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Abstract. In this study we use a Stirline-like method to
approximate a locally unique fixed point of a nonlinear equation
on a Banach space. We use the concept of logarithmic convexity
to find a ball containing the solution. We show that our ball in-
cludes convergence balls found in earlier results. Consequently,
there exist infinitely many new starting points from which the
fixed point can be accessed.

1. Introduction. In this study we are concerned with the problem of

approximating a locally unique fixed point z* of the nonlinear equation
(1) Flz)==z

were F' is a nonlinear operator defined on a closed convex subset D of a
Banach space E with values on itself.

We propose the Stirling-like method
(2) Tni1 = Tn — [ — F{(P(ivn))]_l(xn - F(z,)) (n2> 0).

Here P : D C E — F is a continuous operator and F'(z) denotes the
Fréchet-derivative of operator F' [3], [5]. Special cases of (2), namely New-
ton’s method (P(z,) = z, (n > 0)), the modified form of Newton’s method
(P(zn) = zo (n > 0)) the ordinary Stirling’s method (P(z,) = F(z,)
(n > 0)), have been studied extensively [1]-[6]. Stirling’s method can be
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viewed as a combination of the method of successive substitutions and New-
ton’s method. In terms of the computational effort, Stirling’s and Newton’s
method require the same computational cost.

In this study we provide sufficient conditions for the convergence of
method (2) to z*. Moreover we find a ball centered at a certain point
7o € D including same center convergence balls found in earlier works (see
[2], [3], [6], and the references there). Consequently, we find a ring contain-
ing infinitely many new starting points from which z* can be accessed via
method (2).

To achieve this goal we define the operator G : D — E by

3) G(z) =z~ [ - F'(P(z))] ™ (z — F(=z))-

We then use the degree of logarithmic convexity of G which is defined to be
the Fréchet-derivative G'of G [3], [4], [5].
Finally, we complete our study with an example where our results com-

pare favorably with earlier ones.

2. Convergence analysis. Let a € [0,1),b > 0, and x¢ € D be given.
Define the real function g on [0, +00), by

(4) g(r) =b(1+ a)7’"2 — (1 = a)? = bllzo — F(zo)lllr + (1 — a)llzo — F(zo)ll-
Set:

(5) ¢ = bllzo — F(zo)ll-

Tt can easily be seen, that if

(6) c<(Vat+(1-a)2—-a)=d,

then equation g(r) = 0 has two nonnegative zeros denoted by ri and rs,
 with 71 < 7o.

Define also:

(1 - a)® — bllzo — F(2o)ll

(7) 8= (1 + a)
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Finally, set:
(8) I= [Tl,T3).

We now state and prove the main semilocal convergence theorem for
method (2).

Theorem 1. Let F,P be continuous operators defined on a closed
convez subset D of a Banach space E with values on itself. Fora € [0,1), b >
0 and zo € D be fized, assume:

(a) F is twice continuously Fréchet-differentiable on D, and

(9) 1 (2) - F'(y)ll < bll= —yll,

(10) [F'(z)] <a <1,

for all z,y € D;

(b) U(zo,r) = {z € Eilllz — zol| <} C D for any r € I, where I is given
by (8).

(¢) ¢ < d, where c,d are given by (5), and (6), respectively;

(d) P is continuously Fréchet-differentiable on D,

(11) P (z)]| < a,

(12) P(z) € U(zo, 1),

and

(13) lz — P(z)|| < lz — F(z)l,

Jor all x € U(zg, ).
Then, the following hold:

()

(14 6@ < G gslle — F@I < ) <1,

(
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where

(15) ) = [+ a)r + oo = Fao)l oz
forallr e 1.

(i) Iteration {z,}(n > 0), generated by (2) is well defined, remains
in U(zor)(r € I) for all n > 0 and converges to a fized point z* of G
in U(zo,r1) which is unique in U(zg,rs), where r4 € [r1,75) and 15 =
min{rs,73}.

Moreover, the following estimates hold for all n > 0:
(16) |z —z*l} < B*(r)r, Te€l

and

lonts = 2"l < 7=[llzn = P(za)ll +[P(za) = " [llllzn — 2"
< b(1 + 2a) —I- 2a)

~ 2(1-a)

(17)
S llzn — 2%

Proof. (i) By differentiating (3), we obtain in turn for x € D
(18)
G(2)=1-(I-F(P@a)]™) (@~ F()-[I-FP@) " (z- F)
= I+ - F'(P(x))] ' F"(P())P'(z)|] - F'(P())] " (z - F(z))
I = F(P)]™'(I - F'(2))
= [ = F'(P@) ™[I - F'(P(x))
+ F(P())P'(2)(I - F'(P(2))"!(z - F(z)) = I + F'(=)]
= [[ - F/(P(2))] ' [F'(z) - F'(P(x))
+ F(P(2))P'(z)(I - F'(P(2))) ™" (z — F(x))].

Using (9)-(13) and the Banach lemma on invertible operators [5] we obtain
from (18)

(19) 1G" ()]l < — F()|.

b
a=ap '

In particular for z € U(xo,r), (19), the choice of » € I, and the estimate
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Iz = F(@)ll = ll(z = z0) + (zo — F(z0)) + (F(zo) — F(z))||
<7+ |l@o — F(zo)| + ar,

we obtain (14).
(ii) It follow from (4) that

g0 = Gyl

(20) = _ﬂ‘(ra

rel.
Hence we can get
lz1 — zo]] = (1 —h(r))r<r, rel
which shows z, € U(zg,z) and (16) for n = 1. Assume that
(21) zr € U(zo,r), and ||zx — zo)| < (1= A*(r))r <7, rel

fork=1,2,...,n.
Using (2) and part (i), we obtain in turn
(22)
[Zn+1 = Zall = |G(2n) = Gl@n-1)l < sup  [G'@)l|Zn — Tn_1l]

YE|Tn—_1,Tn

< h(r)llen — zn1ll;

[#n41 = Znll < B(P)l|@n — Ta-ill < ... < A" (r)||21 — 20| = (1 — A(r))R"(r)r,
and
”xn+1 - xO“ < ”mn+1 - xn“ + ”xn - .’L'()“
<A =h(ENh™(r)r + (1 =A™ (r)r
=1 -rH(r))r<r, rel
That is, we showed (16) for all £ € N. Moreover by (22), we have for
n,me&eN

(23) [Zntm = Zall < (L= R (r))R" (r)r-

Estimate (23) shows that {z,}(n > 0) is a Cauchy Seqﬁence in a Banach

space F, and as such it converges to some z* € U(xzg,r) (since U(zg,7) is
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a closed set). Because of the continuity of ', F', P and (2), we obtain
P(z*) = z*, G(z*) = z* and F(z*) = z*.

To show uniqueness, let y* e a fixed point of G in U(zg,r4). Then using
(14) we get

l=* =yl = 1G(=") - G < sup (|G ()llll=" — o]

yEfz*,y*]

< h(r)llz* -yl

which shows 2™ = y*.

Furthermore by letting m — oo in (23) we obtain (16). Finally by (2)
we obtain for all n >0
Tpg1 — X
=z, —z* — [I — F'(P(z,))] Y (@n — F(z,))
[I = F'(P(za))] "I = F'(P(z0))) (20 — 27) = (20 = F(zn))]
[ = F'(P(za))] " [F(za) — F(z") = F'(P(2n))(n — 27)]-

(24)

But we can also have by (11) and (13) that for alln > 0

(25)  llzn = P(zn)ll = llzn — 3" + P(z™) — P(zn)]| < (1 + a)llzn — 27|
and

(26) [P(zn) = 2*|| = |P(zn) — P(z%)]| < allzn — 2|

Estimate (17) now follows from (24), (25), (26) and the approximation
1) F(z,) — F(z*) — F'(P(zn)) (2, — ) = Al[F’(tmn + (1 —t)z")
— F'(tP(zn) + (1 — t) P(zn))(zr — z™)dL.

We now state the following theorem for comparison (see [2], [3], [6] and

the references there for a proof).

Theore 2. Let F be Fréchet differentiable on D C E. Assume:
(a1) Condition (a) holds;
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(b1)
(28) P(z) = F(z) (z € D);

(c1) ¢ < dy, where

21— a)
(29) =172
(dl) U(m07’r0) - D; where
(30) ro= —2% _ forb£0.
T —a '

Then Stirling’s iteration {z,} (n > 0) converges to the unique fived point T*
of F in U(xo, 7o) at the rate given by (17).

Remark 1. Favorable comparisons of Stirling’s over Newton’s method .

have been made in [2], [3], [6] and the references there.

Proposition. Under the hypotheses of Theorems 1, and 2 assume:

a3
(31) c < (3+(;) =d;.
Then the following hold:

(32) r1 < 7o < T3,
and

(33) U(zo,70) C U(xo,73).

Proof. Estimates (32) and (33) follow immediately by the definition of

T1,T0, 73 and (31).

Remark 2. Let dy = min{d;,d, dp}, under the hypotheses of Theorems
1 and 2. Then the conclusions of the proposition hold. This observation
justifies the claim made at the introduction.

We complete this study with an example.
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Example. Let £ =R, D = [-7, 7], P(z) = F(z) and

F(z) = %Sinx.

For 2o = .1396263 = 8°, we obtain d = %’Z = 428932, dy = 5 = .5,

di = 5 = 0357143, a = b = &, ||zg — F(xo)|| = .0700397, ¢ = .0350199,
rg = .2801592 and r3 = .2866401. With the above values the hypotheses of

Theorems 1, 2 and the Proposition are satisfied. Hence we get

0 =2" € U(zg,rg) = [—.1405329, .4197855]
C (—.1470138,.4262664).= U°(xq, r3).

That is there are infinitely many new starting points in U%(xq, 73)—U (20, 70)
for which iteration (2) converges to z* but Theorem 2 does not guarantee

that, whereas Theorem 1 does.
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