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Abstract. For each positive number a function space is
introduced together with a point-wise maximal mean estimate for
the Taylor remainder to certain order of functions from the space.
Properties of functions are then studied through the behavior of
the maximal mean estimate of their Taylor remainders. Some well
known results for functions of Campanato and Sobolev spaces are
obtained in this light.

1. Introduction. In their treatment [1] on pointwise estimates of
solutions of elliptic equations, Calderon and Zygmund investigated differen-
tiability properties of functions by estimating the remainder of the Taylor
series in the mean with various exponents. On the other hand, motivated
by Morrey’s Lemma(See, for example, [11, Theorem 3.5.2]), Campanato in-
troduced in [2] [3] certain classes of functions and obtained uniform Holder
continuity for partial derivatives to certain order of functions in these classes.
Since their approaches to differentiability and smoothness of functions prove
to be useful and hence deserve a closer look, we introduce here for each vy > 0
a class of functions on which a basic operation in [1] for the case p = 1 can be
applied to define a maximal mean estimate of Taylor remainder for functions

in this class. This maximal mean estimate is defined almost everywhere for
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each function of the class, and we propose to look for properties of functions
by means of the behavior of this maximal mean estimate. We shall see that
this maximal mean estimate is related to a corresponding one in [3] in a

simple way.

Let € be an open set in R™ satisfying A-condition, that is, there is a
constant A > 0 such that |Q(z,p)| > Ap" forallz € Q and 0 < p < 1,
where Q(z, p) = B(z, p) Q. When  is bounded, A-condition is introduced
by Campanato in [3]. We shall denote by L(Q) the space of all measurable
function u on Q which is in L4(B) for all bounded measurable subset B C Q.
For convenience of some of our later statements, M,(92), p > 0, will be used

to denote the class of measurable functions v such that

lim M{z € Q:|u(z)] > A} =0.
A—+00

For v € R, denote by ¥ the largest integer strictly less than v and write
7Y =7+u, then 0 < g < 1. Now we are ready to define the classes of

functions alluded.
Definition 1. For v > 0, let £L7(2) be the class of all those functions
u € L} () such that

(i) For almost all z € €, there is a polynomial P,(-) with degree < 7 satis-
fying

B L u(y) — 00
22 ] S W) PN} <
(ii) If we set
[ul,(z) = 021;21/)“7{]5(—%0—)' ) luy) — Pe(y)|dy} and
@) = [hle)+ [ )y

then oy, is in My(Q).
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Some preliminary remarks are now in order. In the following, we refer
to [13] for notations involving multi-indices. First, at each point = € () for
which [u],(z) takes finite value, the polynomial.Px(-) is uniquely determined.

Secondly, if we write

Py = Y 8y gy
laj<y

then each u, is a measurable function. To verify these two properties, we
need the following lemma, of Calderon and Zygmund [1, Lemma 2.6](see also

[9, Lemma 1.7] for a simple proof).

Lemma 1.1. There exists ¢ € C§°(R™) with Sptp C {|z| < 1} such that
for every polynomial P on R™ of degree < 4 and every € > 0, ¢.* P = P,
where ¢e(z) = e "P(%).

Now for z € Q, uc(r) = ¢ * u(z) is defined when € > 0 is sufficiently

small. Then we have as in [1]
D%u(s) = D°Pa(a) + [ € HDD* (=) uly) ~ Poly))dy.
The above integral is dominated by
ettt |(u(y) = Po(y)ldy < CT
B(z,6)

which tends to 0 as e — 0

This shows that u,(z) = D®P,(z) is the limit of D%u.(z) and is there-
fore measurable and uniquely determined. Since [u]y is obviously approx-
iinately lower semicontinuous at z €  which is a point of approximate

continuity of all ug’s, [u], is measurable by a theorem of Kamke (see [7] or

[5)-
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If we denote by BV () the space of all integrable functions defined on Q
with their first order partial derivatives in distribution are finite measures,
then, as shown in [9], BV(R®) C LY(R") and for u € BV (R") we have
[u]y € LL(R™). We recall that a measurable function u defined on  is said
to be in L2 (Q) if

<C

Hz € Q:lu(z)] 2 A} <

for some C' > 0 and for all A > 0. The smallest such a C will be denoted
by Np(u)P. We note that if u € BV(R"), then Ny([u],) is less than or equal
to the total variation of u and that if u € Wlf (R™), then u € L¥(R™) with
oy € LE(R"™) N My(R™). For these facts we refer to [9]. If we now let

L) ={u € L7(Q) : 0y € LE(Q)}
and
EZ,O(Q) ={ue [Z;(Q) Doy € Mp(Q2)},

then BV(Q) C L1() and WF(Q) C L";,O(Q), if  is minimally smooth in
the sense as defined in [12].

Definition 2. Let F C R"™ and v > 0. T7(F) is defined as the class
of all real valued functions u on F such that for each z € F, there is a

polynomial P (-) of degree less than or equal to 7 so that

(1.1) u(z) = Py(2),
(1.2) |D®P,(z)| < M, and
(1.3) |D*Py(y) — D*Py(y)| < M|z — y| 1
for z,y € F and |a| < 7, where as usual |a| = a; + - + ap, if o =

(01, -+, ap) is a multi-index.
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Note that T7(Q) = CV*(Q) if Q is open. For u € T7(F), let ||lullr(r)
be the smallest M for which (1.2)-(1.3) hold. T7(F) is first introduced in [1]
when F is a closed set. We shall use the following Whitney type extension
theorem which is implicit in [1, Theorem 9] and is put in-its present definite
form in [12].

Theorem 1.1. Let F be a closed set in R™. There ezists a constant C
depending only on 7 and n such that for each u € T7(F), there is 4 € T7(R")
such that u(z) = i(z) for z € F and ||i|lrv(rr) < Cllullrr(m)-

If f is a measurable function defined on {2, set
B = Hz € Q: £(@)| > A}, A= 0.
The nonincreasing rearrangement f* of f is defined as
f*(t) = sup{X : pp(A) >t}

We note that in terms of nonincreasing rearrangement My(€2) consists ex-
actly of those functions f for which f*(t) < oo for all £ > 0. Also, it is not
hard to see that for f € M,(£2) we have

(1.4) lim ¢ 7 (t) =0.

Our main purpose is to establish the following theorem:

Theorem 1.2. There exists a constant C > 0 depending only on n, A,
and y such that for u € L7(Q), and t > 0, there is a closed set Fy C S and
us € CT#(R™) such that

1. IQ\Ft‘ < 2t,

2. ug = u on Fy, and ||ugllpy(rn) < Coi(t).
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The proof for this theorem will be postponed to Section 3, while first
consequences of the theorem and relations with Campanato spaces will be
considered in the next section. Finally, applications to Sobolev spaces will

be given in the last section.

2. Campanato Spaces. We consider in this section some consequences
of Theorem 1.2 together‘with connections to Campanato spaces introduced
in [3]. First of all, since f*() < Np( f)t_% for a function f € L? () and (1.4)
holds for f € M,(Q2), we have the following two immediate consequences of

Theorem 1.2, the first of which is proved in [9] when v = 1 and  is R™.

Theorem 2.1. There erists a constant C > 0 depending only on n, A,
and vy such that for u € LJ(Q), and X > 0, there is g € CT*(R") such that
I9llzv(rry < A and [{z € Q@ : u(z) # g(2)}| < 2CNy(0u)PA7P.

Theorem 2.2. For u € £,,(), and X > 0, there is gy € CV*(R")
such that ||gxllpv(gny < X and

Jlim X|{z € Q:u(z) # ga(z)} = 0.

An interesting application of Theorem 1.2 is the following theorem:

Theorem 2.3. There is a constant C > 0 depending only on n, A,
and vy such that if u € LY(Q) with o, € L®(Q), then u € TY(Q) and
[ullrv) < Cllowlloo-

Proof. Choose C' as in Theorem 1.2. For u € L7(Q) with o, € L®()
we have for each ¢ > 0 a closed set F; C Q and u; € CV*(R") such that
(i) |\F < 2t,
(ii) us = v on F;, and lutllrr(rey < Cog(t) < Clloylloo
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where we have used the obvious fact that o};(¢) < ||oylleo- By Arzela-Ascoli
Theorem and standard diagonalization argument, there is a sequence {t;} of
positive numbers decreasing to 0 such that u;, converges uniformly together
with its partial derivatives up to order 7 on each compact subset of R™. If we
let v be the limit function of the sequence u;, as k — oo, then v € C7#(R™)
with |[v]l7v(rry < Clloulleo- Since, by (i) v = v almost everywhere on each

compact subset of 2, the proof is complete.

Suggested by the approach in [3], for v > 0, a nonnegative integer k,
g>1,u€ LiN) and z € O let

_ 1 1
T (u;2) = sup [p7 lu(y) — P(y)|%dy]s,

inf ———
0<p<i PeP |Qz, p)| Jz.p)

where P, is the set of all polynomials with degree less than or equal to k.

Since, for fixed p > 0, the function

oy 1 l
™" ot Q@0 Jows lu(y) — P(y)|dy]s

is upper-semicontinuous in z and for a fixed z, it is continuous in p,

T,g'm) (u; z) is a Borel measurable function of z. We now let
£I(@) = {u € LU : T ;- oo < 00}

Tt follows from Holder inequality that the following inclusion relation holds:

X
(2.1) o) c £ (@),
and
o
(2.2) T,il’q)(u; z) < T,g‘m) (u; z).

But for simplicity we shall write 747 (u; z) for T,-gq’”y) (u; z) and L&) (Q) for
E({m)(ﬂ). In the definition above we assume as before that 2 is an open set

satisfying A-condition, but we do not assume that {2 is bounded as in [3];
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we warn the reader that our v here is v + n in [3]. The following lemma
relates [u],(z) and T (u; ), it shows that the approaches in [1] and [3]

are equivalent. Our proof is inspired by the method in [3].

Lemma 2.1. There is a constant C > 0 depending only on n, -y, and
A such that for u € LL(Q) the following holds:

709 (4;.7) < uly(z) < T (u32).

For the proof we need the following lemma of De Giorgi the proof of

which can be found in [3].

Lemma 2.2. Let S be a measurable set contained in B(z,r) with |S| >
Ar™ for some constant A > 0 and let k be a nonnegative integer. Then there

exists a constant C > 0 depending only on k, n, and A such that

D°P@)| < o [ 1Py

for every polynomial P € Py, and every multi-index o with nonnegative in-

teger components.

Proof of Lemma 2.1. The left hand side inequality is obvious. To prove
the right hand side inequality, we may assume that 7'(%7) (u;z) < +00. For
simplicity of notation put M = T(l’”’)(u;w). For € > 0 and p > 0, choose
and fix a polynomial P(y;z,p) in y such that

1

For each 0 < p < 1, let p; = 277p, then by Lemma 2.2 for |a| <4 we have

|D*P(z; 3, pj) — D*P(z; %, pj1)|
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C
il |P(y; 2, p5) — P(y; %, pj+1)ldy
Pjt+1 Uz,pj+1)

OO, -t ) - 5z e}
1J+1
C

I
P?Jrlla

C(M +¢)(1 + 2n+v)[2—(j+1)p]7—lal <Oy (M + 6)2—(J'+1)('v—lal)p7—la!7

M+ e)wn{pj AR

where w, is the volume of the unit ball in R” and C; depends only on n, 4,

and . This shows that {D®P(z;z,p;)} is a Cauchy sequence and

|D®P(z;2, p) — D*P(z; 2, pj41)| < Co(M + €)p7 1

for each o with |a| < 7 and all j, where C, is a constant depending only n,

A, and 7. Furthermore, if 0 < p < p, we have for |a| < ¥

_ C _
|D*P(x; z, pj) — D*P(z; 2, p5)| graEy \P(y; z, pj) — P(y; =, p;)dy
p- Q(‘”?ﬂj)
< S (Mt
- n+|a| J

J
= C(M+e{l+ (%)"*”’}p}"“' =0

as j — oo. Hence lim;j_,oo D*P(z; x, p;) exists and is independent of p. We

denote this limit by P®(z) and define the polynomial P;(-) by

Since

1Az, p)| Ja(z.p)

< Iﬂ(w,p)l{ Q(z,p)

Pw= Y Ey o)

le|<7

1
lu(y) — P(y; z, p;)|dy

1
IU(y)—P(y;x,p)Ider/Q( )IP(y;x,p)—P(y;x,pj)ldy}
T,p0
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DaP($;x7p) _ DaP($7$7pj)
|Q(:L‘,p)| Q(%P)[Msf—y ol

<(M +€)p"+ (y — z)%|dy

¥ - la|
<O+ 9"+ G+ e || 2 TP

<C3(M + €)p”

with C3 being a constant depending only on n, A, and -, it follows from
Fatou’s lemma that

sup p Vs [u(y) — Pa(y)ldy} < Cs(M + ).

0<p<l . 1Q(z, p)| Jaz,p)

But as we have remarked right after Definition 1 that such a polynomial
P,(-) is uniquely determined and hence is independent of . Thus we can let

€ — 0 in the inequality above. We complete the proof on renaming Cs by C.

We are now ready for the following theorem which is a generalization of

the main result in [3] to the situation where Q is not necessarily bounded:

Theorem 2.4. There is a constant C > 0 depending only on n, A, v
and q such that if u € ,Cgsq”)(ﬂ) with gk < v < g(k + 1), then u € C*%(Q)

wz'thoz=%—k and

lullcra@y < CUITE (us Yoo + llullg}-

7 (1.3 @My,
Proof. By (2.1) and (2.2), u € £, (Q) and T, "¢ (u;z) < T,"" (u; 2).

Our assumption relating &, ¢, and +y implies that v is in La (Q); the theorem

then follows from Lemma 2.1 and Theorem 2.3 with +y replaced by %.

3. Proof of the Main Theorem. We prove now Theorem 1.2. Fix
t > 0. Let

Wy ={z € Q:0y(z) < 0o(t)}.
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Then |Q\Wy| < t. Choose a closed set F; C W; so that
lQ\Ft| < 2t

and a_ll points of F; are Lebesgue points of u.

(i) For z € F, by Lemma 2.2,

DR < O f IR
< off ) Py + [t}
< Gl x»+/ (v)ldy}
= Cioyu(x)
< Croy(?)

(ii) For z,y € F,letr= |z —yl| Ifr < %, applying Lemma 2.2 again, we
have for |a| <7

|D*Py(y) — D*Py(y)]

T MRLICE O

< ool W =R [ )~ Pl
< Gl uly @) + [y )

< Galo -~ o)

while if r > 3,

L DPE, (@) (y—2)P°

|D®P,(y)~ D*Py(y)|=|D*Py(y)— Y =)
' a<p,|Bl<y
<Cor{i+ Y. ly—az["7
a<B,18[<7
ot (1) (1 + Caly — z[771%)

O e

ly — a1
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<Csle -y loy(2),

where Cy, Cs, C3 and C are constants depending only on n, A, and ~.
(iii) Finally, since u € L7(Q), for z € F;, by Lebesgue differentiation theo-

rem, we have u(z) = Py(x).

Thus from. (i)-(iii), we obtain that u € T7(F;) and |jullpv(r,) < Caoy(t),
where Cy depends only on n, A, and <. Since F; is closed, by Theorem 1.1,
there exists u; € T7(R") such that u|p, = u and |Jug||7+(gr) < C~’||uHT«,(Ft).
Hence, |utll7v(rny < Coyi(t) for some constant C' depending only on n, A

and y. The proof is complete.

4. Sobolev Spaces. We consider now an application of Theorem
2.2 to Sobolev space Wk’p(Q), 1 < p < 4o00. We shall need a Lusin type
characterization of functions in W*°(R"), for this purpose we will first
prove a version of Whitney’s extension theorem (Theorem 4.1) for the space
t¥(F) first introduced in [1]. When F is compact, this is proved in [10].
We establish this version of Whitney’s extension theorem by combining the

arguments of [12, Chapter 6] and those of [4, 3.1.14].

First recall the definition of the space t*(F). A function u defined on F
belongs to t*(F), k > 0 an integer, if for each z € F, there is a non-negative
number M and a polynomial P,(-) of degree less than or equal to & such
that

(41)  u(z) = Py(a),
(4.2) |D*Py(z)| < M, and
(4.3) [D*Py(y) — D*Pr(y)| < M|z —y/*71*  for 5,y € F and o] <&,

and for each compact subset K of F, § > 0, if we set

. N e
(4.4) p(K,8) = max sup |D*P,(y) ,;D P, (y)|
o<k z,Yy€K,0<|z—y|<d l.’L' - yl —lal
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then limg_,g p(K, ) = 0. We take the smallest value M satisfying (4.2) and
(4.3) as the norm of u denoted by ||ul|y gy

Note that this definition is different from the one introduced in Ziemer
[13] in that (4.4) converges uniforrﬁly to 0 on each compact subset of F
instead of on the set F. Note also that TF(Q) = W5>(Q) and t*(Q) =
Wk0(Q) N C*(Q), when  is open.

Theorem 4.1. Let F be a closed set in R™. Suppose that u € t*(F).

Then there exists @& € t*(R™) such that & = u in t*(F) and moreover,

@l ey < Cllullg ry
where C is a constant depending only on k and n.

For the proof of Theorem 4.1 we shall need the following theorem and

proposition the proofs of which can be found in [12].

Whitney’s Decomposition Theorem. Let F' be a closed set in R™.

Then there exists a collection of closed cubes F = {Q1, Q2,- -} such that

(i) uQ@; = F¢,
(ii) the Q;’s are non-overlapping, and

(iii) diem Q; < dist(Q;, F) < 4 diam Q;.

Let QF = %(Qj —17)+27, where 77 is the center of Q;, and choose HeF
so that dist(¢7,Q;) =dist(Qj, F). By Whitney’s Decomposition Theorem,
for z € QF,y € F, we have

(4.5) ly — &] < 6z —y|
Note that for any Q; € F, there are at most 12" cubes ()] intersecting Q;.

Proposition 4.1. There exists a partition of unity {¢;} subordinate to
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{(Q3)°} so that

|D%¢%(z)| < Aq dist(z, F)1°!

for some constant A,.

u(z), forz e F

P Th 4.1. Set @ = .
roof of Theorem Set a(x) { 5, 6:(0) - Pu(@), forz e Fe
Clearly, u(z) € C®°(F*). We first claim that

(4.6) D%G(a) = D*P,(a), for a € F,|a| < k.

Given z € F¢, set K = F N B(a;6|z — a|). Take b € F such that |z — b] =
dist(z, F'). Thus, |a —b| < 2|z —al, which implies that b € K. Suppose that
z € Q; for some j. Applying (4.5), we obtain that & € K and [b— ¢| <

6|z — b|. By Proposition 4.1,
|D*(z) — D*Py(z)|

— XY o gD @0 (@) - DRW))

J BLa
< C > dist(z, )P DA P, (z) — DPPy())|
2€Q; f<a
(47) DB+YP,;(b) — DBHTPy(b)
< CY le—p|filel 3 S == —b)"]
pa |B+I<k T
< C Z |z — b|lBl-lel Z p(K, |b— &7])|b — &I 1=1Bl|5 — p|17!
B<a |B+vI<k
< Cp(K,|b— &)z — b~
Similarly,

(4.8) |D*P,(z) — D*Py(z)| < Cp(K, |z — al)|z — a1
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C represents a constant depending only on k£ and n. Therefore,

|D%u(x) — D*Py(z)|
(4.9) < |D%(z) — D®Py(z)| + |D*Py(z) — D*P,(z)|

IA

Cllulige(rylz — alF~1e

(4.7) and (4.8) yield

(4.10) lig 1272(@) = D*Fa(@)]

P g — gl 0.

By induction, we conclude that D%4(a) = D*P,{a) for a € F, |a| <k, and
thus @ € C*(R™).

Furthermore, if dist(z, F') < 2, we have

|D%a(z)] < |D%u(z) — D*Fy(z)| + |D*Fo(z)|

e De+8py(b
Cllullgele — bl 1 Y 22 B0)

(4.11) :
lo+8]<k sl

IN

(z — )|

74N

Cllullg(ry

Now choose @{z) = ¢(z) - u(z), where ¢(z) € C*(R") is a cut-off function
such that Spt¢ C {z € R" : dist(z,F) <1}, 0 < ¢ <1land ¢ =1 on
F. By (4.6) and (4.11), we know @ € C*(R™) N W *(R") and ||a|sx(gny <
Cllwllge(gy- Thus, @ is a desired extension of u. We complete the proof.
Applying the theorem above, we now establish a characterization of

functions in W*®(R").

Theorem 4.2. Suppose u € L®(R"). u € WF®(R") if and only if
there exists a constant C > 0 so that for any A > 0, there exists uy € Ck (R™)
which satisfies |{z € R™ : ux(z) # u(2)}| < X and ||uxllwr.co(gny < C.

Proof. We only prove the direction of implication starting with u €
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Wk>(R"). The other direction of implication is straightforward. Let ¢ €
C§°(R™) such that ¢ > 0, Spt¢ C B(0,1), and [ ¢(z)dz = 1. By Taylor’s

expansion, we have

D*(¢, * o
(Geruly) = Y, TOD@D )
|a|<k ’
y z)* 1
sk 3 D G e, s ity —a) Do (e r ) (e

|af=k

It therefore follows that for r > 0,

L N N PR S - (L) |C P

IB(.’E,T’)] B(=z,r) la|<k al

<k [0 xtr)l(/B - ID“<¢E*u)(y)—mwe*u)(z)idy)dt

lof|=k

Applying Lebesgue dominated convergence theorem,

%L o« D),
r |B(z,7)| /B |u(y) ]3;16 o (y —z)*|dy
= |§k/ (- B(z tr)| < /B_(W) [D%u(y) - D%(w)ldy> dt

for such z with the property that
. « e Ys
lg%D (¢e * u)(z) = D%u(x)

for o] < k. If such an z is also a Lebesgue point of all D®’s, then, by

setting Py (y) = ¥ jaj<k Da;(x) (y — 2)?, it follows that for |o| < k,

R A | _ —
(412) limr B, Jaer lu(y) — Pe(y)ldy = 0,
1

(4.13) sup rk lu(y) — Pm(g)ldy

r>0  |B(z,7)| /B2

A

N

=3
S
=
8
S
E
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Also, by Egorov’s Theorem for continuous parameter [6,(10.2.64), p.124], for
any given A > 0, we can find a closed set F) in R" so that |R"™ — F)| < A

and

. _ 1
(4.14) lim r—* [u(y) — Pa(y)ldy =0,

r—=0  |B(z,7)| JB2r)

uniformly on every compact subset of F).

Now we can prove that u € t*(Fy). Choose ¢ as defined in Lemma 1.1

and set € = |z — y| for z,y € F\, we have

[D°P,(4) = D°Puv)
= D% (B~ Po)(w)
1Dl [ 1Bo(2) = Pa(2)lds

IA

IA

TN Gl 1P ) —ule)lde + [RRZCRACTS

—k
z -yl | S z) — u(z)|dz
L o
|B(z, 26)| B(z,2¢)

IA

|Pp(2) — u(z)ldz}

where C; is a constant independent of e. By (4.13) and (4.14), the above

inequality implies that

(4.15) lim |D*Py(y) — D*Pu(y)| _

0
yEF\— T |l — y|k_|°‘| ’

uniformly on every compact subset of F, and
(4.16) |D*P,(y) — D*Pu(y)| < 2C1|z — y/**l||ullwioco(rny for z,y € Fi
By the definition of P, for x € F),

(4.17) |D*Py(z)| = |D*u()| < [lullwroo(rr)
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It thus follows form (4.15)-(4.17) that u € t*(F)). Using Theorem 4.1, we can
find uy € t*(R") such that D%y (z) = D%u(z) on Fy and lurllwsoo(rry <

Cllullywk.co(gny- The proof is complete.

As an application we have the following theorem relating T*(F) and
t¥(F) which is shown in Federer[4] in a different version but through the

help of Rademacher’s Differentiability Theorem.

Theorem 4.3. Let F be a closed set in R". And u € T*(F). Then for
any € > 0, there exists a closed set E such that |F\E| < €, and u|g € tk(E)

Proof. Let u € T*(F). By Theorem 1.1, there exists an extension
@ € T*(R™) such that %l 7x(rny < Cllullx(ry. Since T*(R") = WE>o(R™),
it follows from Theorem 4.2 that for given € > 0, we can find a closed set
F, in R™ such that @|p, € t*(F.) and |[R"\F.| < €. Set E = F N F.. Then
ulg € t*(E) and |F\E| < e.

We turn now to the Sobolev space W5P(Q), 1 < p < +oo. It will
be shown that one can combine Theorem 2.2 and Theorem 4.2 to give a
transparent proof for a Lusin type theorem established in [8]. We start with
the case {2 = R". Let now u € W*P(R") and proceed as in the beginning
of the proof of Theorem 4.2 up to (4.13) except with [lullyk.c0(gny in (4.13)
replaced by >4 < M D%u(z), where M f denotes the maximal function of

the function f. Thus for almost all z € R™ we have

Pl Lo 1)~ o)y < 2 3 M)
Hence [u]r < 334j<x M D%u(z) and consequently from well known proper-
ties of maximal functions it follows that u € E’;O(Rn). Now apply Theorem
2.2 with large A and then Theorem 4.2 with small A, it is easy to see that
the following Theorem holds:
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Theorem 4.4. Let u € W*P(R"). Then for any € > 0, there ezist a
closed set F in R and u, € C*¥(R™) such that u(z) = uc(z) for x € F,
|[RM\F| <¢, and |lule — ullyr.p(gn) < €

Actually, Theorem 4.4 holds for arbitrary open set €2 by reducing it to
the case {} = R™ with an argument of J.H.Michael and W.P.Ziemer presented
in [13, p.167].
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