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Abstract. We consider the linear system —Au + gradp
= f plus the divergence-free condition divu = 0, in a bounded
and connected but non simply connected open set Q of R3, with
a boundary I' of C* class. Using orthogonal decompositions
of the Hilbert space of square integrable vector fields on Q, we
show well posedness for two boundary value problems involving
normal or tangential components of the vector field .

Introduction. In [5], the method of orthogonal projections on the
space L?(R)? of square integrable vector fields on 2, is suggested to study
some constrained problems in elasticity theory. In [1] the two isomorphisms
of the curl operator are used to solve the two forms of the magnetostatics
problem on bounded domains.

In this work, we consider the Hodge’s decompositions of a vector field
f € L*(Q)3 ([2] Corollaries 5 and 6): f = gradp + curlw. Similarly, we use

the isomorphisms of the curl operator to solve the two problems.

Preliminar results. The results of this section in more detailed form
can be found in [2, 3, 4].

Let we consider Q a bounded and connected open set in R® with bound-
ary I', which is a regular (of C*° class) oriented surface in R®, with an
exterior normal vector field n. Moreover, we suppose that

i. Q is not necessarily simply connected and T" is an union of connected
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components [g,T';..., Ty, (Ip being the boundary of the unbounded
connected component of the complement Q° of € in R?).

There exists a ‘cut surface of €2, that is, a nonoverlapping union of
regular surfaces ¥ = Xy U...UXy, with'3; (cut surfaces) contained in
 and transversal to the components I'; of I'. N.is the minor positive
integer such that Qgp = Q\ ¥ became a simply connected, lipschitzian
open subset of R3. Thus, Q5 has the boundary I's =T'UX. Associated
to any ¥; we cdnsider oF and‘ E; , respectivelly, the two opposites
sides of X; and we still denote by n the normal vector field on X; that is
directed from E;* to Xj". If there exists the restrictions ¢|_ 4 and Pl

%

for a given function ¢ on Qg, the jump of ¢ on ¥ is denoted by
[(.P]Ei = (plzg‘ - <P|,3i—'

For instance, we can think of Q in R® as a three-dimensional torus (non
simply connected) or the simply connected open region r; < r < 7g

interior to two concentric shperes 'y of radius ry and I'; of radius r;

(r1 <o)

Traces theorems and green .identities. If p € H! (), its trace yop

on the boundary I' is denoted by ¢, where 7 is the trace operator from
H' () onto H?(T). The duality product between H %(I) and its topological
dual H~3(T") will be denoted by {,)r.

For v in H(div,Q) = {u € L*(Q)? : divu € L*(Q)}, the normal trace

Ynt is denoted by u - mjp, where 7, is a linear and continuous operator

from H(div,Q) onto H~%(I')." We have the following Greén identity in

H(div, Q) : Yu € (div, Q), Vo € HY(Q),

- (p,divu) o) + (grade, u)2(q)p = (w- nyp, @)1

In particular, for u'€ H(div,) we have

/divu=(u-nlr,1)r.

If u € Hcurl,Q) = {u € L*(®)° : curlu € L*(Q)%), its tangential
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trace is y;u, where <, is a linear and continuous operator from H (curl, Q)

onto H “%(F):‘. It’s denoted by 7:(v) = u A nj.. The Green identity in
H(curl, Q) is as follows:

Vu € H(curl,Q), Yo € H(Q)3,

(¢, curlu) 2y — (curley, “-')L2(Q)3 = (u An, @ )r-

The isomorphisms of the curl operator. Let ¥ be a cut surface

~ for Q. The spaces curl(H'(2)3) := HT(div0;Q) and curl(H}(Q)3) :=
H (div0; Q) are closed vector subspaces of L2(2)3. They have the following

characterization:
u € H'(div0; Q) & u € L*(Q)?, divu =0, (w-np,r, =00 <i<m)

and

u € L2(Q)3, divu =0, u- n =0,
(u-npy,, s, =0(1 < j < N).

u € HF (div0; Q) & {
Using the notations:
H(Q)® = {u € HY(Q)® : uAny, = 0}, HL(Q)? = {u € HY(Q)? : u-n), =0}

we have the following

Proposition 1. In the diagram:

HL(Q)3 N HE(divo; Q) 25 HT(div0; Q)
! 1
HZ(div0; Q) & H1(Q)® n HY (divo; Q)

the arrows curl represent isomorphisms. The domains in each case are
closed subspaces of H*(Q)®. The vertical arrows represent compact and dense

1MMersions.

The arrow curl on the top of this diagram is the Theorem 1 and on the
botton one is the Theorem 2 of [1].
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The results. From now on, 2 will be a bounded, connected and
~regular open set in R3, as it was described in the Introduction. Let T be a

cut surface for 2.

Proposition 2. Given f € L2(Q)3, there ezists an unique u € H2(Q)3
and there exists p € H*(Q), unique up to additive constant, such that

—Au+gradp = f, inQ

divu = 0, in
vAng. =0
curlu-n. = 0

w-n. ,r, = 0, 0<i<m.
|r‘1 i

Moreover, if f € H(div; ), there ezists a positive constant ¢ which depends

only on Q such that

(1) lull 2 @y2 + lIpllze) < cll flla@ivia)-

Proof. We have an unique decomposition f = gradp + curlw from ([2]
Corollary 5) with p € H!(Q) unique up to additive constant and w € H(Q)3
such that n - curlw), = 0. There exists an unique such function w that
belongs to H3(div0; Q) ([2] Remark 4). Then, w € H.,(Q)3 N HF (div0; Q).

From Proposition 1 there exists an unique u € H}(2)% N H'(div0; Q)
such that curlu = w.

This implies‘: f = gradp + curl curlu or, —Au + gradp = f in Q.

As a consequence of the arguments used above, we can see that the
vector field u satisfies divu =0in Q, uAn =0 on I" and fI‘i u - ndl' = 0,
fori=0,...,m.

Again from Proposition 1 there exist positive constants ¢y and ¢; such
that

el @y < collwllze(@ys and flwll g1 ) < alleurlw]| o gy
(24 (39)

From that, [lu||Hl(Q)3 < cocll|curlw||L2(Q)3 =copc1||f — gradp||L2(Q)3. _
Then, by triangular inequality:
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“u”Hl(Q)3+”p”L2(Q)3 < CZ{”f”Lz(Q)a+”p”H1(Q)}a with c2 = max{cges, 1}.
In particular, if f € H(div;Q),

{Ap =divf, in Q

and by well known result about continuous dependence on initial data for

Neumann problem, See ([3] Proposition 1.2),

Ipll a2 ) < es{lldivilla) + I1f - n, -3 0yt

From this, with ¢ = max{cy, c3, ||7.||} we have finally

el 2 ys + Ipllzz s < c{llfllzeqye + IdivEl|La oy}

Proposition 3. Given f € L?(Q)3, there exists an unique u € H*(Q)®

and there exists an unique Pe L%(Q)3, such that

(~Au+P = f, inQ
divu =0, in Q

§ v =0

curlu An. =0

| (@ nyy,, 1), =0, 0<i<N,

where the vector P has the form P = gradp + h with p € HY(Q) and
h € L*(02)® is a vector field satisfying

divh =0, curlh =0, and A - np = 0.

Proof. First of all, we consider a cut surface & for Q. We have the
unique decomposition f = gradp + h + curlw from ([2] corollary 6). In
this decompositiofl, we have p € H(Q), unique up to additive constant,
curlh =0, divh = 0, h'nlr,- =0, and an unique w € H*(Q)2 with wAn, =0
and such that (w - ny. , 1)y, = 0 for (0 <4 < m) and divw = 0.

By construction w € H}(£2)3 N HT'(div0; Q). Using Proposition 1 we
deduce that there exists an unique u € H}((Q)® N HY(div0; Q) such that
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curlu = w. That is
f = gradp + h + curlcurly
or
—Au+gradp+h = fin Q
and this u satisfies
divu=0in @, u-n, =0, curlu/\nlr =0
and

/ v-ndE=0 (j=1,...,N).
E.

3

Remark 1. The vector field A in Propositions 3 is a gradient in the
classical sense of a local potential ¢ of C* class on Qg (In fact Ag = 0in Q5,
in the classical sense). We have h = gradq with ¢ € H*(Qx) (¢ ¢ HY(Q))

solution of the transmission problem

Ag=0 in Qs

ailr =10
lg]s; = constant, :1=1,...,N
[82)5, =0, i=1,...,N

For more details, see for instance ([2] proposition 2).

Now we suppose {2 simply connected. Next result follows immediately

from Propositions 2 and 3.

Corollary 1. Given f € L?(Q)3, there ezists an unique w € H%(Q)?
and there exists p € H(Q), unique up to additive constant, such that
—Au+gradp=f, inQ
divu = 0, in Q
|u-n.=0 '

curlu Anj. =0.
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Moreover, if f € H(div;Q), there exists a positive constant ¢ which depends

only on  such that

lullar @y + 1Ple @) < ellflmaivia)-

Conclusion. The solutions for these problems depend on the geometry
of Q. For in stance, as Proposition 3 shows, if  is not simply connected, the
P vector field corresponding to the solution of the Stokes problem having

only tangential component on the bouundary, is not a global gradient in .
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