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‘Abstract. Oscillation criteria of certain hyperbolic equa-
tions of neutral type are established, and the main results given

in [5] are improved.

1. Introduction. Consider the hyperbolic equation of neutral type of

form

a5z, t) +pt)ulz,t — 7
1) i

= a(t)Au(z,t) — q(t)f (ulz,0(1), (z,8) € X x Ry

and the boundary condition

(2) —g—z + u(z, t)u =0, (z,t) €0Q2x Ry
or
(3) u=0, (z,t)€0QxR,,
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where Ry = [0,00),( is a bounded domain in R" with a piecewise smooth
boundary 0%, u(z,t) is a continuous and nonnegative function on dQ x R,
and n denotes the unit exterior normal vector to Q. Throughout this paper,

we assume that

(a) o(t) is continuous function on R.. such that lim; ,o o(t) = oo and

o(t) <tforte Ry;

(b) a(t) is a nonnegative continuous function on Ry, f(u) € C(R, R) is

convex on (0,00) and uf(u) > 0 for u # 0;
(c) q(t) € C(R+,R+),p(?f) € CY(R4,[0,1]) and 7 = const > 0.

The solution u(z,t) of the problem (1) and (2) (or (1) and (3)) is called

oscillatory if u(z,t) has zero in Q x [tg, c0) for each ty > 0.

In the last few years there was much interest in studying the oscillatory
behavior of solutions of partial differential equations with deviating argu-
ments. We refer the reader to [1-3] for parabolic equations of neutral type

and to [4-7] for hyperbolic equations of neutral type.

In [5], the main results are as follows:

Theorem A. [5, Theorem 1]. Let the conditions (a), (b) and (c) hold,

and there exists a constant a > 0 such that

(w)

(4) Tza Yu#0, o'(t)>0 Vt>D0.
I
(5) | e~ po(5))ds = oo,

then every solution u(z,t) of the problem (1) and (2) is oscillatory.

Theorem B. [5, Theorem 2]. If all conditions of Theorem A hold, then

every solution of the problem (1) and (3) is oscillatory.
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The purpose of this paper is to improve Theorems A and B.

2. Main results. First we consider the problem (1) and (2).

Theorem 1. Let the conditions (a), (b) and (c) hold, and there exist
constants o > 0 and v > 0 such that

- (6) ifui)za Yu#0, o({t)>y Vt>0.
Assume that there exist functions ¢, F € C*(R,,R.) such that

(7) lim /O t{@(S)[acJ(S)(l ~p(a(5))) +7¢°(s) — ¢'(s)]

t—o0

_F(s)} exp(2 /O ’ [%fdg)ds — +o0,

where ®(t) = exp(—2y f¢ ¢(s)ds). Then every solution u(z,t) of the problem
(1) and (2) is oscillatory.

Proof. Suppose to the contrary that there is a solution u(z,t) of the
problem (1) and (2) which has no zero in © X [tp,00) for some &, > 0.
Without loss of generality we may assume that u(z,t) > 0 in Q X [tg,00).
From condition (a) there exists a t; > o such that u(z,t) > 0, u(z,o(t)) > 0
and u(z,t —7) > 0 in Q X [t1,00). We integrated (1) with respect to = over
the domain 2, and obtain for ¢ > ;.

2

®) Sl e tdo+p(0) [ ul,t = )da]

= a(t) /Q Au(z, )dz — g(t) /Q F(u(z, o(t)))dz.

Green’s formula yields

9) / Audz = 8—udS = — puds < 0.
Q a0 On o9
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Moreover from condition (b), together with Jensen’s inequality, it follows

that

0) [ fuleo)ds > jolr (BHEZDE) vz,

where |Q| = [, dz. Then from (8), (9) and (10) it follows that for ¢ > ¢;

W T O +sove- -+ veo) <o

where V (t) = ﬁ Jo u(z,t)dx and ¢ > 1.

The above arguments imply that for ¢ > ¢;, V(¢) is a positive solution
of the inequality (11). Set Z(¢) = V(t) + p(t)V (¢ — 7). Obviously, Z(¢) > 0
for t > t; and

(12) Z"(t) <0, Vt>t.

Hence Z'(t) is decreasing. We claim that Z'(t) > 0 for ¢ > ¢;. If there exists
a t2 > t; such that Z'(t3) < 0. By this, we have from (12)

Z(t) — Z(t2) < /tt Z'(ta)ds = Z'(ta)(t — t2), Vit >ty

and limy o Z(t) = —oo, which contradicts the fact that Z(t) > 0. From

condition (6) and (11), we obtain
Z"(t) + aq(t)V(o(t)) <0, Vi1

Z"(t) + aq(t)[Z(a(t)) — p(o(®))V(o(t) — 1) <O, Vit

Since Z(t) > V(t) and Z(¢) is nondecreasing, then

(13) Z"(t) + g1 - po())Z(o() <O, Vit
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Let

Z'(t)
Z(o(t))

where ®(t) = exp(—2y fo s)ds) and ¢(t) is a nonnegative function. We

w(t) = 2@l

+ ¢(t)]7 Vi 2 tl:

obtain for ¢ > #;

Z'(t)

WO = 218080 7 + 6(0)
() )27 .
Oz - 2w W)

< =2y9(t)W(t) — (1)@ ()(1 - p(a(t)))
e T2 ) "(o(®)
Using the fact that Z'(¢) is decreasing, we get
(14) Z't)y < Z'(o(t)), Vt=t.

Since o'(t) >y for ¢ > 0, and

ST W2 (o) | 2
200) = " Z0w)

Thus, we have

wW'(t)

IA

~2sOW (D) + a2 (Ba(Dlp(o(®) ~ 1
2l 5T - #(0)
— 20 OW () + b)) (o (0) 1]

(19 ~a(0)( g - HOP ~ #(0)

W2(t)

= 3(t)(eg(®)lp(o(t) — 1] —7¢°(t) + ¢'(£)) — 0

< 3(t)(ag®)plo(t) — 1] — v4° () + ¢' (1))

—2[1@1%]%@) +F().
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Hence
W+ 250 W
< O(t)(eg(®)p(o(®)) — 1] —14°(t) + /(1) + F(2).
So, we have

W (e

Tf((s))]%ds],
< {(9()(aa®)p(o() = 1] — 1d%(t) + ¢(1)) + F(£)}e2 o 565 s

Integrating the above inequality from ¢; to ¢ we have

1
11 1y F(s)12
2 J, [74>(ss)] ds

tryF(s)1Z
W (1)e*Jo Boe 9 _ ()6

'YF(C)

[ (8(6) @0l plo(6) ~118(5)+6/(5)) + Flaye® o T &g,

Hence

[ @) aa(6) ~ plo o] +76(5) = (5) — Flsye o PEE 4

1
< W)l e s,

Thus, we obtain

timsup [ 8(5)(q(s)[1 ~p(o(s))] +762(5) ¢ (8))~ F(5)) 2 6" o

t—oo

< 400

which contradicts (7).

If u(z,t) < 0for (z,t) € Qx [ty, 00), then the proof follows from the fact
that —u(z,t) is a positive solution of the problem (1) and (2). The proof is

completed.
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Remark 1. In Theorem 1, if ¢ = 0 and F = 0, then Theorem 1 reduces
to Theorem A. It is not difficult to see that (7) is better than (5) even if

v = 0. So, Theorem 1 improves Theorem A.

Theorem 2. Let the conditions (a), (b), (c) and (6) hold. Assume that

the following equation
(16) 2"(t) + ayg()[1 — plo(®)]z(t) =0, t>0,

is oscillatory, then every solution u(z,t) of the problem (1) and (2) is oscil-

latory.

Proof. Let u(z,t) be a nonoscillatory solution of the problem (1) and
(2). Without loss of generality, we assume that u(z,t) > 0, u(z,o(¢)) > 0
and u(z,t —7) > 0 for £ > t;. Then (13) holds, i.e.,

Z"(t) + aq()[1 — p(a(t)]Z(a(t)) <0, Vi>t.

Set

(18) W(t) = 7-2%% > 1.
Similar to prove (15) we have

(19) W'(t) < —ayg(®)[1 — p(o(1)] = W(2).

Hence, by using [8, Chap. XI, Theorem 7.2] we see that Eq.(19) is nonoscil-

latory, which leads to a contradiction. The proof is completed.

Corollary 3. Let the conditions (a), (b), (¢) and (6) hold. If one of the

following conditions holds

(20) oo 2 i infar?(®[1 - p((®)] > 7.
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(21) fim ¢ / * ag(s)[1 = plo(s))ds > i

t—00  Jt

and

Ton+i o
(22) / avq(s)[l—p(a(s))]dszﬁ, a>3-2v2, T>0, n€N,
T2n

then every solution of the problem (1) and (2) is oscillatory.

Proof. From Theorem 2 of this paper and Theorem 7.1 of [8] or Theorem
2 of [9], it is easy to see that Corollary 3 is true. The proof is completed.

Next, we consider the problem (1) and (3). It is known that the first

eigenvalue o of the problem

(23) Av+av = 0 in Q
{ v = 0 on 90

(24)

is positive and the corresponding eigenfunction ¢(z) > 0 for z € Q.

With each solution u(z,t) of the problem (1) and (3), we associate the

function

/ u(z, 1) d(z)dz

(25) H(t) = =% ,
| $(a)ds

t>0.

Theorem 4. If all conditions of Theorem 1 hold, then every solution

of the problem (1) and (3) is oscillatory.

Proof. Let u(z,t) be a positive solution of the problem (1) and (3)
in Q x [tp,00) for some g > 0. Then there exists a 7 > ty such that
u(z,o(t)) > 0 and u(z,t —7) > 0 in 2x [t1,00). Multiplying both side of
equation (1) by the eigenfunction ¢(z) > 0, and integrating with respect to
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x over the domain 2, we have

2
gﬁ[ /Q w(z, 1) (z)dz + p(t) / u(z, t — 7)(x)da]

(26) “
— a(t) L Aud(z)dz — q(t) /Q Flu(z,o(6)d@)dz, t>t.

From the divergence theorem it follows that

(27) /QAugb(x)dx = —q /Quqﬁ(a;)da:, t>t,

where ag is the smallest eigenvalue of the problem (23) and (24).

Using the condition (b) and Jensen’s inequality it follows that

(28)

Applying (25), (27) and (28), from (26) we obtain

d2

(29) pre)

[H(&)+p(t)H(t—T7)]| < —coa(t)H(t) —q() f(H(co(£)), t=t1.

Since for ¢ > ¢, H(t) > 0 and H(o(t)) > 0, then by (29)
2

LAHE) + pOHE ) < W HE®), t2h.

The rest is similar to the proof of Theorem 1 and we omit it. The proof is

completed.

Theorem 5. If all conditions of Theorem 2 hold, then every solution

of the problem (1) and (3) is oscillatory.

Corollary 6. If all conditions of Corollary 3 hold, then every solution
of the problem (1) and (3) is oscillatory.
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3. Example. Cosider the following equation:

30 L fute i+ 2w - 1) = a(t) Al £) - —2 (s, t—2), £20

ozt 437 o1 T
where a(t) € ¢([0, 00), [0, 00)). Comparing with Eq.(1), we have p(t) = ﬁi—%,
=1, q(t) = H% and o(t) = t — 2. In Theorem 1, we take a = v = 1,

,
=0, ®=1and F(s) = ﬁ; It is not difficult to verify that condition
(7) is hold, and all conditions of Theorem 1 are fulfilled. Thus, by Theorem
1 (Theorem 4), every solution of the problem (1) and (2) ((1) and (3)) is

oscillatory.

However, for Eq.(30), the condition (5) is not true. So Theorem A and
B can not be applicable to Eq.(30).
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