, we can only say that Γp(
√

m) is a normal subgroup of

Kp,u(
√

m). To say that they could be different, i.e., Γp(
√

m) is a proper

subgroup of Kp,u(
√

m), we need a counter example:

4.4. Example. Let q = 4 and p = 7. Consider the element

A =

(

5
√

2 7

7 5
√

2

)

.

The minimal polynomial of
√

2 is x2−2. In modulo 7, it could be considered

as x2−9 or x2−16, and hence would have roots 3 and 4 in GF (7). According

to the definition of Γ7(
√

2),
√

2 must be in the secondary diagonal (such

elements are called even and form a normal subgroup of H(
√

2)). Therefore

A is not element of Γ7(
√

2). Now consider the reduction homomorphism

modulo 7. Under this homomorphism, one can consider
√

2 as an element

of GF (7), because
√

2 = 3 or
√

2 = 4 in GF (7). Then 5
√

2 = 5.3 = 15 ≡
1 mod 7 and 5

√
2 = 5.4 = 20 ≡ −1 mod 7. Also as 7 ≡ 0 mod 7, A

belongs to K7,3(
√

2) = K7,4(
√

2). Using Theorem 2.3 one concludes that

Γ7(
√

2) ⊳ K7,3(
√

2) = K7,4(
√

2).

4.5. Conclusion. Here we consider the principal congruence subgroups

of Hecke groups. These subgroups were similarly defined as for modular

group. We also consider another way of these subgroups. These two coincides

in the modular group case. Here we give an example of that these two

subgroups do not necessarily coincide. It would be interesting to know for

which values of q and p, this happens.
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5. Some Properties of Principal Congruence Subgroups of

H(
√

m). In §4, it was shown that Kp,u(
√

m) is a normal subgroup of

H(
√

m) and is therefore a congruence subgroup of level ℘. In the modular

group case, this kernel coincides with the principal congruence subgroup.

But in the case of H(
√

m), these two subgroups can be different for some

values of p.

(i) The case m = 2. Here we have the following result.

5.1. Theorem. The quotients of the Hecke group H(
√

2) by its con-

gruence subgroups Kp,u(
√

2) and principal congruence subgroups Γp(
√

2) are

as follows.

H(
√

2)/Kp,u(
√

2) ∼=



















PSL(2, p) if p ≡ ±1 mod 8

PGL(2, p) if p ≡ ±3 mod 8

C2 if p = 2

and

H(
√

2)/Γp(
√

2) ∼=



















C2 × PSL(2, p) if p ≡ ±1 mod 8

PGL(2, p) if p ≡ ±3 mod 8

D4 if p = 2

.

Proof. Case 1. Let p 6= 2 be so that 2 is a square modulo p, that is,

p ≡ ±1 mod 8. In that case there exists an element u in GF (p) such that

u2 = 2. Therefore
√

2 can be considered as an element of GF (p). Then rp,

sp and tp belong to PSL(2, p). Now there is a homomorphism

θ : H(
√

2) → PSL(2, p)

induced by

(

a
√

2 b

c d
√

2

)

→
(

au b

c du

)

and

(

a b
√

2

c
√

2 d

)

→
(

a bu

cu d

)
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where in SL(2, p), we write, with slight abuse of language, a, b, c and d for

their classes in Zp. Then our problem is to find the subgroup of G generated

by rp, sp and tp.

Following Macbeath’s terminology let k = GF (p). Then κ, the smallest

subfield of k containing traces of rp, sp and tp, is also GF (p) as
√

2 ∈ GF (p).

In this case , for all p, the Hp(
√

2)-triple (rp, sp, tp) is not singular since

the discriminant of the assoicated quadratic form, is not 0. It is also not

exceptional since the associated N-triple (giving the orders of its elements)

(2, 4, p) is not an exceptional triple for p ≡ ±mod 8. Then by Theorem 3.1,

(rp, sp, tp) generates a projective subgroup of G, and by Theorem 3.2, as

κ = GF (p) is not a quadratic extension of any other field, this subgroup is

the whole PSL(2, p), i.e.,

H(
√

2)/Kp,u(
√

2) ∼= PSL(2, p).

Let us now find the quotient of H(
√

2) by the principal congruence

subgroup Γp(
√

2). In this case note that Γp(
√

2) is a subgroup of the even

subgroup He(
√

2) consisting of all even elements in the form

(

a b
√

2

c
√

2 d

)

and of index 2 in H(
√

2). Therefore there are no odd elements in Γp(
√

2).

We now want to find the quotient group Kp,u(
√

2)/Γp(
√

2). To show

that it is not the trivial group, we show that Kp,u(
√

2) contains an odd

element, as Γp(
√

2) < He(
√

2).

An odd element

A =

(

x
√

2 y

x t
√

2

)

with ∆ = 2xt − yz = 1, x, y, z, t ∈ Z, is in Kp,u(
√

2) − Γp(
√

2). Now A is

of exponent two mod Γp(
√

2). Then we can write

Kp,u(
√

2) = Γp(
√

2) ∪ A.Γp(
√

2)
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As A 6∈ Γp(
√

2).

Any element

(

a b
√

2

c
√

2 d

)

of He(
√

2)/Γp(
√

2) commutes with A mod p.

.

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

..

.

..

.

.

..

.

.

..

.
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.

.

..

.

..

.

.

..

.

..

.

..

............................................................................................................................. .
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
..
.
.
..
.
.
..
.
..
.
..
.
.
..
.
..
.
.
..
.
..
.
.
..

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

H(
√

2)

He(
√

2)

Γp(
√

2)

Kp,u(
√

2)

C2

PSL(2, p)C2

PSL(2, p)

Therefore

H(
√

2)/Γp(
√

2) ∼= Kp,u(
√

2)/Γp(
√

2) × He(
√

2)/Γp(
√

2)

∼= C2 × PSL(2, p).

To find the odd element mentioned above, we need to solve a Diophantine

equation. Let us see this with an example.

5.2. Example.

(i) Let p = 7. Then u =
√

2 ≡ ±3 mod 7. We choose u ≡ 3 mod7. We

are looking for an odd matrix A =

(

x
√

2 y

z t
√

2

)

of K7,3(
√

2) which is

not in Γ7(
√

2). Such an element must satisfy the following conditions:

∆ = 2xt − yz = 1, xu ≡ tu ≡ 1, y ≡ z ≡ 0 mod 7.

As u ≡ 3 mod 7,

x ≡ t ≡ 5 mod 7.

Then we have

2 · (5 + 7a)(5 + 7b) − 7c · 7d = 1,
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where a, b, c, d are non-negative integers. Hence

7 + 10(a + b) + 14ab = 7cd

which has a solution whenever a + b is an integer multiple of 7. A

particular solution of this Diophantine equation is

a = b = 0, c = d = 1

giving

A =

(

5
√

2 7

7 b
√

2

)

.

If we choose the other value 4 of u ∈ GF (7), then again we obtain an

odd element

B =

(

2
√

2 7

21 37
√

2

)

.

In fact, as 3 is the negative of 4 mod 7, generators of one of the two

principal congruence subgroups corresponding to these two values of u

are just the inverses of each other. Therefore these two subgroups of

H(
√

2) are the same.

(ii) Let p = 17. Then in a similar way, solving the Diophantine equation

1 + 6(a + b) − 34ab = 17cd,

we obtain the required odd element

A =

(

24
√

2 17

85 3
√

2

)

Case 2. Now choose p so that 2 is not a squre modulo p, and let p 6= 2,

i.e., let p ≡ ±3 mod 8. In this case
√

2 cannot be considered as an element

of GF (p). Therefore we shall extend this field to its quadratic extension

GF (p2). Then u =
√

2 can be considered to be in GF (p2) and there exists
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a homomorphism

θ : H(
√

2) → PSL(2, p2)

induced in a similar way to case 1.

Let k = GF (p2). Then κ, the smallest subfield of k containing traces

α, β, γ of Rp, Sp, Tp, is also GF (p2).

Except for p = 3, the G0-triple (rp, sp, tp) is not an exceptional triple. If

p = 3, then the corresponding N-triple is (2, 4, 3) and therefore the generated

subgroup is isomorphic to the symmetric group S4.

Now suppose p > 3. Then as in case 1, (rp, sp, tp) is not a singular triple.

Since κ is the quadratic extension of κ0 = GF (p) and as β = 2 lies in κ0

while α = 0, and γ =
√

2 is the square root in κ of 2 which is a non-square

in κ0, by Theorem 2.2, (rp, sp, tp) generates PGL(2, p), i.e.,

H(
√

2)/Kp,u(
√

2) ∼= PGL(2, p).

Since 2 is not a square modulo p, there are no odd elements in the kernel

Kp,u(
√

2). Hence Kp,u(
√

2) = Γp(
√

2)

H(
√

2)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

2

He(
√

2)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

p(p−1)(p+1)
2

Kp,u(
√

2) = Γp(
√

2)
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and hence

H(
√

2)/Γp(
√

2) ∼= PGL(2, p).

If p = 3, then again the two subgroups coincide and

H(
√

2)/Γ3(
√

2) ∼= H(
√

2)/K3,u(
√

2) ∼= PGL(2, 3) ∼= S4.

Case 3. Let finally p = 2. Then
√

2
2

= 2 ≡ 0 mod 2. It is easy to find

exactly 8 elements in H(
√

2)/Γ2(
√

2) and as

r2
2 = s4

2 = t22 = I,

(r2, s2, t2) is an exceptional triple generating the dihedral group D4 of order

8, that is

H(
√

2)/Γ2(
√

2) ∼= D4.

Now GF (2) = {0, 1} and
√

2 = 0 in GF (2). Therefore t2 ≡ I mod 2. Hence

H(
√

2)/K2,0(
√

2), generated by r2, s2 and t2 is isomorphic to the cyclic

group of order 2, i.e.,

H(
√

2)/K2,0(
√

2) ∼= C2.

H(
√

2)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
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.
.
.
.
.
.
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.

2

He(
√

2) = K2,0(
√

2)
.
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4

Γ2(
√

2)
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(ii) The case m = 3. Here we have a very similar result to the case

m = 2. The poof uses the same arguments with the proof of Theorem 5.1

and therefore is omitted.

5.3. Theorem. The quotients of the Hecke group H(
√

3) by its con-

gruence subgroups Kp,u(
√

3) and principal congruence subgroups Γp(
√

3) are

as follows.

H(
√

3)/Kp,u(
√

3) ∼=







































PSL(2, p) if p ≡ ±1 mod 12

PGL(2, p) if p ≡ ±3,±5 mod 12

C2 if p = 3

D3 if p = 2

and

H(
√

3)/Γp(
√

3) ∼=







































C2 × PSL(2, p) if p ≡ ±1 mod 12

PGL(2, p) if p ≡ ±3,±5 mod 12

(C3 × C3)lC2 if p = 3

D6 if p = 2

where (C3 × C3)lC2 denotes the Wreath product of the two groups.

5.4. Corollary. The indices of the congruence subgroups Kp,u(
√

m)

and Γp(
√

m) in H(
√

m) are

| H(
√

m)

Kp,u(
√

m)
|=



















































p(p−1)(p+1)/2 if m is a square mod p and p 6= m

p(p−1)(p+1) if m is not a square mod p and p 6=6/m

2 if p = m

24 if m = 2, p = 3

6 if m=3, p=2
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and

|H(
√

m)/Γp(
√

m)| =































p(p − 1)(p + 1) if p 6= m, 6/m

2m2 if p = m

24 if m = 2, p = 3

12 if m = 3, p = 2
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