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JACOBI’S THEOREM IN LORENTZIAN GEOMETRY
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IKAWA TOSHIHIKO (井川俊彥) AND ERDOGAN MEHMET

Abstract. We generalized the Jacobi’s theorem of Eu-

clidean space to Minkowski space. Let c(s) be a timelike curve

with arclength parameter s in the Minkowski space. Let c be the

image of the Gauss map of the unit principal vector field of c(s)

into the de Sitter space S
2

1 . Assume that when the parameter s

varies from s = 0 to s = a, the image c is a simple closed curve

and not null-homotopic to S
1 and k(0) = k(a) and w(0) = w(a),

where k(t) and w(t) be a curvature and torsion at a point s = t,

respectively. Then c divides a “segment” of the de Sitter space

into two regions with equal areas.

1. Introduction.

The Jacobi’s theorem in 3-dimensional Euclidean space E
3 is followng:

Theorem 1.1.[3]. Let α(s) : I → E
3 be a closed, regular, parametrized

curve with nonzero curvature. Assume that the Gauss map α of the normal

vector of α(s) is simple in the unit sphere S2. Then α divides S2 into two

regions with equal areas.

In the present paper we shall examine this theorem in 3-dimensional

Minkowski space L
3. First we recall the Gauss-Bonnet theorem in a 2-
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dimensional Lorentzian manifold, for this is the key theorem to give the Ja-

cobi’s theorem. In section 3, we recall the “frame” of a curve in Lorentzian

geometry, for the frame formulas in Lorentzian geometry are more compli-

cated than that of Euclidean geometry. In section 4, we give the Jacobi’s

theorem on a timelike curve (the theorem on a spacelike curve is almost the

same as that of Euclidean case). The last section is devoted to give the

Jacobi’s theorem on a null curve.

The authors would like to express their gratitude to referee for his useful

advice.

2. Preliminaries. First we recall some definitions and the Gauss-

Bonnet theorem for a domain in a 2-dimensional Lorentzian manifold. Since

this section is devoted for the preliminary of our new theorems, the statement

is abridged slightly. For full explanation about topics of this section, see [1],

[2], [5], [7].

Let M be a Lorentzian manifold with the Lorentzian metric g. A vector

X at a point of M is called spacelike, timelike or null if g(X,X) > 0 or

X = 0, g(X,X) < 0, g(X,X) = 0 and X 6= 0, respectively. The norm ‖X‖
of X is defined as ‖X‖ :=

√

|g(X,X)|. The complex-valued norm 〈X〉 of X

is defined as 〈X〉 :=
√

g(X,X), that is, 〈X〉 ∈ R
+ ∪ {0} ∪ R

+i, where R
+

denotes the set of all positive numbers and i =
√
−1.

On the 3-dimensional Minkowski space L
3, for any two arbitrary vectors

X = (x1, x2, x3) and Y = (y1, y2, y3), g(X,Y ) can be written as

g(X,Y ) = x1y1 + x2y2 − x3y3,(2.1)

that is, g is the inner product. The exterior product X × Y is defined by

X × Y = (x2y3 − x3y2, x3y1 − x1y3,−(x1y2 − x2y1)).(2.2)
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In L
3, the de Sitter space S2

1 is defined by setting

S2
1 = {X | X ∈ L

3, g(X,X) = 1}.

For two non-null vectors X and Y , non-directed sectional mesure ∅ =

∅(X,Y ) is a complex number satisfying the equation

cos ∅ =
g(X,Y )

〈X〉 · 〈Y 〉(2.3)

and defined as follows:

(1) If

g(X,Y )

〈X〉 · 〈Y 〉 ∈ [−1, 1],

then ∅ ∈ [0, π].

(2) If

g(X,Y )

〈X〉 · 〈Y 〉 > 1,

then ∅ = θi(when ‖X‖ > 0, ‖Y ‖ > 0) or ∅ = θ/i(when ‖X‖ < 0, ‖Y ‖ < 0)

is uniquely determined by (2.3).

(3) If

g(X,Y )

〈X〉 · 〈Y 〉 < −1,

then ∅ = π − iθ (when ‖X‖ > 0, ‖Y ‖ > 0) or ∅ = π − θ/i (when ‖X‖ <

0, ‖Y ‖ < 0), where θ(> 0) is uniquely determined by (2.3).

(4) If

g(X,Y )

〈X〉 · 〈Y 〉 ∈ Ri,

then ∅ = π
2 + iν, where ν s uniquely determined by (2.3).

In the Euclidean 2-space R
2, we write a circle S1 and give 4 arcs ARC0 :=

⌢

A0A1, ARC1 :=
⌢

A1A2, ARC2 :=
⌢

A2A3, ARC3 :=
⌢

A3A4, where A0 = ( 1√
2
, 1√

2
),
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A1 = (− 1√
2
, 1√

2
), A2 = (− 1√

2
,− 1√

2
), A3 = ( 1√

2
,− 1√

2
) (where arcs do not

include their end points). In R
2, we define the Lorentzian metric g = (+,−)

and make R
2 to L

2.

Then, for P,Q ∈ S1, fundamental angle ∠POQ is defined as follows.

(1) If P,Q ∈ ARCj(j = {0, 1, 2, 3}, where {0, 1, 2, 3} denotes the quo-

tient group modulo 4 of the natural number), then the fundamental angle

∠POQ is non-directed sectional meaure ∅ = ∅(
−−→
OP,

−−→
OQ).

(2) If P ∈ ARCj and Q ∈ ARCj+1, or Q ∈ ARCj and P ∈ ARCj+1 and

g(
−−→
OP,

−−→
OQ) = 0, then the fundamental angle ∠POQ is π

2 .

Next, we define the directed sectional measure as follows. When an

angle ∠POQ is the fundamental angle, if the varing point moving from the

initial point P to the terminal point Q along S1 in the counterclockwise

direction, then the directed sectional measure of the fundamental angle is

defined to be the product of the fundamental angle by +1. If the varying

point moves in the clockwise direction, product -1. When an angle ∠POQ

is not the fundamental angle, we split the angle ∠POQ into successive non-

overlapping fundamental angles. Then the directed sectional measure of

∠POQ is the summing up of fundamental angles. (We can easily see that

the definitions of the directed sectional measure of “general” angle ∠POQ

is independent of the choise of splittings).

Next, we shall define the geodesic curvature. Let M2 be a 2-dimensional

Lorentzian manifold with the Lorentzian metric g. Suppose c = c(t) be a

smooth curve on M2. The length of c with respect 〈·〉 from t = a to t = b is

α =

∫ b

a
〈dc

dt
〉dt.

Put

U :=
dc
dt

(a)

〈dc
dt

(a)〉
, V :=

dc
dt

(b)

〈dc
dt

(b)〉
.
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By −→
∅ we denote the directed sectional measure from U to V . Then the

geodesic curvature kg(a) of the curve c at a is defined as

kg(a) = lim
δα→0

δ−→∅
δα

.

Now the Gauss-Bonnet theorem for a domain on an 2-dimensional

Lorentzian manifold is stated as follows.

Theorem 2.1. (Gauss-Bonnet Theorem). Let M2 be an oriented 2-

dimensional Lorentzian manifold and D a simply connected domain on M2

such that the boundary ∂D consists of finite pieces of either spacelike or

timelike curves. Then

∫ ∫

D

KdS +

∫

∂D
kgdα +

∑

λi = 2π

where λi is the directed sectional measure of the exterior angle at the i-th

vertex, K the Gaussian curvature and dS the volume element of M2.

3. Curves. Let c = c(t) be a curve in the 3-dimensional Minkowski

space L
3. If the tangent vector field dc/dt is spacelike, then the curve c(t) is

said to be spacelike; similarly for timelike and null.

First we consider spacelike or timelike curve c(t). In this case, we can

reparameterize it such that g(dc/ds, dc/ds) = ε (where ε = +1 if c is space-

like and ε = −1 if c is timelike, respectively). Then this new parameter s is

called arclength (or proper time in relativity).

For a timelike curve c(s) with arclength parameter s, the Frenet formula

is given as

ξ1 :=
dc

ds
,

dξ1

ds
= kξ2,
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(3.1)
dξ2

ds
= kξ1 + wξ3,

dξ3

ds
= −wξ2,

where ξ2 is the unit principal vector field and ξ3 is the unit binormal vector

field, respectively. The scalar function k = k(s) (resp. w = w(s)) is called

the curvature (resp. torsion) of c(s).

Next, we consider a null curve c(t). In this case, we can not have ar-

clength parameter as spacelike or timelike case. However by a special pa-

rameter s, we can have the Cartan frame (cf. [4, 6])

η1 :=
dc

ds
,

dη1

ds
= kξ,

dη2

ds
= −wξ,

(3.2)
dξ

ds
= −wη1 + kη2,

g(ηi, ηi) = g(ηi, ξ) = 0, (i = 1, 2),

g(η1, η2) = −1, g(ξ, ξ) = 1.

The vector field η1 is called null transversal vector field and ξ is called

screen vector field.

4. Jacobi’s Theorem of Timelike Curves. In this section, we shall

prove the following theorem.

Theorem 4.1. Let c(s) be a timelike curve with arclength parameter in

the 3-dimensional Minkowski space L
3. Let c be the image of the Gauss map

of the unit principal vector field of c(s) into the de Sitter space S2
1 . Assume

that when the arclength parameter s varies from s = 0 to s = a, the image c
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is a simple closed curve and not null-homotopic to S1 and k(0) = k(a) and

w(0) = w(a). Then c divides

S2
1(t0) = {(x1, x2, x3) | x2

1 + x2
2 − x2

3 = 1, |x3| ≤ t0} ⊂ S2
1

into two regions with equal areas, where t0 is any sufficiently large positive

number such that c is contained in the interior of S2
1(t0).

Proof. Let s be the arclength parameter of the curve c. Since c(t)

satisfies (3.2), we have

dc

ds
=

dξ2

ds

ds

ds
= (kξ1 + wξ3)

ds

ds
(4.1)

and

d2c

ds2 =

(

k
d2s

ds2 + k′
(

ds

ds

)2
)

ξ1

(4.2)

+(k2 − w2)

(

ds

ds

)2

ξ2 +

(

w
d2s

ds2 + w′
(

ds

ds

)2
)

ξ3.

Since the curve c is on the de Sitter space S2
1 , the geodesic curvature

kg(c) satisfies kg(c) = g(d2c
ds2 , c × dc

ds
). So, it follows that

kg(c) = kw′(
ds

ds
)3 − k′w(

ds

ds
)3 =

kw′ − k′w

w2 − k2
(
ds

ds
)

by virtue of (4.1), (4.3) and the equation

ds

ds
= w2 − k2.

By assumption w/k > 1, we can put w = k cosh θ, −b := cosh−1 w(0)
k(0) ,
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b := cosh−1 w(a)
k(a) . Then, we have

∮

c
kg(c)ds =

∫ b

−b

1

sinh θ
dθ = 0.(4.3)

Let S1(t0) be the circle x3 = t0(> 0). Since the geodesic curvature

kg(S
1(t0)) of S1(t0) is equal to −t0, we have

∮

S1(t0)
kg(S

1(t0))dt = −2πt0.(4.4)

Let L be a timelike curve on S2
1 and P (resp. Q) the crossing point of

L to the circle S1(t0) (resp. c). We consider a simply connected domain D

constructed by [S1(t0)] + [
−−→
PQ(⊂ L)] + [c] + [

−−→
QP (⊂ L)].

Applying the Gauss-Bonnet theorem to D, we obtain

∫ ∫

D

1 · dS − 2πt0 + 2π = 2π,

by virtue of (4.3) and (4.4). Therefore

[AreaD] = 2πt0 = 2π

∫ sinh−1 t0

0
cosh tdt =

1

2
[AreaS2

1(t0)].

This completes the proof.

5. Jacobi’s Theorem of Null Curves. In this section, we shall prove

the following Jacobi’s theorem of Cartan framed null curves.

Theorem 5.1. Let c(s) be a Cartan framed null curve in the 3-dimen-

sional Minkowski space L
3. Let c be the image of the Gauss map of the

screen vector field of c(s) into the de Sitter space S2
1 . Assume that when the

parameter s varies from s = 0 to s = a, the image c is a simple closed curve

and not null-homotopic to S1 and k(0) = k(a) and w(0) = w(a). Then c
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divides

S2
1(t0) = {(x1, x2, x3) | x2

1 + x2
2 − x2

3 = 1, |x3| ≤ t0} ⊂ S2
1

into two regions with equal areas, where t0 is any sufficiently large positive

number such that c is contained in the interior of S2
1(t0).

Proof. Since c(s) have Cartan frame, we have

dξ

ds
= (−wη1 + kη2)

ds

ds
(5.1)

and

d2ξ

ds2 =

(

−w
d2s

ds
− w′

(

ds

ds

)2
)

ξ +

(

k
d2s

ds2 + k′
(

ds

ds

)2
)

ξ2(5.2)

by virtue of (3.3). Hence the Gaussian curvature kg(c) satisfies

kg(c) = (
k′

k
− w′

w
)
ds

ds

so that
∮

gk(c)ds =

∫

(
k′

k
− w′

w
)ds = 0.

Therefore, by a similar calculation, as that of Section 3, we obtain the

result.
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