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Abstract. Any isometry of the hyperbolic plane H deter-

mines uniquely a special conic in or outside this plane. Conversely,

any conic of this kind correspond with an isometry and its inverse.

In this paper we give a representation of the isometry group of H

wherein the elements of the group are these conics.

1. Introduction. We use the Cayley-Klein model in the Euclidean

plane (also called the Beltrami model) for the hyperbolic plane H, i.e. we

consider in the Euclidean plane Π the real unit circle X2 + Y 2 = 1 or in

homogeneous coordinates x2 + y2 − z2 = 0, which is the absolute conic Γ

of H and the points of the hyperbolic plane are the points of Π inside Γ (a

point p is inside Γ if there exist two conjugate imaginary tangents to the

real circle Γ through p). Points of Γ are absolute points and points outside

Γ are ultra points (a point p is outside Γ if there exist two real tangents to

Γ through p). Straight lines of H are the parts inside Γ of straight lines of

Π, which have two real common points with Γ. In the following, we use the

same notation for an H-line and for the corresponding (extended) line in the

Euclidean plane. The H-distance h(p, q) between two H-points p and q is

given by: h(p, q) = 1

2
ln(p q i1 i2), where i1, i2 are the intersection points

of the line pq with Γ and where ln is the natural logarythm of the cross-ratio

of the four points p, q, i1, i2.
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Next, we recall the classification of the isometries of H. An isometry of

H is the restriction to the inside of Γ of a projectivity of Π which leaves the

absolute circle Γ invariant.

1. The first kind is the H-symmetry with respect to an H-line or the H-

reflection in an H-line. Suppose that L is a H-line and that the ultra

point l is its pole with regard to Γ. The H-reflection in L is the restriction

to the inside of Γ of the harmonical homology with center l and axis L.

It is well known that any isometry of H is the product of two or three

H-reflections. We have the following possibilities.

2. For the second kind, we consider two H-lines L1 and L2, which have a

common H-point p. The product of the H-reflections in L1 and L2 is an

H-rotation with center (fixed point) p. We find a special case if L1 and

L2 are H-orthogonal (conjugate lines with regard to Γ): the H-reflection

in the point p or the H-symmetry with respect to p, i.e. the (restriction

of the) harmonical homology with center p and axis the polar line of p

with respect to Γ.

3. The third kind is the H-translation, which is the product of two H-

reflections in H-lines L1 and L2 with a common ultra point p.

4. Next, we have the H-glide reflection. Consider again two H-lines L1 and

L2 with a common ultra point p. The product of the H-reflections in L1,

L2 and the H-reflection in the common H-perpendicular P of L1, L2

(this is the polar line of p with regard to Γ), is an H-glide reflection,

called parallel with the H-line P .

5. Finally, if L1 and L2 are H-lines with a common absolute point p, the

product of the H-reflections in L1 and L2 is an H-parallel displacement.

6. Of course, we have also the identity transformation of H.

2. The Conic Associated with an H-Isometry. First, consider

in the hyperbolic plane an H-rotation with fixed H-point p, and suppose

that it is not the H-reflection in p, i.e. it is not a rotation over an H-angle
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π. In the Euclidean plane Π this rotation extends to a projectivity which

leaves Γ invariant and the three fixed points of this projectivity are p and the

two imaginary intersection points i1, i2 of Γ with the polar line of p with

regard to Γ. The restriction of this projectivity to Γ gives a projectivity

on Γ with fixed points i1, i2 and it is well known that the lines connecting

corresponding points of this projectivity are tangent lines of a conic C which

is double tangent at i1 and i2 with Γ (e.g. see [4], page 112, theorem 7.61).

It is easy to see that this conic C lies entirely inside Γ and thus it is an

H-circle. Of course the H-center of C is p and C is invariant for the rotation.

So, any H-rotation, which is not a point reflection, determines a unique

H-circle. Remark that, calling two H-lines parallel if they intersect on the

absolute Γ, the tangent lines of this H-circle are the H-lines which have a

parallel image under the rotation.

Conversely, with a given H-circle correspond in this way clearly two H-

rotations: a rotation and its inverse. But an oriented H-circle C determines

in an obvious way just one H-isometry: an orientation on C generates an

orientation on each tangent line T at C and if T ∩Γ = {a, b}, the H-rotation

corresponding with the oriented H-circle C induces on Γ the projectivity

which transforms a into b if the orientation of the vector ~ab coincides with

the orientation on T .

Next, consider the H-reflection in an H-point p. The lines connecting

corresponding points of the induced involution on Γ are of course the lines

through p and are tangent lines of the degenerate H-circle DC with center

p and components the two imaginary tangent lines through p at Γ. In this

case DC can be considered as an H-circle with radius 0.

If the H-isometry is an H-translation, the product of the H-reflections

in H-lines L1 and L2, where L1 ∩ L2 is an ultra point p, we have, for the

induced projectivity on Γ, two different real fixed points q1, q2 on Γ (the

intersection points of Γ with the polar line P of p with respect to Γ) and the

lines connecting corresponding points on Γ are the tangent lines of a conic
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E , inside Γ, which is double tangent with Γ at the points q1, q2. This means

that E is an equidistant curve, i.e. it is the locus of the H-points which are

at a constant H-distance from the H-line q1q2.

So, any H-translation determines a unique equidistant curve E of the

hyperbolic plane and conversely, an equidistant curve E with an (opposite)

orientation on both parts of E separated by the line connecting the contact

points of E and Γ, determines a unique H-translation (see the example in

section 5). Let us call such equidistant curve with two opposite orientations

on both parts, an “oriented equidistant curve”.

Next, consider a glide reflection, the product of the H-reflections in two

H-lines L1 and L2, where L1∩L2 is an ultra point p, and of the H-reflection

in the common H-perpendicular P of L1 and L2. On Γ, we have again two

fixed real points q1, q2 (the intersection points of P with Γ) and the lines

connecting corresponding points on Γ are the tangent lines of a conic UE
which lies outside Γ and is double tangent at Γ at q1, q2. Why is UE a conic

outside Γ (an ultra conic)? It is easy to see that in the case of a translation,

a line connecting corresponding points on Γ has a common ultra point with

the line q1q2, while for a glide reflection such line intersects q1q2 in an H-

point and UE is a conic outside Γ. We call UE an ultra equidistant curve.

Remark that Γ lies outside any UE : through each real point of Γ, different

from the contact points q1 and q2, there are two real tangent lines at the UE .

Any H-glide reflection determines a unique ultra equidistant curve UE
and conversely, in the same way as for an H-translation, an ultra equidistant

curve UE with two opposite orientations on both parts of it, determines a

unique glide reflection (see the example in section 5). We call it an “oriented

ultra equidistant curve”.

If the H-isometry is a parallel translation, we have one fixed real point

q on Γ and the H-lines which have a parallel image are the tangent lines of

a conic H, inside Γ, which has only q common with Γ (four common points

with Γ at q or hyper osculating with Γ at q), i.e. H is an horocycle of H. So,
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any H-parallel translation determines a unique horocycle H and conversely,

as for an H-rotation, any oriented horocycle determines a unique parallel

translation.

Next, consider an H-reflection in an H-line L. Any line connecting

corresponding points on Γ is a line through the polar ultra point l of L with

regard to Γ and is a tangent line of what we call a degenerate ultra equidistant

curve, i.e. a degenerate conic DUE with components the two real tangents

through the ultra point l at Γ.

Finally, with the identity transformation of H corresponds the identity

transformation on Γ and the corresponding conic is Γ.

Definition. We call each kind of conic corresponding with an H-

isometry a generalized H-circle, a GC for short.

This means that a GC is a non degenerate real conic of the Euclidean

plane which is double tangent or hyper osculating at Γ, such that Γ lies

outside the conic; or the GC is a degenerate conic consisting in two real or

two conjugate imaginary tangent lines of Γ. Moreover Γ itself is also a GC.

We have:

Theorem. With any H-isometry corresponds a unique (oriented if non

degenerate and different from Γ) GC in the following way:

Identical transformation of H ↔ the absolute Γ.

H-rotation (not over π) ↔ oriented H-circle C.
H-point reflection ↔ degenerate H-circle DC.
H-translation ↔ oriented equidistant curve E.
H-glide reflection ↔ oriented ultra equidistant curve UE.
H-line reflection ↔ degenerate ultra equidistant curve DUE .
H-parallel translation ↔ oriented horocycle H.
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Conversely, with any oriented (if non degenerate and different from Γ)

GC corresponds a unique H-isometry.

Because of this theorem we have a bijection between the H-isometries

and the elements of the set of the generalized circles with an orientation

(except for Γ and for the degenerate GC’s):

GC = {Γ, C, DC, E , UE , DUE , H, ‖ where Γ, C, DC, E , UE , DUE , H are

the generalized circles and where the conics C, E , UE , H are oriented }.

The group structure of the H-isometry group IH induces a group struc-

ture on this set GC and so we have:

IH ∼= GC.

This means that the isometry group IH of the hyperbolic plane is isomorphic

with a group whose elements are (oriented) conics.

3. The Equation of a Generalized Circle of H. Consider again the

model of the hyperbolic plane inside the circle Γ with equation x2+y2−z2 = 0

of the Euclidean plane. A generalized circle is double tangent or hyper

osculating at Γ and has an equation of the form

k(x2 + y2 − z2) + (xx0 + yy0 − zz0)
2 = 0, k, x0, y0, z0 ∈ R(3.1)

Of course, the value of k is not arbitrary, because not every conic of this

kind is a generalized circle.

For k =∞, we find Γ. If k 6=∞, we get a conic K for which the common

points with Γ are given by x2 + y2 − z2 = 0, (xx0 + yy0 − zz0)
2 = 0 and

we find two real different common points if p(x0, y0, z0) is an ultra point or

x2
0 + y2

0 − z2
0 > 0, we have two conjugate imaginary points if p(x0, y0, z0) is

an H-point or x2
0 + y2

0 − z2
0 < 0, we find one real point if p(x0, y0, z0) is an

absolute point or x2
0 + y2

0 − z2
0 = 0.
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A straightforward calculation shows that the conic is degenerate iff k =

z2
0−x2

0−y2
0 or k = 0. Suppose that p(x0, y0, z0) is an H-point (x2

0 +y2
0−z2

0 <

0). Then the conic (3.1) is a degenerate H-circle DC if k = z2
0 − x2

0− y2
0 and

it will be a non degenerate H-circle C if it is a real non degenerate conic (an

ellipse in the Euclidean plane) which lies inside Γ, i.e. if k > z2
0−x2

0−y2
0 (0 <

k < z2
0 −x2

0−y2
0 gives an imaginary conic (an ellipse in the Euclidean plane)

and with k < 0 corresponds a real conic (ellipse, parabola or hyperbola)

outside Γ).

Next, assume that p(x0, y0, z0) is an ultra point (x2
0 +y2

0−z2
0 > 0). Then

the conic (3.1) is a degenerate ultra equidistant curve DUE if k = z2
0−x2

0−y2
0.

It is an equidistant curve E if k > 0 (a real ellipse in the Euclidean plane)

and it will be an ultra equidistant curve UE if z2
0 − x2

0 − y2
0 < k < 0 (a

hyperbola in the Euclidean plane). Remark that k < z2
0 −x2

0−y2
0(< 0) gives

a real conic K (ellipse, hyperbola or parabola) such that Γ lies inside K, and

this is not a generalized circle.

If p(x0, y0, z0) is an absolute point, then the conic (3.1) is non degenerate

and real (if k 6= 0). With k > 0 corresponds an horocycle H, while k < 0

gives a real conic which is outside Γ and is hyperosculating at Γ, thus not a

generalized circle.

We get the following list:

k(x2 + y2 − z2) + (xx0 + yy0 − zz0)
2 = 0.(3.2)

k =∞↔ the absolute conic Γ↔ identical transformation of H. x2
0+y2

0−z2
0 <

0 and k > z2
0−x2

0−y2
0 ↔ H-circle C ← H-rotation. x2

0 +y2
0−z2

0 < 0 and k =

z2
0−x2

0−y2
0 ↔ degenerate H-circle DC ↔H-point reflection. x2

0+y2
0−z2

0 > 0

and k > 0 ↔ equidistant curve E ← H-translation. x2
0 + y2

0 − z2
0 > 0 and

z2
0 − x2

0 − y2
0 < k < 0 ↔ ultra equidistant curve UE ← H-glide reflection.

x2
0 + y2

0 − z2
0 > 0 and k = z2

0 − x2
0 − y2

0 ↔ degenerate ultra equidistant curve
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DUE ↔ H-line reflection. x2
0 + y2

0 − z2
0 = 0 and k > 0 ↔ horocycle H ←

H-parallel translation.

4. A Representation of an H-Isometry and the Corresponding

GC. A matrix representation of an H-isometry is not so easy to find, and at

first sight it seems that the equation of the corresponding generalized circle

will be extremely complicated. Moreover, trying to work with these oriented

GC’s as elements of a group, i.e. the problem of calculating the equation of

the composition of two such generalized circles looks almost impossible. But

there is a way of doing it, starting with a method which can be found in

Coolidge ([2], page 95).

A parametric representation of the absolute conic Γ, x2 + y2− z2 = 0, is

given by: x = t2 − 1, y = 2t, z = t2 + 1 (in Coolidge there is slight difference

: Γ has the equation −x2 + y2 + z2 = 0).

A non singular projectivity which transforms the absolute Γ into itself

is given by :

t′ =
a11t + a12

a21t + a22

, with aij ∈ R and ∆ = a11a22 − a12a21 6= 0.(4.1)

This projectivity determines the following H-isometry (the calculation was

worked out with MACSYMA):







x
′

y
′

z
′






=







a
2

22 − a
2

21 − a
2

12 + a
2

11 2(a11a12 − a21a22) −a
2

22 − a
2

21 + a
2

12 + a
2

11

2(a11a21 − a12a22) 2(a11a22 + a12a21) 2(a12a22 + a11a21)

−a
2

22 + a
2

21 − a
2

12 + a
2

11 2(a21a22 + a11a12) a
2

22 + a
2

21 + a
2

12 + a
2

11













x

y

z






(4.2)

The determinant of the matrix of this isometry is :

8(a11a22 − a12a21)
3 = 8∆3 6= 0.(4.3)

Next, in order to find the equation of the corresponding GC, we work as

follows: the variable point p(t2−1, 2t, t2 +1) of the absolute conic Γ is trans-
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formed by the projectivity (4.1) into the point p′((a2
11 − a2

21)t
2 + 2t(a11a12−

a22a21)t+a2
12−a2

22, 2a11a21t
2 +2t(a12a21 +a11a22)+2a12a22, (a

2
11 +a2

21)t
2 +

2t(a11a12 + a21a22) + a2
12 + a2

22).

The equation of the line pp′ is given by :

(−a11t
2 + (a21 − a12)t + a22)x− (a21t

2 + (a11 + a22)t
(4.4)

−a12)y + (a11t
2 + (a12 + a21)t + a22)z = 0.

The lines (4.4) are the tangents of the generalized circle which corresponds

with the isometry (4.2) and we find its equation by eliminating t out of (4.4)

and of the differentiation of (4.4) with respect to t:

(−2a11t+a21−a12)x−(2a21t+a11+a22)y+(2a11t+a21+a12)z = 0.(4.5)

The result of this elimination is (again done with and factored by MAC-

SYMA):

(−a11x− a21y + a11z)((−(a12 − a21)
2 − 4a11a22)x

2 + (4a12a21 − (a11

+a22)
2)y2 + (4a11a22 − (a12 + a21)

2)z2 + 2(a11 − a22)(a12 + a21)xy(4.6)

+2(a2
12 − a2

21)xz + 2(a11 − a22)(a21 − a12)yz) = 0.

Remark that the line −a11x − a21y + a11z = 0 is a singular part which

corresponds with the value t =∞ in (4.4) and in (4.5).

The determinant of the matrix of the conic (second factor in (4.6)) is

given by :

16(a11 + a22)(a11a22 − a12a21)
2 = 16(a11 + a22)∆

2,

and this conic is degenerate iff (recall that ∆ 6= 0) a11 + a22 = 0, i.e. iff

the projectivity (4.1) is an involution and the corresponding H-isometry is

a point reflection or a line reflection.
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Next, this conic has to be a generalized circle or the equation of this

conic must be of the form (3.2). A straightforward calculation shows that

the second factor of (4.6) can be written as follows (up to the sign):

4(a11a22 − a12a21)(x
2 + y2 − z2) + (x(a12 + a21)

(4.7)
+y(a22 − a11) + z(a21 − a12))

2 = 0.

We retake the classification of the generalized circles (at the end of section

3), but now with the equation (4.7) or l(x2 +y2−z2)+(xx0 +yy0−zz0)
2 = 0

with l = 4∆, x0 = a12 + a21, y0 = a22 − a11, and z0 = a12 − a21.

We have: x2
0 + y2

0 − z2
0 = 4a12a21 + (a22 − a11)

2 = (a11 + a22)
2 − 4∆,

which is the discriminant of the equation a21t
2 + (a22 − a11)t − a12 = 0

which determines the t-values corresponding with the fixed points of the

projectivity (4.1) on the absolute circle Γ.

We get: x2
0 + y2

0 − z2
0 < 0←→ (a11 + a22)

2− 4∆ < 0: the conic (4.7) has

two conjugate imaginary common points with Γ.

If a11 + a22 6= 0, the conic is non degenerate and l = 4∆ > 4∆− (a11 +

a22)
2 = z2

0 − x2
0 − y2

0: the conic (4.7) is an H-circle C. If a11 + a22 = 0, the

conic is degenerate and l = 4∆ = z2
0−x2

0−y2
0: we have a degenerate H-circle

DC. Remark that it is impossible that 0 < l < z2
0 − x2

0 − y2
0 (or 0 < 4∆ <

4∆− (a11 + a22)
2) and that l < 0 (or 4∆ = (a11 + a22)

2 + z2
0 − x2

0− y2
0 < 0).

x2
0 + y2

0 − z2
0 > 0 ←→ (a11 + a22)

2 − 4∆ > 0: the conic (4.7) has two real

different common points with Γ.

We have three possibilities in this case:

a11 + a22 6= 0 and l = 4∆ > 0, which gives an equidistant curve E .

a11 + a22 6= 0 and 4∆ − (a11 + a22)
2 < 4∆ < 0 (or z2

0 − x2
0 − y2

0 < l < 0),

which corresponds with an ultra equidistant curve UE .

a11 + a22 = 0 and l = 4∆ = z2
0 − x2

0 − y2
0 , which gives a degenerate ultra

equidistant curve DUE.
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Remark that it is impossible that l < z2
0 −x2

0− y2
0 (or 4∆ < 4∆− (a11 +

a22)
2). x2

0 + y2
0 − z2

0 = 0←→ (a11 + a22)
2 = 4∆.

If a11 + a22 = 0 then ∆ = 0 and the projectivity (4.1) on Γ is singular.

So a11 + a22 6= 0 and l = 4∆ > 0: the conic (4.7) is a horocycle H.

The next problem is : given a generalized circle with equation l(x2 +

y2− z2) + (xx0 + yy0− zz0)
2 = 0, find the matrices of the two H-isometries

corresponding with it.

First, the inverse of the H-isometry (4.2) has the following matrix (again

with MACSYMA):











a2
22−a2

21−a2
12+a2

11 −2(a12a22−a11a21) a2
22−a2

21+a2
12−a2

11

−2(a21a22−a11a12) 2(a11a22+a12a21) −2(a21a22+a11a12)

a2
22+a2

21−a2
12−a2

11 −2(a12a22+a11a21) a2
22+a2

21+a2
12+a2

11











.(4.8)

So, putting B = (bij)i,j=1,2,3 for the matrix in (4.2) and B′ = (b′ij)i,j=1,2,3

for the matrix (4.8), we have:

bii = b′ii, i = 1, 2, 3; b21 = b′12, b12 = b′21, b13 = −b′31, b31 = −b′13, b23 = −b′32

and b32 = −b′23.

Working with x0 = a12+a21, y0 = a22−a11, z0 = a12−a21 and l = 4(a11a22−
a12a21) we find :

b11 = a2
22 − a2

21 − a2
12 + a2

11 =
l

2
+ y2

0 − z2
0

b22 = 2(a11a22 + a12a21) =
l

2
+ x2

0 − z2
0

b33 = a2
22 + a2

21 + a2
12 + a2

11 =
l

2
+ x2

0 + y2
0;

(a11 + a22)
2 = l + x2

0 + y2
0 − z2

0 ;

b12+b21
2

= (a11 − a22)(a12 + a21) = −x0y0;
b12−b21

2
= (a11 + a22)(a12 − a21) =

±z0

√

l + x2
0 + y2

0 − z2
0 ;
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b23−b32
2

= (a22 − a11)(a12 − a21) = y0z0;
b23+b32

2
= (a11 + a22)(a12 + a21) =

±x0

√

l + x2
0 + y2

0 − z2
0 ;

b13−b31
2

= −a2
21 +a2

12 = x0z0;
b13+b31

2
= −a2

22 +a2
11 = (a11 +a22)(a11−a22) =

∓y0

√

l + x2
0 + y2

0 − z2
0 .

From all this, we get the two matrices of the H-isometries which corre-

spond with the generalized circle l(x2 + y2 − z2) + (xx0 + yy0 − zz0)
2 = 0:







l

2
+y2

0−z2
0 −x0y0+z0

√

l+x2
0+y2

0−z2
0 x0z0−y0

√

l+x2
0+y2

0−z2
0

−x0y0−z0

√

l+x2
0+y2

0−z2
0

l

2
+x2

0−z2
0 y0z0+x0

√

l+x2
0+y2

0−z2
0

−x0z0−y0

√

l+x2
0+y2

0−z2
0 −y0z0+x0

√

l+x2
0+y2

0−z2
0

l

2
+x2

0+y2
0







and







l

2
+y2

0−z2
0 −x0y0−z0

√

l+x2
0+y2

0−z2
0 x0z0+y0

√

l+x2
0+y2

0−z2
0

−x0y0+z0

√

l+x2
0+y2

0−z2
0

l

2
+x2

0−z2
0 y0z0−x0

√

l+x2
0+y2

0−z2
0

−x0z0+y0

√

l+x2
0+y2

0−z2
0 −y0z0−x0

√

l+x2
0+y2

0−z2
0

l

2
+x2

0+y2
0







Next, let us again consider a generalized circle with equation

l(x2 + y2 − z2) + (xx0 + yy0 − zz0)
2 = 0.(4.9)

The coefficients aij of the projectivities (a projectivity and its inverse) in-

duced on the absolute conic Γ by the H-isometries which correspond with

the GC (4.9) are calculated out of:































4(a11a22 − a12a21) = l

a12 + a21 = x0

a22 − a11 = y0

a12 − a21 = z0.

We find

a12 =
x0 + z0

2
, a21 =

x0 − z0

2
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a11 + a22 = ±
√

l + x2
0 + y2

0 − z2
0 and

a11 = (−y0 ±
√

l + x2
0 + y2

0 − z2
0)/2, a22 = (y0 ±

√

l + x2
0 + y2

0 − z2
0)/2.

So, the matrices of the induced projectivities on Γ are (up to the factor 1

2
)





a11 a12

a21 a22



=





−y0 ±
√

l+x2
0+y2

0−z2
0 x0 + z0

x0 − z0 y0 ±
√

l+x2
0+y2

0−z2
0



 .(4.10)

Remark that the product of these two matrices is equal to





−l 0

0 −l



.

Now we give a second generalized circle :

k(x2 + y2 − z2) + (xx1 + yy1 − zz1)
2 = 0.(4.11)

Working with the GC’s as elements of a group, we can find the equation of

the composition of the generalized circles (4.9) and (4.11) (first (4.9) and

then (4.11)) as follows.

Let us take the + sign in the matrix (4.10) corresponding with the

GC (4.9) and also the + sign in the analogous matrix (4.10) corresponding

with the GC (4.11). Actually, because of this choice the two GC’s are now

oriented if they are non degenerate and different from Γ (see section 2 and

also section 5).

The product of the two matrices is denoted by

A =





A11 A12

A21 A22



 ,

where

A11 = (−y1+
√

l+x2
1+y2

1−z2
1)(−y0+

√

k+x2
0+y2

0−z2
0)+(x1+z1)(x0−z0)

A12 = (−y1+
√

l+x2
1+y2

1−z2
1)(x0+z0)+(x1+z1)(y0+

√

k+x2
0+y2

0−z2
0)



110 C. THAS [June

A21 = (x1−z1)(−y0+
√

k+x2
0+y2

0−z2
0)+(x0−z0)(y1+

√

l+x2
1+y2

1−z2
1)

A22 = (x1−z1)(x0+z0)+(y1+
√

l+x2
1+y2

1−z2
1)(y0+

√

k+x2
0+y2

0−z2
0).

It follows from the foregoing that the composition of the (oriented) general-

ized circles (4.9) and (4.11) has the equation

L0(x
2 + y2−z2) + (xX0 + yY0−zZ0)

2 = 0,

where

X0 = (A12+A21)/2 = z1y0−y1z0+x1

√

k+x2
0+y2

0−z2
0 +x0

√

l+x2
1+y2

1−z2
1

Y0 = (A22−A11)/2 = x1z0−z1x0+y1

√

k+x2
0+y2

0−z2
0+y0

√

l+x2
1+y2

1−z2
1

Z0 = (A12−A21)/2 = x1y0−y1x0+z1

√

k+x2
0+y2

0−z2
0+z0

√

l+x2
1+y2

1−z2
1

L0 = A11A22−A12A21 = kl.

5. Examples.

5.1. An oriented H-circle C and the corresponding H-rotation.

Let us consider, in the general equation l(x2+y2−z2)+(xx0+yy0−zz0)
2 = 0,

the special case where (x0, y0, z0) = (0, 0, z0) with z0 > 0 and l > z2
0 . So

we may put (x0, y0, z0) = (0, 0, 1) and l > 1: we get an H-circle with H-

center (0, 0, 1) and it is well known that in the Beltrami model, this is a

circle in the Euclidean plane with equation l(x2 + y2 − z2) + z2 = 0 or

l(x2 + y2)− z2(l2 − 1) = 0.

Choosing the + sign for the square root
√

l + x2
0 + y2

0 − z2
0 we find the

following matrix for the corresponding H-rotation:











l
2
− 1

√
l − 1 0

−
√

l − 1 l
2
− 1 0

0 0 l
2











.
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In non homogeneous coordinates (X,Y ) the representation becomes:





X ′

Y ′



 =





1− 2

l
2

l

√
l − 1

−2

l

√
l − 1 1− 2

l









X

Y



 ,

which, for each l > 1, clearly is a rotation in the oriented Euclidean plane

over the oriented angle Φ determined by cosΦ = 1−2

l
and sinΦ = −2

l
(
√

l−1).

A straightforward calculation shows that π < Φ < 2π (mod 2π) and we find

an H-circle C with a counterclockwise orientation on it (for instance: the

image of the point (1, 0) is the point (1 − 2

l
,−2

l

√
l − 1), which is always a

point “under” the X-axis).

5.2. An oriented horocycle H and the corresponding H-parallel

translation. Put (x0, y0, z0) = (−1, 0, 1) (or (−z0, 0, z0) with z0 > 0) and

l > 0: we find the horocycle H with equation l(x2 + y2− z2)+ (−x− z)2 = 0

or x2(l + 1) + ly2 + z2(1− l) + 2xz = 0, which is an ellipse in the Euclidean

plane which has only the point (−1, 0, 1) common with Γ.

With the + sign for the square root
√

l + x2
0 + y2

0 − z2
0 , the matrix of

the H-parallel translation becomes:











l
2

√
l −1

−
√

l l
2

−
√

l

1 −
√

l l
2

+ 1











.

It is easy to see that this H-isometry corresponds with the counterclockwise

orientation on the horocycle H: the image of (1, 0, 1) is the point ( l
2
−

2,−2
√

l, l
2

+ 2) which is a point under the X-axis.

5.3. An oriented equidistant curve E and the corresponding

H-translation. Consider for instance (x0, y0, z0) = (1, 0, 0) (or (x0, 0, 0)

with x0 > 0) and l > 0: we find the equidistant curve E with equation
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l(x2 + y2− z2)+x2 = 0 or x2(l +1)+ ly2− lz2 = 0, which is an ellipse in the

Euclidean plane which is double tangent with Γ at the points (0, 1, 1) and

(0,−1, 1) on the Y -axis. The matrix of the H-translation becomes (again

with the + sign for the square root
√

l + x2
0 + y2

0 − z2
0 ):











l
2

0 0

0 l
2

+ 1
√

l + 1

0
√

l + 1 l
2

+ 1











.(5.3.1)

Since (1, 0, 1) is transformed in ( l
2
,
√

l + 1, l
2

+ 1), which is a point in the

first quadrant and since the image of (−1, 0, 1) is (− l
2
,
√

l + 1, l
2

+ 1), which

is a point in the second quadrant, the H-translation corresponds with the

clockwise orientation on the “right side” of E (part of E at the right side of

the Y -axis) and the counterclockwise orientation on the “left side” of E .

5.4. An oriented ultra equidistant curve UE and the corre-

sponding H-glide reflection. Put (x0, y0, z0) = (1, 0, 0) (or (x0, 0, 0) with

x0 > 0) and −1 < l < 0: we find the ultra equidistant curve UE with equa-

tion l(x2 + y2 − z2) + x2 = 0 or x2(l + 1) + ly2 − lz2 = 0, which is in the

Euclidean plane an hyperbola with axes X = 0 and Y = 0 and with real tops

(0,±1, 1) on the Y -axis (where the UE is double tangent with the absolute

circle Γ).

The matrix of the H-glide reflection is (again with the + sign for the

square root
√

l + x2
0 + y2

0 − z2
0 ) exactly the same as (5.3.1) and the images

of (1, 0, 1) and (−1, 0, 1) have the same coordinates as in 5.3. But now

( l
2
,
√

l + 1, l
2
+ 1) is a point in the second quadrant while (− l

2
,
√

l + 1, l
2
+ 1)

is a point of the first quadrant and it is easy to see that the H-glide reflection

induces on the UE the clockwise orientation on the “right side” of the UE
(part at the right side of the Y -axis) and the counterclockwise orientation

on the “left side” of the UE , just as in 5.3 for E .
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