JACOBI'S THEOREM IN LORENTZIAN GEOMETRY

BY

IKAWA TOSHIHIKO (井川俊彦) AND ERDOGAN MEHMET

Abstract. We generalized the Jacobi's theorem of Euclidean space to Minkowski space. Let c(s) be a timelike curve with arclength parameter s in the Minkowski space. Let \overline{c} be the image of the Gauss map of the unit principal vector field of c(s) into the de Sitter space S_1^2 . Assume that when the parameter s varies from s=0 to s=a, the image \overline{c} is a simple closed curve and not null-homotopic to S^1 and k(0)=k(a) and w(0)=w(a), where k(t) and w(t) be a curvature and torsion at a point s=t, respectively. Then \overline{c} divides a "segment" of the de Sitter space into two regions with equal areas.

1. Introduction.

The Jacobi's theorem in 3-dimensional Euclidean space \mathbb{E}^3 is following:

Theorem 1.1.[3]. Let $\alpha(s): I \to \mathbb{E}^3$ be a closed, regular, parametrized curve with nonzero curvature. Assume that the Gauss map $\overline{\alpha}$ of the normal vector of $\alpha(s)$ is simple in the unit sphere S^2 . Then $\overline{\alpha}$ divides S^2 into two regions with equal areas.

In the present paper we shall examine this theorem in 3-dimensional Minkowski space \mathbb{L}^3 . First we recall the Gauss-Bonnet theorem in a 2-

Received by the editors November 18, 2000 and in revised form May 1, 2001.

AMS Subject Classification: Primary 53A35; Secondary 53B30.

Key words and phrases: Gauss map, Minkowski space, null curve, timelike curve.

This work was supported by the Research Fund of The University of Istanbul. Project number: 930/090597.

dimensional Lorentzian manifold, for this is the key theorem to give the Jacobi's theorem. In section 3, we recall the "frame" of a curve in Lorentzian geometry, for the frame formulas in Lorentzian geometry are more complicated than that of Euclidean geometry. In section 4, we give the Jacobi's theorem on a timelike curve (the theorem on a spacelike curve is almost the same as that of Euclidean case). The last section is devoted to give the Jacobi's theorem on a null curve.

The authors would like to express their gratitude to referee for his useful advice.

2. Preliminaries. First we recall some definitions and the Gauss-Bonnet theorem for a domain in a 2-dimensional Lorentzian manifold. Since this section is devoted for the preliminary of our new theorems, the statement is abridged slightly. For full explanation about topics of this section, see [1], [2], [5], [7].

Let M be a Lorentzian manifold with the Lorentzian metric g. A vector X at a point of M is called spacelike, timelike or null if g(X,X)>0 or $X=0,\ g(X,X)<0,\ g(X,X)=0$ and $X\neq 0$, respectively. The norm $\|X\|$ of X is defined as $\|X\|:=\sqrt{|g(X,X)|}$. The complex-valued norm $\langle X\rangle$ of X is defined as $\langle X\rangle:=\sqrt{g(X,X)}$, that is, $\langle X\rangle\in\mathbb{R}^+\cup\{0\}\cup\mathbb{R}^+i$, where \mathbb{R}^+ denotes the set of all positive numbers and $i=\sqrt{-1}$.

On the 3-dimensional Minkowski space \mathbb{L}^3 , for any two arbitrary vectors $X = (x_1, x_2, x_3)$ and $Y = (y_1, y_2, y_3), g(X, Y)$ can be written as

$$(2.1) g(X,Y) = x_1y_1 + x_2y_2 - x_3y_3,$$

that is, g is the inner product. The exterior product $X \times Y$ is defined by

$$(2.2) X \times Y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, -(x_1y_2 - x_2y_1)).$$

In \mathbb{L}^3 , the de Sitter space S_1^2 is defined by setting

$$S_1^2 = \{X \mid X \in \mathbb{L}^3, \ g(X, X) = 1\}.$$

For two non-null vectors X and Y, non-directed sectional mesure $\emptyset = \emptyset(X,Y)$ is a complex number satisfying the equation

(2.3)
$$\cos \varnothing = \frac{g(X,Y)}{\langle X \rangle \cdot \langle Y \rangle}$$

and defined as follows:

(1) If

$$\frac{g(X,Y)}{\langle X\rangle\cdot\langle Y\rangle}\in[-1,1],$$

then $\varnothing \in [0, \pi]$.

(2) If

$$\frac{g(X,Y)}{\langle X \rangle \cdot \langle Y \rangle} > 1,$$

then $\emptyset = \theta i(\text{when } ||X|| > 0, ||Y|| > 0)$ or $\emptyset = \theta / i(\text{when } ||X|| < 0, ||Y|| < 0)$ is uniquely determined by (2.3).

(3) If

$$\frac{g(X,Y)}{\langle X \rangle \cdot \langle Y \rangle} < -1,$$

then $\emptyset = \pi - i\theta$ (when ||X|| > 0, ||Y|| > 0) or $\emptyset = \pi - \theta/i$ (when ||X|| < 0, ||Y|| < 0), where $\theta(> 0)$ is uniquely determined by (2.3).

(4) If

$$\frac{g(X,Y)}{\langle X \rangle \cdot \langle Y \rangle} \in \mathbb{R}i,$$

then $\emptyset = \frac{\pi}{2} + i\nu$, where ν s uniquely determined by (2.3).

In the Euclidean 2-space \mathbb{R}^2 , we write a circle S^1 and give 4 arcs $ARC_0 := \widehat{A_0A_1}$, $ARC_1 := \widehat{A_1A_2}$, $ARC_2 := \widehat{A_2A_3}$, $ARC_3 := \widehat{A_3A_4}$, where $A_0 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$,

 $A_1 = (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), A_2 = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}), A_3 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ (where arcs do not include their end points). In \mathbb{R}^2 , we define the Lorentzian metric g = (+, -) and make \mathbb{R}^2 to \mathbb{L}^2 .

Then, for $P, Q \in S^1$, fundamental angle $\angle POQ$ is defined as follows.

- (1) If $P,Q \in ARC_j$ ($j = \{0,1,2,3\}$, where $\{0,1,2,3\}$ denotes the quotient group modulo 4 of the natural number), then the fundamental angle $\angle POQ$ is non-directed sectional measure $\varnothing = \varnothing(\overrightarrow{OP}, \overrightarrow{OQ})$.
- (2) If $P \in ARC_j$ and $Q \in ARC_{j+1}$, or $Q \in ARC_j$ and $P \in ARC_{j+1}$ and $g(\overrightarrow{OP}, \overrightarrow{OQ}) = 0$, then the fundamental angle $\angle POQ$ is $\frac{\pi}{2}$.

Next, we define the directed sectional measure as follows. When an angle $\angle POQ$ is the fundamental angle, if the varing point moving from the initial point P to the terminal point Q along S^1 in the counterclockwise direction, then the directed sectional measure of the fundamental angle is defined to be the product of the fundamental angle by +1. If the varying point moves in the clockwise direction, product -1. When an angle $\angle POQ$ is not the fundamental angle, we split the angle $\angle POQ$ into successive non-overlapping fundamental angles. Then the directed sectional measure of $\angle POQ$ is the summing up of fundamental angles. (We can easily see that the definitions of the directed sectional measure of "general" angle $\angle POQ$ is independent of the choise of splittings).

Next, we shall define the geodesic curvature. Let M^2 be a 2-dimensional Lorentzian manifold with the Lorentzian metric g. Suppose c=c(t) be a smooth curve on M^2 . The length of c with respect $\langle \cdot \rangle$ from t=a to t=b is

$$\alpha = \int_{a}^{b} \langle \frac{dc}{dt} \rangle dt.$$

Put

$$U := \frac{\frac{dc}{dt}(a)}{\langle \frac{dc}{dt}(a) \rangle}, \quad V := \frac{\frac{dc}{dt}(b)}{\langle \frac{dc}{dt}(b) \rangle}.$$

By $\overrightarrow{\varnothing}$ we denote the directed sectional measure from U to V. Then the geodesic curvature $k_g(a)$ of the curve c at a is defined as

$$k_g(a) = \lim_{\delta \alpha \to 0} \frac{\delta \overrightarrow{\varnothing}}{\delta \alpha}.$$

Now the Gauss-Bonnet theorem for a domain on an 2-dimensional Lorentzian manifold is stated as follows.

Theorem 2.1. (Gauss-Bonnet Theorem). Let M^2 be an oriented 2-dimensional Lorentzian manifold and D a simply connected domain on M^2 such that the boundary ∂D consists of finite pieces of either spacelike or timelike curves. Then

$$\iint\limits_{D} KdS + \int_{\partial D} k_g d\alpha + \sum \lambda_i = 2\pi$$

where λ_i is the directed sectional measure of the exterior angle at the i-th vertex, K the Gaussian curvature and dS the volume element of M^2 .

3. Curves. Let c = c(t) be a curve in the 3-dimensional Minkowski space \mathbb{L}^3 . If the tangent vector field dc/dt is spacelike, then the curve c(t) is said to be spacelike; similarly for timelike and null.

First we consider spacelike or timelike curve c(t). In this case, we can reparameterize it such that $g(dc/ds, dc/ds) = \varepsilon$ (where $\varepsilon = +1$ if c is spacelike and $\varepsilon = -1$ if c is timelike, respectively). Then this new parameter s is called arclength (or proper time in relativity).

For a timelike curve c(s) with arclength parameter s, the Frenet formula is given as

$$\xi_1 := \frac{dc}{ds},$$

$$\frac{d\xi_1}{ds} = k\xi_2,$$

(3.1)
$$\frac{d\xi_2}{ds} = k\xi_1 + w\xi_3,$$

$$\frac{d\xi_3}{ds} = -w\xi_2,$$

where ξ_2 is the unit principal vector field and ξ_3 is the unit binormal vector field, respectively. The scalar function k = k(s) (resp. w = w(s)) is called the curvature (resp. torsion) of c(s).

Next, we consider a null curve c(t). In this case, we can not have arclength parameter as spacelike or timelike case. However by a special parameter s, we can have the Cartan frame (cf. [4, 6])

$$\eta_{1} := \frac{dc}{ds},$$

$$\frac{d\eta_{1}}{ds} = k\xi,$$

$$\frac{d\eta_{2}}{ds} = -w\xi,$$

$$\frac{d\xi}{ds} = -w\eta_{1} + k\eta_{2},$$

$$g(\eta_{i}, \eta_{i}) = g(\eta_{i}, \xi) = 0, \quad (i = 1, 2),$$

$$g(\eta_{1}, \eta_{2}) = -1, \quad g(\xi, \xi) = 1.$$

The vector field η_1 is called null transversal vector field and ξ is called screen vector field.

4. Jacobi's Theorem of Timelike Curves. In this section, we shall prove the following theorem.

Theorem 4.1. Let c(s) be a timelike curve with arclength parameter in the 3-dimensional Minkowski space \mathbb{L}^3 . Let \overline{c} be the image of the Gauss map of the unit principal vector field of c(s) into the de Sitter space S_1^2 . Assume that when the arclength parameter s varies from s=0 to s=a, the image \overline{c}

is a simple closed curve and not null-homotopic to S^1 and k(0)=k(a) and w(0)=w(a). Then \overline{c} divides

$$S_1^2(t_0) = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 - x_3^2 = 1, |x_3| \le t_0\} \subset S_1^2$$

into two regions with equal areas, where t_0 is any sufficiently large positive number such that \overline{c} is contained in the interior of $S_1^2(t_0)$.

Proof. Let \overline{s} be the arclength parameter of the curve \overline{c} . Since c(t) satisfies (3.2), we have

(4.1)
$$\frac{d\overline{c}}{d\overline{s}} = \frac{d\overline{\xi_2}}{ds} \frac{ds}{d\overline{s}} = (k\xi_1 + w\xi_3) \frac{ds}{d\overline{s}}$$

and

$$(4.2) \qquad \frac{d^2 \overline{c}}{d\overline{s}^2} = \left(k \frac{d^2 s}{d\overline{s}^2} + k' \left(\frac{ds}{d\overline{s}}\right)^2\right) \xi_1 + (k^2 - w^2) \left(\frac{ds}{d\overline{s}}\right)^2 \xi_2 + \left(w \frac{d^2 s}{d\overline{s}^2} + w' \left(\frac{ds}{d\overline{s}}\right)^2\right) \xi_3.$$

Since the curve \overline{c} is on the de Sitter space S_1^2 , the geodesic curvature $k_g(\overline{c})$ satisfies $k_g(\overline{c}) = g(\frac{d^2\overline{c}}{d\overline{s}^2}, \overline{c} \times \frac{d\overline{c}}{d\overline{s}})$. So, it follows that

$$k_g(\overline{c}) = kw'(\frac{ds}{d\overline{s}})^3 - k'w(\frac{ds}{d\overline{s}})^3 = \frac{kw' - k'w}{w^2 - k^2}(\frac{ds}{d\overline{s}})^3$$

by virtue of (4.1), (4.3) and the equation

$$\frac{d\overline{s}}{ds} = w^2 - k^2.$$

By assumption w/k > 1, we can put $w = k \cosh \theta$, $-b := \cosh^{-1} \frac{w(0)}{k(0)}$,

 $b := \cosh^{-1} \frac{w(a)}{k(a)}$. Then, we have

(4.3)
$$\oint_{\overline{c}} k_g(\overline{c}) d\overline{s} = \int_{-b}^b \frac{1}{\sinh \theta} d\theta = 0.$$

Let $S^1(t_0)$ be the circle $x_3 = t_0(> 0)$. Since the geodesic curvature $k_g(S^1(t_0))$ of $S^1(t_0)$ is equal to $-t_0$, we have

(4.4)
$$\oint_{S^1(t_0)} k_g(S^1(t_0))dt = -2\pi t_0.$$

Let L be a timelike curve on S_1^2 and P (resp. Q) the crossing point of L to the circle $S^1(t_0)$ (resp. \overline{c}). We consider a simply connected domain D constructed by $[S^1(t_0)] + [\overrightarrow{PQ}(\subset L)] + [\overline{c}] + [\overrightarrow{QP}(\subset L)]$.

Applying the Gauss-Bonnet theorem to D, we obtain

$$\iint\limits_{D} 1 \cdot dS - 2\pi t_0 + 2\pi = 2\pi,$$

by virtue of (4.3) and (4.4). Therefore

[Area
$$D$$
] = $2\pi t_0 = 2\pi \int_0^{\sinh^{-1} t_0} \cosh t dt = \frac{1}{2} [\text{Area} S_1^2(t_0)].$

This completes the proof.

5. Jacobi's Theorem of Null Curves. In this section, we shall prove the following Jacobi's theorem of Cartan framed null curves.

Theorem 5.1. Let c(s) be a Cartan framed null curve in the 3-dimensional Minkowski space \mathbb{L}^3 . Let \overline{c} be the image of the Gauss map of the screen vector field of c(s) into the de Sitter space S_1^2 . Assume that when the parameter s varies from s=0 to s=a, the image \overline{c} is a simple closed curve and not null-homotopic to S^1 and k(0)=k(a) and w(0)=w(a). Then \overline{c}

divides

$$S_1^2(t_0) = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 - x_3^2 = 1, |x_3| \le t_0\} \subset S_1^2$$

into two regions with equal areas, where t_0 is any sufficiently large positive number such that \overline{c} is contained in the interior of $S_1^2(t_0)$.

Proof. Since c(s) have Cartan frame, we have

(5.1)
$$\frac{d\xi}{d\overline{s}} = (-w\eta_1 + k\eta_2)\frac{ds}{d\overline{s}}$$

and

$$(5.2) \qquad \frac{d^2 \xi}{d\overline{s}^2} = \left(-w \frac{d^2 s}{d\overline{s}} - w' \left(\frac{ds}{d\overline{s}}\right)^2\right) \xi + \left(k \frac{d^2 s}{d\overline{s}^2} + k' \left(\frac{ds}{d\overline{s}}\right)^2\right) \xi_2$$

by virtue of (3.3). Hence the Gaussian curvature $k_g(\overline{c})$ satisfies

$$k_g(\overline{c}) = (\frac{k'}{k} - \frac{w'}{w}) \frac{ds}{d\overline{s}}$$

so that

$$\oint g_k(\overline{c})d\overline{s} = \int (\frac{k'}{k} - \frac{w'}{w})ds = 0.$$

Therefore, by a similar calculation, as that of Section 3, we obtain the result.

References

- 1. G. S. Birman and K. Nomizu, *The Gauss-Bonnet theorem for 2-dimensional spaces*, Michigan Math. J., **31** (1984), 77-81.
- 2. S. S. Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, Ann. Acad. Brasil Ci., **35** (1963), 17-26.
- 3. M. do Carmo, Differential geometry of curves and surfaces, Prentice Hall, Inc., London, 1976.
- 4. K. Duggal and A. Bejancu, *Lightlike submanifolds of semi-Riemannian manifolds and applications*, Kluwer Academic Publ., mathematics and its applications 346, 1996.

- 5. J. J. Dzan, Gauss-Bonnet formula for general Lorentzian surfaces, G. Dedicata, 15 (1984), 215-231.
- 6. T. Ikawa, On curves and submanifolds in an indefinite Riemannian manifold, Tsukuba J. Math., $\bf 9$ (1985), 353-371.
- 7. P. P. Law, Neutral geometry and the Gauss-Bonnet theorem for two-dimensional pseudo-Riemannian manifolds, Rocky Mountain J. of Math., 22 (1992), 1365-1383.

Department of Mathematics, School of Medicine, Nihon University, Itabashi, Tokyo, Japan, 173

E-mail: tikawa@med.nihon-u.ac.jp

Department of Mathematics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey, 34459.

 $\hbox{E-mail: erdoganm@istanbul.edu.tr}\\$