BULLETIN OF THE
INSTITUTE OF MATHEMATICS
ACADEMIA SINICA

Volume 29, Number 2, June 2001

#

A RELIABLE TECHNIQUE FOR SOLVING LINEAR AND
NONLINEAR SCHRODINGER EQUATIONS BY
ADOMIAN DECOMPOSITION METHOD

BY

ABDUL-MAJID WAZWAZ

Abstract. In this paper we propose a reliable algorithm
for solving linear and nonlinear Schrodinger equations. Our ap-
proach stems mainly from Adomian decomposition method. Ex-
act solutions are obtained by using only few iterations. The de-
composition method has the advantage of being more concise for
analytical and numerical applications.

1. Introduction. This paper is concerned with the linear Schrodinger
equation of the form

Uy = lUgg,
u(z,0) = f(z)

where f(z) is continuous and square integrable, and with the nonlinear

(1)

Schrodinger equation of the form

iug + ugg +nlulfu = 0,

2
() ’U:(.’I),O) = g(m);

with u = u(z, t) is a sufficiently-often differentiable function, and f(z) and
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g(z) are the initial values. The linear and nonlinear Schrodinger equations
arise in the study of the time evolution of the wave function. The physical
behavior of the solution, the appearance of the solitary waves and the for-
mulation of these equations can be found in many sources [1,4 — 12] and the

references therein.

These particular forms (1) and (2) are of special interest because it is a

central problem of quantum mechanics in one space dimension.

A considerable amount of research work has been directed for the study
of the linear and the nonlinear Schrodinger equations (see [1,4-12]). Several
useful techniques, such as, inverse scattering method, Backland transforma-
tion, a bilinear form, and a Lax pair, have been implemented independently
by which solitary wave and uniform solutions were obtained. The inverse
scattering transform method was used by Ablowitz and Segur [1] to han-
dle the nonlinear equations of physical significance where soliton solutions
were developed. Hirota [6, 7] established the bilinear formalism, one of the
most helpful tools in the study of evolution equations, over the last two
decades. An alternative formulation of the N-soliton solutions in terms of
some function of the Wronskian determinant of N functions was established
by Nimmo and Freeman [12]. However, Lax [10, 11] discussed the case when

the potential u(z,t), instead of tending to 0 as £ — o0, is periodic in z.

In this paper, Adomian decomposition method [2, 3, 13-16] will be used
to approach the linear and the nonlinear Schrodinger equations. It is well-
known now in the literature that this method can be applied in a straightfor-
ward manner to linear and nonlinear problems as well. The method provides
the solution in a rapidly convergent series that may provide the exact solu-
tion. The method will not be discussed here, but we will emphasize on the
essential features of the method. As will be seen below, we will apply the

method to the linear and the nonlinear Schrodinger models.
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2. The linear Schrodinger equation. The initial value problem for
the linear Schrodinger equation for a free particle with mass m is given by

the following standard form

U = iUy, TER, >0,

u(z,0) = ae¥?,

(3)

where a and k are constants. The linear Schrodinger equation (3) discusses
the time evolution of a free particle. Moreover, Eq. (3) is a first order
differential equation in ¢ and the function u(z,t) is complex. The linear
Schrodinger equation (3) is usually handled by using the spectral transform

technique [1] and bilinear forms [6, 7] among other methods.

In this work, we will handle the linear Schrodinger equation (3) by
applying Adomian method. In an operator form, Eq. (3) can be rewritten

as
4) v Ly = iy,

where L is a first order differential operator, and we assume the inverse

operator L~ ! exists and defined by
-1 t
5) L) = /0 ()dt.
To achieve our goal, we apply L™! to both sides of (4) to obtain
(6) u(z, t) = ae®® + L7 (ugy).

The decomposition method decomposes the solution u(z,t) into an infinite

sum of components defined by

) w(e,t) = 3 un(a, 1),

n=0
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where the components uy(z,t),n > 0 will be determined recurrently. Sub-
stituting (7) into both sides of (6) yields
oC . x
(8) > un(z,t) = ae*® 4171 ((Z un(x,t)) ) .
n=0 n=0 Tz
The decomposition method identifies the zeroth component ug(z, t) by f(z),

and consequently, the recursive relation

ug(z, t) = aet*®,

uk+1(:v,t) = iL"l(ukm), k> 0,

9)

can be used for the determination of the components of u(z,t). Using few

iterations of (9) gives

up(z,t) = ae*®,
ui(z,t) = L7 (—ak?e*?),
—iak*te’®,
(10) ug(z,t) = iL7l(iak*te™*),
Li2akA2ethe,
ug(z,t) = iL7H(Lakbt2eike),

_§1'_,1:3ak6t3eikx,
and so on. Summing these iterations yields the series solution

1

(11)  wu(z,t) = aet® (1 — (ik%t) + 51

(ik%t)? — %(ikzt)z" + - ) ,
and that leads to the exact solution
(12) u(z, t) = @k

The following example will be uesd to illustrate the analysis discussed above.
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Example. Solve the linear Schrodinger equation
(13) Up = gy, u(z,0) = coshz

Proceeding as discussed, we obtain

up(z,t) = coshz,
ui(z,t) = iL '(coshz),
= sgtcoshz,

(14) ug(x,t) = 4L~ !(itcoshz),
_él_!iZtZ
ug(z,t) = iL7}(—5t? coshz),

%z’3t3

cosh z,

cosh z,

and so on. In view of (14), the solution in a series form is given by

(15) u(z,t) = coshz (1 + (it) + -21—!(z't)2 + %(it)?’ 4. ) 7

and in a closed form by
(16) u(z,t) = cosh ze®,

obtained upon using the Taylor expansion of e®.

We point out that the exact solutions for the linear Schrodinger equation
(13)
u(z,t) = a + sinh(kz)et*’t,
u(z,t) = a + cosh(kz)e’,
u(z,t) = a + sin(kz)e~*"t,

u(z,t) = a + cos(kz)e 7t

(17)

can be determined in a like manner to our discussion above for the following
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initial conditions

u(z,t) = a+sinh(kz),

u(x,t o + cosh(kzx),
s (@) osh(2)
u(z,t) = a+sin(kz),
u(z,t) = a+cos(kz),
respectively.

3. The nonlinear Schrodinger equation. We now turn to study
the nonlinear Schrodinger equation (NLS) defined by its standard form

us + Ugg + nlulPu = 0,

(19) U(.’L’, 0) — eik:t?

where n is a constant and u(z,t) is complex. The Schrodinger equation
(19) 'generally exhibits solitary type solutions. A soliton, or solitary wave, is
a wave where the speed of propagation is independent of the amplitude of
the wave. Solitons usually occur in fluid mechanics. The inverse scattering
method is usually used to handle the nonlinear Schrodinger equation where

solitary type solutions were derived.

The nonlinear Schrodinger equation will be handled differently in this

section by using Adomian decomposition method. In an operator form,

Eqg. (19) becomes
(20) Lu(z,t) = gy + injul*u.
Applying the inverse operator L~! to both sides of (20) gives

(21) w(z,t) = e*® 4 iL YUy, + inL F (u(z, t)),
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where the nonlinear term F'(u(z,t)) is given by
(22) F(u(z,t)) = |ul*u.

As stated before, the decomposition method [2, 3, 13-16] assumes that

(23) w(@t) = > unla, 1),
n=0

and the nonlinear term (22) is represented by the series

o0

(24) F(u(z,t)) =) An,

n=0

where A,, are the so-called Adomian polynomials that can be constructed
for all forms of nonlinearity according to specific algorithms set by Adomian

[2, 3]. Substituting (23) and (24) into (21) gives

(25) i un(z,t) = e +4L71 ((i un(ac,t)) ) +inL! (i An> .
n=0 n=0 T n=0

Following the decomposition analysis, we introduce the rcursive relation

Uo (LL', t) = eikm,

26
(26) upr1(z,t) = inL Yug,,) +inL 1 (4z), k> 0.

Recall from complex analysis that

() =

where T is the conjugate of u. This means that (22) can be rewritten as
(28)  F(u) = va.

In view of (28), and following the formal techniques set by Adomian 12, 3]
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to derive the Adomian polynomials, we calculate Adomian polynomials as

follows:

Ao(z,t) = F(up),
udy,
w1 F' (wp),
2upu1 Ty + ugﬂl,
As(z,t) = u2F'(u0)+21—1u%F"(uo),
2uguatly + udtp + 2uouiTy + udtz,
Az(z,t) = usF'(ug) +uiuaF" (up) + %u‘i’F’"(uo),

= 2ugust+2u1usTt+2ugust —l—u%ﬂl 4+ 2uguius —i—’ugﬂg .

A1 (37, t)

In conjunction with (26) and (29), we can determine the first few components
by
uo(z,t) = e*2,
ui(z,t) = 1L Yug,,) +inL~1(Ay),
i(n — k?)tetk®,
(30) uz(z,t) = L Y(uy,,) +inL™(A4;),
2 (n ~ k2)2t2eikx’
ug(z,t) = L ug,, ) +inL ™1 (4s),

= B3h(n—k2)>Betka ...
Accordingly, the series solution is given by

1

(31) u(z,t)=¢"** (1+z'(n_k2)1:+5

1 .
(n—k2) %8P + 5 (n— ) (i) +- )
This gives the exact solution by
(32) u(x,t) — ei(kx+(n~k2)t)'

In view of (32), some important conclusions can made here:

L. By setting n = 0 in (19) and (32), the nonlinear Schrodinger equation

becomes linear where the solution (32) is in full agreement with our result
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for the linear case presented in (12).
2. The most commonly used versions of NLS equations are
U + Ugy + 2lu|2u = 0,

(33)

Uy + Ugy — 2|u|2u = 0,
with n = £2, with exact solutions

u(z,t) = eikz+(2-k)t) ,

34
(34) u(z,t) = ei(kx-—(2—k2)t)7

respectively obtained upon substituting n = £2 in (32). It is obvious
that other solutions can be obtained for other values of n.
3. For the case where n = k2, the solution u becomes independent of time

t. For example, u = €%* is a solution of

(35) g + Ugg + 9Jul?u = 0,

4. Discussion. Schrodinger equation plays an important role in quan-
tum mechanics. The basic goal of this paper has been to employ Adomian
decomposition method for studying this model. The goal has been achieved
by deriving exact solutions for linear and nonlinear cases by using few it-
erations only. The decomposition introduces a significant improvement in
the field of evolution models. This makes the proposed scheme powerful and

gives it a wider applicability.
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