STOKES' PROBLEMS WITH NON-STANDARD BOUNDARY CONDITIONS

BY

HAMILTON F. LECKAR AND RUBENS SAMPAIO

Abstract. We consider the linear system $-\Delta u + \operatorname{grad} p = f$ plus the divergence-free condition $\operatorname{div} u = 0$, in a bounded and connected but non simply connected open set Ω of \mathbb{R}^3 , with a boundary Γ of C^{∞} class. Using orthogonal decompositions of the Hilbert space of square integrable vector fields on Ω , we show well posedness for two boundary value problems involving normal or tangential components of the vector field u.

Introduction. In [5], the method of orthogonal projections on the space $L^2(\Omega)^3$ of square integrable vector fields on Ω , is suggested to study some constrained problems in elasticity theory. In [1] the two isomorphisms of the **curl** operator are used to solve the two forms of the magnetostatics problem on bounded domains.

In this work, we consider the Hodge's decompositions of a vector field $f \in L^2(\Omega)^3$ ([2] Corollaries 5 and 6): $f = \operatorname{grad} p + \operatorname{curl} w$. Similarly, we use the isomorphisms of the curl operator to solve the two problems.

Preliminar results. The results of this section in more detailed form can be found in [2, 3, 4].

Let we consider Ω a bounded and connected open set in \mathbb{R}^3 with boundary Γ , which is a regular (of C^{∞} class) oriented surface in \mathbb{R}^3 , with an exterior normal vector field n. Moreover, we suppose that

i. Ω is not necessarily simply connected and Γ is an union of connected

Received by the editors May 27, 1998 and in revised form April 27, 2000.

AMS 1991 Subject Classification: 35J25.

Key words and phrases: Stokes problem, orthogonal decomposition, linear operators.

components $\Gamma_0, \Gamma_1, \ldots, \Gamma_m$ (Γ_0 being the boundary of the unbounded connected component of the complement Ω^c of Ω in \mathbb{R}^3).

ii. There exists a cut surface of Ω , that is, a nonoverlapping union of regular surfaces $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_N$, with Σ_i (cut surfaces) contained in Ω and transversal to the components Γ_j of Γ . N is the minor positive integer such that $\Omega_{\Sigma} = \Omega \setminus \Sigma$ became a simply connected, lipschitzian open subset of \mathbb{R}^3 . Thus, Ω_{Σ} has the boundary $\Gamma_{\Sigma} = \Gamma \cup \Sigma$. Associated to any Σ_i we consider Σ_i^+ and Σ_i^- , respectively, the two opposites sides of Σ_i and we still denote by n the normal vector field on Σ_i that is directed from Σ_i^+ to Σ_i^- . If there exists the restrictions $\varphi_{|_{\Sigma_i^+}}$ and $\varphi_{|_{\Sigma_i^-}}$, for a given function φ on Ω_{Σ} , the jump of φ on Σ_i is denoted by

$$\left[\varphi\right]_{\Sigma_{i}} = \left.\varphi\right|_{\Sigma_{i}^{+}} - \left.\varphi\right|_{\Sigma_{i}^{-}}.$$

For instance, we can think of Ω in \mathbb{R}^3 as a three-dimensional torus (non simply connected) or the simply connected open region $r_1 < r < r_0$ interior to two concentric shperes Γ_0 of radius r_0 and Γ_1 of radius r_1 $(r_1 < r_0)$.

Traces theorems and green identities. If $\varphi \in H^1(\Omega)$, its trace $\gamma_0 \varphi$ on the boundary Γ is denoted by $\varphi_{|\Gamma}$, where γ_0 is the trace operator from $H^1(\Omega)$ onto $H^{\frac{1}{2}}(\Gamma)$. The duality product between $H^{\frac{1}{2}}(\Gamma)$ and its topological dual $H^{-\frac{1}{2}}(\Gamma)$ will be denoted by $\langle , \rangle_{\Gamma}$.

For u in $H(\operatorname{\mathbf{div}},\Omega)=\{u\in L^2(\Omega)^3:\operatorname{\mathbf{div}} u\in L^2(\Omega)\}$, the normal trace $\gamma_n u$ is denoted by $u\cdot n_{|\Gamma}$, where γ_n is a linear and continuous operator from $H(\operatorname{\mathbf{div}},\Omega)$ onto $H^{-\frac{1}{2}}(\Gamma)$. We have the following Green identity in $H(\operatorname{\mathbf{div}},\Omega): \forall u\in (\operatorname{\mathbf{div}},\Omega), \, \forall \varphi\in H^1(\Omega),$

$$(\varphi, \mathbf{div} u)_{L^2(\Omega)} + (\mathbf{grad} \varphi, u)_{L^2(\Omega)^3} = \langle u \cdot n_{|\Gamma}, \varphi_{|\Gamma} \rangle_{\Gamma}.$$

In particular, for $u \in H(\mathbf{div}, \Omega)$ we have

$$\int_{\Omega} {f div} u = \langle u \cdot n_{|_{\Gamma}}, 1
angle_{\Gamma}.$$

If $u \in H(\operatorname{curl},\Omega) = \{u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3\}$, its tangential

trace is $\gamma_t u$, where γ_t is a linear and continuous operator from $H(\mathbf{curl}, \Omega)$ onto $H^{-\frac{1}{2}}(\Gamma)^3$. It's denoted by $\gamma_t(u) = u \wedge n_{|\Gamma}$. The Green identity in $H(\mathbf{curl}, \Omega)$ is as follows:

$$\forall u \in H(\mathbf{curl}, \Omega), \ \forall \varphi \in H^1(\Omega)^3,$$

$$(\varphi,\operatorname{curl} u)_{L^2(\Omega)^3}-(\operatorname{curl} \varphi,u)_{L^2(\Omega)^3}=\langle u\wedge n_{|\Gamma},\varphi_{|\Gamma}\rangle_{\Gamma}.$$

The isomorphisms of the curl operator. Let Σ be a cut surface for Ω . The spaces $\operatorname{curl}(H^1(\Omega)^3) := H^{\Gamma}(\operatorname{div0};\Omega)$ and $\operatorname{curl}(H^1_0(\Omega)^3) := H^{\Sigma}_0(\operatorname{div0};\Omega)$ are closed vector subspaces of $L^2(\Omega)^3$. They have the following characterization:

$$u \in H^{\Gamma}(\operatorname{div}0;\Omega) \Leftrightarrow u \in L^{2}(\Omega)^{3}, \ \operatorname{div}u = 0, \ \langle u \cdot n_{|\Gamma_{i}}, 1 \rangle_{\Gamma_{i}} = 0 \ (0 \leq i \leq m)$$

and

$$u \in H_0^{\Sigma}(\mathbf{div}0; \Omega) \Leftrightarrow \left\{ \begin{array}{c} u \in L^2(\Omega)^3, \ \mathbf{div}u = 0, \ u \cdot n_{|\Gamma} = 0, \\ \langle u \cdot n_{|\Sigma_j}, 1 \rangle_{\Sigma_j} = 0 \ (1 \leq j \leq N). \end{array} \right.$$

Using the notations:

$$H^1_{t0}(\Omega)^3 = \{u \in H^1(\Omega)^3 : u \wedge n_{|_{\Gamma}} = 0\}, \ H^1_{n0}(\Omega)^3 = \{u \in H^1(\Omega)^3 : u \cdot n_{|_{\Gamma}} = 0\}$$

we have the following

Proposition 1. In the diagram:

$$\begin{array}{ccc} H^1_{n0}(\Omega)^3 \cap H^\Sigma_0(\operatorname{\mathbf{div}0};\Omega) & \stackrel{\operatorname{curl}}{\longrightarrow} & H^\Gamma(\operatorname{\mathbf{div}0};\Omega) \\ \downarrow & & \downarrow \\ H^\Sigma_0(\operatorname{\mathbf{div}0};\Omega) & \stackrel{\operatorname{\mathbf{curl}}}{\longleftarrow} & H^1_{t0}(\Omega)^3 \cap H^\Gamma(\operatorname{\mathbf{div}0};\Omega) \end{array}$$

the arrows curl represent isomorphisms. The domains in each case are closed subspaces of $H^1(\Omega)^3$. The vertical arrows represent compact and dense immersions.

The arrow curl on the top of this diagram is the Theorem 1 and on the botton one is the Theorem 2 of [1].

272

The results. From now on, Ω will be a bounded, connected and regular open set in \mathbb{R}^3 , as it was described in the Introduction. Let Σ be a cut surface for Ω .

Proposition 2. Given $f \in L^2(\Omega)^3$, there exists an unique $u \in H^2(\Omega)^3$ and there exists $p \in H^1(\Omega)$, unique up to additive constant, such that

$$\begin{cases} -\Delta u + \operatorname{grad} p &= f, & \text{in } \Omega \\ \operatorname{\mathbf{div}} u &= 0, & \text{in } \Omega \\ u \wedge n_{\mid \Gamma} &= 0 \\ \operatorname{\mathbf{curl}} u \cdot n_{\mid \Gamma} &= 0 \\ \langle u \cdot n_{\mid \Gamma_i}, 1 \rangle_{\Gamma_i} &= 0, & 0 \leq i \leq m. \end{cases}$$

Moreover, if $f \in H(\operatorname{\mathbf{div}};\Omega)$, there exists a positive constant c which depends only on Ω such that

(1)
$$||u||_{H^1(\Omega)^3} + ||p||_{L^2(\Omega)} \le c||f||_{H(\operatorname{div};\Omega)}.$$

Proof. We have an unique decomposition $f = \operatorname{grad} p + \operatorname{curl} w$ from ([2] Corollary 5) with $p \in H^1(\Omega)$ unique up to additive constant and $w \in H^1(\Omega)^3$ such that $n \cdot \operatorname{curl} w_{|\Gamma} = 0$. There exists an unique such function w that belongs to $H_0^{\Sigma}(\operatorname{div0}; \Omega)$ ([2] Remark 4). Then, $w \in H_{n_0}^1(\Omega)^3 \cap H_0^{\Sigma}(\operatorname{div0}; \Omega)$.

From Proposition 1 there exists an unique $u \in H^1_{t0}(\Omega)^3 \cap H^{\Gamma}(\operatorname{div}0;\Omega)$ such that $\operatorname{\mathbf{curl}} u = w$.

This implies: $f = \operatorname{grad} p + \operatorname{curl} \operatorname{curl} u$ or, $-\Delta u + \operatorname{grad} p = f$ in Ω .

As a consequence of the arguments used above, we can see that the vector field u satisfies $\mathbf{div}u=0$ in $\Omega, u\wedge n=0$ on Γ and $\int_{\Gamma_i} u\cdot nd\Gamma=0$, for $i=0,\ldots,m$.

Again from Proposition 1 there exist positive constants c_0 and c_1 such that

$$\|u\|_{H^1(\Omega)^3} \le c_0 \|w\|_{L^2(\Omega)^3}$$
 and $\|w\|_{H^1(\Omega)^3} \le c_1 \|\mathbf{curl} w\|_{L^2(\Omega)^3}$.

From that, $||u||_{H^1(\Omega)^3} \le c_0 c_1 ||\mathbf{curl} w||_{L^2(\Omega)^3} = c_0 c_1 ||f - \mathbf{grad} p||_{L^2(\Omega)^3}$. Then, by triangular inequality:

 $\|u\|_{H^1(\Omega)^3} + \|p\|_{L^2(\Omega)^3} \leq c_2 \{\|f\|_{L^2(\Omega)^3} + \|p\|_{H^1(\Omega)}\}, \text{ with } c_2 = \max\{c_0c_1, 1\}.$

In particular, if $f \in H(\mathbf{div}; \Omega)$,

$$\begin{cases} \Delta p &= \operatorname{\mathbf{div}} f, \text{ in } \Omega \\ \frac{\partial p}{\partial n_{|\Gamma}} &= f \cdot n_{|\Gamma} \end{cases}$$

and by well known result about continuous dependence on initial data for Neumann problem, See ([3] Proposition 1.2),

$$||p||_{H^1(\Omega)} \le c_3 \{ ||\operatorname{div} f||_{L^2(\Omega)} + ||f \cdot n|_{\Gamma}||_{H^{-\frac{1}{2}}(\Omega)^3} \}.$$

From this, with $c = \max\{c_2, c_3, \|\gamma_n\|\}$ we have finally

$$||u||_{H^1(\Omega)^3} + ||p||_{L^2(\Omega)^3} \le c\{||f||_{L^2(\Omega)^3} + ||\operatorname{div} f||_{L^2(\Omega)}\}.$$

Proposition 3. Given $f \in L^2(\Omega)^3$, there exists an unique $u \in H^2(\Omega)^3$ and there exists an unique $\overrightarrow{p} \in L^2(\Omega)^3$, such that

$$\begin{cases} -\Delta u + \overrightarrow{p} &= f, & \text{in } \Omega \\ \mathbf{div} u &= 0, & \text{in } \Omega \\ u \cdot n_{|\Gamma} &= 0 \\ \mathbf{curl} u \wedge n_{|\Gamma} &= 0 \\ \langle u \cdot n_{|\Sigma_j}, 1 \rangle_{\Sigma_j} &= 0, & 0 \leq i \leq N, \end{cases}$$

where the vector \overrightarrow{p} has the form $\overrightarrow{p} = \operatorname{grad} p + h$ with $p \in H^1(\Omega)$ and $h \in L^2(\Omega)^3$ is a vector field satisfying

$$\operatorname{div} h = 0$$
, $\operatorname{curl} h = 0$, and $h \cdot n_{|_{\Gamma}} = 0$.

Proof. First of all, we consider a cut surface Σ for Ω . We have the unique decomposition $f = \operatorname{grad} p + h + \operatorname{curl} w$ from ([2] corollary 6). In this decomposition, we have $p \in H^1(\Omega)$, unique up to additive constant, $\operatorname{curl} h = 0$, $\operatorname{div} h = 0$, $h \cdot n_{|\Gamma_i} = 0$, and an unique $w \in H^1(\Omega)^3$ with $w \wedge n_{|\Gamma} = 0$ and such that $\langle w \cdot n_{|\Gamma_i}, 1 \rangle_{\Gamma_i} = 0$ for $(0 \le i \le m)$ and $\operatorname{div} w = 0$.

By construction $w \in H^1_{t0}(\Omega)^3 \cap H^{\Gamma}(\operatorname{\mathbf{div}0};\Omega)$. Using Proposition 1 we deduce that there exists an unique $u \in H^1_{n0}(\Omega)^3 \cap H^{\Sigma}_0(\operatorname{\mathbf{div}0};\Omega)$ such that

 $\operatorname{curl} u = w$. That is

$$f = \operatorname{grad} p + h + \operatorname{curlcurl} u$$

or

$$-\Delta u + \mathbf{grad}p + h = f \text{ in } \Omega$$

and this u satisfies

$$\mathbf{div} u = 0 \text{ in } \Omega, \ u \cdot n_{|\Gamma} = 0, \ \mathbf{curl} u \wedge n_{|\Gamma} = 0$$

and

$$\int_{\Sigma_j} u \cdot n d\Sigma = 0 \quad (j = 1, \dots, N).$$

Remark 1. The vector field h in Propositions 3 is a gradient in the classical sense of a local potential q of C^{∞} class on Ω_{Σ} (In fact $\Delta q = 0$ in Ω_{Σ} , in the classical sense). We have $h = \operatorname{grad} q$ with $q \in H^1(\Omega_{\Sigma})$ ($q \notin H^1(\Omega)$) solution of the transmission problem

$$egin{cases} \Delta q = 0 & ext{in } \Omega_{\Sigma} \ rac{\partial q}{\partial n}|_{\Gamma} = 0 \ [q]_{\Sigma_{i}} = ext{constant}, \quad i = 1, \dots, N \ [rac{\partial q}{\partial n}]_{\Sigma_{i}} = 0, \qquad \qquad i = 1, \dots, N \end{cases}$$

For more details, see for instance ([2] proposition 2).

Now we suppose Ω simply connected. Next result follows immediately from Propositions 2 and 3.

Corollary 1. Given $f \in L^2(\Omega)^3$, there exists an unique $u \in H^2(\Omega)^3$ and there exists $p \in H^1(\Omega)$, unique up to additive constant, such that

$$\begin{cases} -\Delta u + \operatorname{grad} p = f, & \text{in } \Omega \\ \operatorname{div} u = 0, & \text{in } \Omega \\ u \cdot n_{|_{\Gamma}} = 0 \\ \operatorname{curl} u \wedge n_{|_{\Gamma}} = 0. \end{cases}$$

Moreover, if $f \in H(\operatorname{div}; \Omega)$, there exists a positive constant c which depends only on Ω such that

$$||u||_{H^1(\Omega)^3} + ||p||_{H^1(\Omega)} \le c||f||_{H(\operatorname{div};\Omega)}.$$

Conclusion. The solutions for these problems depend on the geometry of Ω . For in stance, as Proposition 3 shows, if Ω is not simply connected, the \overrightarrow{p} vector field corresponding to the solution of the Stokes problem having only tangential component on the bouundary, is not a global gradient in Ω .

References

- 1. A. Bossavit, Les deux isomorphismes du rotationnel et les deux formes du problème de la magnétostatique dans un domaine borné, EDF- Bul- letin de la Direction des Etudes et Recherches, Série C, Mathematiques, Informatique, N⁰ 1 (1986), 5-20.
- 2. R. Dautray et J-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, chap. 9A§1, Masson (Paris), 1985.
- 3. V. Girault and P-A. Raviart, Finite Element Methods for Navier Stokes Equations, Theory and Algorithms, Springer-Verlag, 1986.
- 4. R. Teman, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, 1979.
- 5. H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.

Departamento de Matemática Aplicada- IMUFF, Universidade Federal Fluminens, Rua Mário Santos Braga, s/n^0 , CEP24020-140, Niterói, RJ Brasil. E-Mail: hfleckar@vm.uff.br

Departamento de Engenharia Mecânica-Pontificia Universidade Católica do Rio de Janeiro, Rua Marguês de São Vicente, 225, CEP 22453-900 Rio de Janeiro, RJ-Brasil. E-Mail: rsampai@mec.puc-rio.br