ON OSCILLATION CRITERIA FOR A FORCED NEUTRAL DIFFERENTIAL EQUATION

BY

N. PARHI AND R. N. RATH

Abstract. In this paper necessary and sufficient conditions have been obtained so that every solution of

(*)
$$[y(t) - p \ y(t - \tau)]' + Q(t)G(y(t - \sigma)) = f(t)$$

is oscillatory or tends to zero as $t \to \infty$ for $0 \le p < 1$ or p < 0 but $\ne -1$. For p > 1, necessary and sufficient conditions have been obtained so that every bounded solution of (*) is oscillatory or tends to zero as $t \to \infty$.

1. In a recent paper [2], Das and Misra have obtained necessary and sufficient conditions for nonscillatory solutions of

(1)
$$(y(t) - p \ y(t - \tau))' + Q(t)G(y(t - \sigma)) = f(t)$$

to tend to zero as $t \to \infty$. Their assumptions include $0 \le p < 1$, $G \in C(R,R)$ such that it satisfies generalized sublinear condition, viz.

$$\int_0^{\pm K} \frac{dt}{G(t)} < \infty$$

for every positive constant K, and $f \in C([0,\infty),(0,\infty))$. The method adopted by them has made the proof unnecessarily complicated and does not allow f to be identically equal to zero. Thus their result is applicable to only strictly nonhomogeneous cases. Further, the method prevents p to

Received by the editors December 28 1998.

AMS 1991 Subject Classification: 34C10, 34C15, 34K40.

take values in other ranges and is not applicable to cases when G is either linear or superlinear.

In this paper, we have established a similar theorem. The method we devised to prove our theorem allows p to take more values, viz, $0 \le p < 1$, p < 0 but $p \ne -1$ and p > 1, permits G to be linear or superlinear and is applicable to homogeneous equations. Moreover, the method is simple. This is possible due to repeated use of a lemma in [3].

The authors of the paper [2] have rightly observed that there are very few results concerning necessary and sufficient conditions for oscillation of all solutions of (1) except a few with $f(t) \equiv 0$ and the coefficient functions are real constants (see [4,5]). The oscillatory behavior of such equations are usually characterized by the nonexistence of real roots of the associated characteristic equations.

By a solution of (1) on $[T_y, \infty)$, $T_y \geq 0$, we mean a function $y \in C([T_y - r, \infty), R)$ such that $y(t) - p \ y(t - \tau)$ is continuously differentiable and (1) is satisfied identically for $t \geq T_y$, where $r = \max\{\tau, \sigma\}$. Such a solution of (1) is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.

2. We present our main results in this section. The following lemma (See p. 17, [3]) is needed for our work in the sequel.

Lemma 2.1. Let $f, g : [0, \infty) \to R$ be such that

$$f(t) = g(t) - p \ g(t - c), \ t \ge c,$$

where $p \in R$ but $p \neq -1$ and c > 0. Let $\lim_{t \to \infty} f(t) = \ell \in R$ exists. Then the following statements hold:

- (i) If $\liminf_{t\to\infty} g(t) = a \in R$, then $\ell = (1-p)a$ and
- (ii) If $\limsup_{t\to\infty} g(t) = b \in R$, then $\ell = (1-p)b$.

We consider Eq.(1) with $\tau \geq 0$, $\sigma \geq 0$, $f \in C([0,\infty),[0,\infty))$ such that

$$\int_0^\infty f(t)dt < \infty,$$

 $G \in C(R,R)$ such that xG(x) > 0 for $x \neq 0$ and G is nondeceasing and $Q \in C([0,\infty),[0,\infty))$. We prove following results:

Theorem 2.2. Let $0 \le p < 1$ or p < 0 but $p \ne -1$. If

(2)
$$\int_0^\infty Q(t)dt = \infty,$$

then every solution of (1) is oscillatory or tends to zero as $t \to \infty$.

Proof. Let y(t) be a nonoscillatory solution of (1) on $[T_y, \infty)$, $T_y \ge 0$. Hence there exists a $T_0 > T_y$ such that y(t) > 0 or 0 for 0 for 0. We show that $\lim_{t\to\infty} y(t) = 0$. The proof is divided into two different parts according to two ranges of 0.

(i) let $0 \le p < 1$. Suppose that y(t) < 0 for $t \ge T_0$. Setting

$$(3) z(t) = y(t) - p y(y - \tau),$$

we obtain

(4)
$$z'(t) + Q(t)G(y(t-\sigma)) = f(t)$$

for $t \geq T_0$. Hence $z'(t) \geq 0$ for $t \geq T_0 + \sigma$. Then z(t) > 0 or < 0 for $t \geq T_1 > T_0 + \sigma$. If z(t) > 0, then y(t) > p $y(t - \tau) > y(t - \tau)$ for $t \geq T_1$ and hence y(t) is bounded. Consequently, z(t) is bounded, $\lim_{t \to \infty} z(t) = \ell$ exists and $\limsup_{t \to \infty} y(t)$ exists. We claim that $\limsup_{t \to \infty} y(t) = 0$. If not, then $\limsup_{t \to \infty} y(t) = \alpha < 0$. For $0 < \varepsilon < -\alpha$, there exists a $T_2 > T_1$ such that $t \to \infty$ $y(t) < \alpha + \varepsilon$ for $t \geq T_2$. Hence, for $t \geq T_3 \geq T_2 + \sigma$,

$$\int_{T_3}^t Q(s)G(y(s-\sigma))ds \le G(\alpha+\varepsilon)\int_{T_3}^t Q(s)ds$$

Thus

$$\int_{T_2}^{\infty} Q(t)G(y(t-\sigma))dt = -\infty$$

due to (2). On the other hand, integrating (4) from T_3 to t yields

$$\int_{T_s}^t Q(s)G(y(s-\sigma))ds \ge -z(t)$$

Hence

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt > -\infty,$$

a contradiction. Hence $\limsup_{t\to\infty} y(t)=0$. From Lemma 2.1 it follows that $\ell=0$. This is impossible because z(t)>0 and nondecreasing. Thus z(t)<0 for $t\geq T_1$. Since z(t) is nondecreasing, then $\lim_{t\to\infty} z(t)=\alpha\leq 0$ exists. Let $\alpha<0$. For $t\geq T_1+\tau$, $y(t)\leq z(t)\leq \alpha$. Hence integrating (4) from T_2 to t, where $T_1+\tau+\sigma< T_2< t$, we obtain

$$z(t) = z(T_2) + \int_{T_2}^t f(s)ds - \int_{T_2}^t Q(s)G(y(s-\sigma))ds$$

 $\geq z(T_2) + \int_{T_2}^t f(s)ds - G(\alpha) \int_{T_2}^t Q(s)ds$

Thus $\lim_{t\to\infty} z(t) = \infty$ by (2), a contradiction. Hence $\lim_{t\to\infty} z(t) = 0$. We claim that y(t) is bounded. Otherwise, there exists a sequence $\langle t_n \rangle$ such that $t_n \to \infty$ as $n \to \infty$, $y(t_n) \to -\infty$ as $n \to \infty$ and $y(t_n) = \min\{y(t) : T_1 \le t \le t_n\}$. Hence $z(t_n) = y(t_n) - p \ y(t_n - \tau) \le (1 - p)y(t_n)$, that is, $\lim_{n\to\infty} z(t_n) = -\infty$, a contradiction. Thus $\liminf_{t\to\infty} y(t)$ and $\limsup_{t\to\infty} y(t)$ exist. Using Lemma 2.1 we get $\lim_{t\to\infty} y(t) = 0$. Next suppose that y(t) > 0 for $t \ge T_0$. Setting

(5)
$$w(t) = y(t) - p \ y(t - \tau) - \int_0^t f(s) ds,$$

we obtain

(6)
$$w'(t) + Q(t)G(y(t-\sigma)) = 0$$

for $t \geq T_0$. Hence $w'(t) \leq 0$ for $t \geq T_0 + \sigma$ implies that w(t) > 0 or < 0 for $t \geq T_1 > T_0 + \sigma$. If w(t) > 0 for $t \geq T_1$, then $\lim_{t \to \infty} w(t)$ exists. From the assumption on f it follows that $\lim_{t \to \infty} z(t)$ exists, where z(t) is given by (3). If $\liminf_{t \to \infty} y(t) > 0$, then $y(t) > \alpha > 0$ for $t \geq T_2 > T_1$. Then, for $T_3 > T_2 + \sigma$,

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt \ge G(\alpha) \int_{T_3}^{\infty} Q(t)dt$$

implies that

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt = \infty.$$

However, integrating (6) yields

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt < \infty,$$

a contradiction. Thus $\liminf_{t\to\infty} y(t)=0$. From Lemma 2.1 it follows that $\lim_{t\to\infty} z(t)=0$. We claim that y(t) is bounded; otherwise, there exists a sequence $\langle t_n \rangle$ such that $t_n\to\infty$ as $n\to\infty$, $y(t_n)\to\infty$ as $n\to\infty$ and $y(t_n)=\max\{y(t)\}: T_1\leq t\leq t_n\}$. Then

$$z(t_n) = y(t_n) - p \ y(t_n - \tau) > (1 - p)y(t_n)$$

implies that $\lim_{t\to\infty} z(t_n) = \infty$, a contradiction to the fact that $\lim_{t\to\infty} z(t) = 0$. Hence y(t) it bounded. Consequently, $\limsup_{t\to\infty} y(t)$ exists and is equal to zero by Lemmq 2.1. Thus $\lim_{t\to\infty} y(t) = 0$. Let w(t) < 0 for $t \ge T_1$. Hence

(7)
$$y(t)
$$$$$$

for $t \geq T_1$, where

$$L = \int_0^\infty f(t)dt.$$

If y(t) is unbounded, then we may find a sequence $\langle t_n \rangle$ such that $t_n \to \infty$ and $y(t_n) \to \infty$ as $n \to \infty$ and $y(t_n) = \max\{y(t) : T_1 \le t \le t_n\}$. Hence from (7) one gets

$$y(t_n)$$

that is,

$$\lim_{n\to\infty}y(t_n)\leq\frac{L}{1-p}<\infty,$$

a contradiction. Hence y(t) is bounded. Consequently, w(t) is bounded, $\lim_{t\to\infty} w(t)$ exists, $\lim_{t\to\infty} y(t)$ exists, $\lim_{t\to\infty} y(t)$ exists and $\lim_{t\to\infty} z(t)$ exists, where z(t) is given by (3). Proceeding as in the case w(t)>0 for $t\geq T_1$, we may show that $\lim_{t\to\infty} y(t)=0$. Hence from Lemma 2.1 it follows that $\lim_{t\to\infty} y(t)=0$.

(ii) Let p < 0 but $p \neq -1$. Suppose that y(t) < 0 for $t \geq T_0$. Setting z(t) as in (3), we notice that z(t) < 0 and $z'(t) \geq 0$ for $t \geq T_0 + \tau + \sigma$. Hence z(t) is bounded and $\lim_{t \to \infty} z(t)$ exists. Further, $z(t) \leq y(t)$ for $t \geq T_0 + \tau + \sigma$ implies that y(t) is bounded. If $\limsup_{t \to \infty} y(t) \neq 0$, then $y(t) < \alpha < 0$ for $t \geq T_1 > T_0 + \tau + \sigma$. Integrating (4) from T_2 to t $(T_1 + \sigma < T_2 < t)$ we obtain

$$z(t) \geq z(T_2) + \int_{T_2}^t f(s)ds - G(\alpha) \int_{T_2}^t Q(s)ds$$

Hence, by (2), z(t) > 0 for large t, a contradiction. Thus $\limsup y(t) = 0$. Consequently, $\lim_{t \to \infty} y(t) = 0$ by Lemma 2.1. Next suppose that y(t) > 0 for $t \geq T_0$. Setting w(t) as in (5), one obtains $w'(t) \leq 0$ for $t \geq T_0 + \sigma$. Let w(t) > 0 for $t \geq T_1 > T_0 + \sigma$. Hence w(t) is bounded and $\lim_{t \to \infty} w(t)$ exists. Thus z(t) is bounded and $\lim_{t \to \infty} z(t)$ exists, where z(t) is given by (3). Clearly, z(t) > y(t) > 0 implies that y(t) is bounded. Proceeding as in case $0 \leq p < 1$ when y(t) > 0 and w(t) > 0, we obtain $\lim_{t \to \infty} y(t) = 0$. Thus, by Lemma 2.1, $\lim_{t \to \infty} y(t) = 0$. Let w(t) < 0 for $t \geq T_1 > T_0 + \sigma$. If $t \equiv 0$, then we get a contradiction because $0 < y(t) - p y(t - \tau) < 0$ for $t \geq T_1 + \tau$. If $t \not\equiv 0$, then

$$y(t) < \int_0^t f(s)ds < L,$$

for $t \geq T_1 + \tau$, that is, y(t) is bounded for $t \geq T_1 + \tau$. Hence w(t) is bounded and $\lim_{t \to \infty} w(t)$ exists. Thus $\lim_{t \to \infty} z(t)$ exists. If $\liminf_{t \to \infty} y(t) > 0$, then $y(t) > \alpha > 0$ for $t \geq T_2 > T_1 + \tau$. Integrating (6) from T_2 to t and using (2) we obtain $\lim_{t \to \infty} w(t) = -\infty$, a contradiction. Hence $\liminf_{t \to \infty} y(t) = 0$ and consequently, by Lemma 2.1, $\lim_{t \to \infty} y(t) = 0$. Thus the proof of the theorem is complete.

Remark. Theorem 2.2 holds if $f \equiv 0$.

Theorem 2.3. Let $0 \le p < 1$ or p < 0 but $p \ne -1$. Suppose that G satisfies Lipschitz condition on intervals of the type [a,b], 0 < a < b. If every solution of (1) is oscillatory or tends to zero as $t \to \infty$, then (2) holds.

Proof. If possible, let

(8)
$$\int_0^\infty Q(t)dt < \infty.$$

We show that (1) admits a positive solution which does not tend to zero as $t \to \infty$. Let $0 \le p < 1$. It is possible to choose T > 0 large enough such that

$$\int_{T}^{\infty} f(t)dt < \frac{(1-p)}{10} \text{ and } K \int_{T}^{\infty} Q(t)dt < \frac{(1-p)}{5},$$

where $K = \max\{K_1, K_2\}$, K_1 is the Lipschitz constant of G in $\left[\frac{(1-p)}{10}, 1\right]$ and $K_2 = \max\{G(u) : \frac{(1-p)}{10} \le u \le 1\}$.

Let

$$X = \left\{ x : [T, \infty) \to R | x \text{ is continuous and } \frac{(1-p)}{10} \le x(t) \le 1 \right\}$$

For $u, v \in X$, we define

$$d(u, v) = \sup\{|u(t) - v(t)| : t \ge T\}.$$

Hence (X, d) is a complete metric space. Define $S: X \to X$ as follows: for $y \in X$,

$$(Sy)(t) = \begin{cases} (Sy)(T+r), & t \in [T, T+r] \\ p \ y(T-\tau) + \frac{1-p}{5} + \int_t^\infty Q(s)G(y(s-\sigma))ds \\ -\int_t^\infty f(s)ds, & t \ge T+r, \end{cases}$$

where $r = \max\{\tau, \sigma\}$. Clearly, (Sy)(t) is continuous and for $t \geq T + r$,

$$(Sy)(t) \ge \frac{p(1-p)}{10} + \frac{1-p}{5} - \frac{1-p}{10} \ge \frac{1-p}{10}$$

and

$$(Sy)(t) \le p + \frac{1-p}{5} + K_2 \int_t^\infty Q(s)ds$$

$$\le p + \frac{1-p}{5} + K \int_T^\infty Q(t)dt < 1$$

Thus $S: X \to X$. Futher, for $u, v \in X$,

Thus
$$S: X \to X$$
. Futher, for $u, v, \in X$,
$$(Su)(t) - (Sv)(t) = \begin{cases} (S_u)(T+r) - (S_v)(T+r), & t \in [T, T+r] \\ p\{u(t-\tau) - v(t-\tau)\} \\ + \int_t^{\infty} Q(s)\{G(u(s-\sigma)) - G(v(s-\sigma))\}ds, \\ t \ge T+r \end{cases}$$

Hence

$$d(Su, Sv) \le \left[p + K_1 \int_t^\infty Q(s) ds\right] d(u, v)$$

$$\le \left[p + K \int_T^\infty Q(t) dt\right] d(u, v)$$

$$\le \left[p + \frac{1-p}{5}\right] d(u, v)$$

Thus S is a contraction. From Banach fixed point theorem it follows that S has a unique fixed point $y_0 \in X$. Hence $y_0(t)$ is a solution of (1) on $[T+r,\infty)$ such that $\frac{(1-p)}{10} \leq y_0(t) \leq 1$. Thus $y_0(t)$ is a positive solution of (1) which does not tend to zero as $t \to \infty$. If -1 , then one is totake $\int_T^{\infty} f(t)dt < \frac{1+p}{10}$, $K \int_T^{\infty} Q(t)dt < \frac{1+p}{5}$ and

$$X = \{x : [T, \infty) \to R | x \text{ is continuous and } \frac{1+p}{10} \le x(t) \le 1\}$$

and K_1 and K_2 are to be modified accordingly. Further, we define

$$(Sy)(t) = \begin{cases} (Sy)(T+r), & t \in [T, T+r] \\ p \ y(t-\tau) + \frac{1-4p}{5} + \int_t^\infty Q(s)G(y(s-\sigma))ds \\ -\int_t^\infty f(s)ds, & t \ge T+r, \end{cases}$$

The proof is similar to the case $0 \le p < 1$. If p < -1, then the proof proceeds as in the case $0 \le p < 1$ with the following changes:

$$\int_T^\infty f(t)dt < \frac{1+p}{4p}, \ K \int_T^\infty Q(t)dt < \frac{1+p}{4p}$$

 $X = \{x : [T, \infty) \to R | x \text{ is continuous and } \frac{1+p}{2p} \le x(t) \le 1\},$

$$(Sy)(t) = \begin{cases} (Sy)(T+r), & t \in [T, T+r] \\ \frac{y(t+\tau)}{p} - \frac{1}{p} \int_{t+\tau}^{\infty} Q(s)G(y(s-\sigma))ds \\ + \frac{1}{p} \int_{t+\tau}^{\infty} f(s)ds + \frac{2p^2 - 3p - 1}{4p^2}, & t \ge T+r, \end{cases}$$

Hence the theorem is proved.

Corollary 2.4. Suppose that $0 \le p < 1$ or p < 0 but $p \ne -1$. Let G satisfy Lipschitz condition on intervals of the type [a,b], 0 < a < b. Then every solution of (1) is oscillatory or tends to zero as $t \to \infty$ if and only if (2) holds.

This follows from Theorems 2.2 and 2.1.

Example 1. Consider

$$[y(t) - e^{-1}y(t-1)]' + y^3(t-1) = e^{3(1-t)}, \ t > 2$$

From Theorem 2.2 it follows that every solution of the equation is oscillatory or tends to zero as $t \to \infty$. In particular, $y(t) = e^{-t}$ is a solution of the equation which tends to zero as $t \to \infty$. Here 0 .

Example 2. Clearly $y(t) = \cos t$ is an oscillatory solution of

$$\left[y(t) + \frac{1}{2}y(t-\pi)\right]' + \frac{1}{2}y\left(t - \frac{\pi}{2}\right) = 0, \ t \ge 0$$

This illustrates the case -1 .

Example 3. Consider

$$[x(t) + 2x(t-1)]' + \left(e^{-\frac{1}{3}(2t+1)} + 2e^{-\frac{2}{3}(t-1)} + 1\right)x^{\frac{1}{3}}(t-1) = e^{-\frac{1}{3}(t-1)}, \ t \ge 2$$

This example illustrates the case p < -1. Clearly, $y(t) = e^{-t}$ is a solution of the equation.

Example 4. We may note that $y(t) = e^t$ is an unbounded positive solution of the equation

$$[y(t) - p \ y(t - \tau)]' + e^{\sigma} (e^{-2t} + pe^{-\tau} - 1)x(t - \sigma) = e^{-t}, \ t \ge 1,$$

where $\tau, \sigma \in (0, \infty)$ and $p > e^{\tau} > 1$. This example has provided motivation for the following theorems.

Theorem 2.5. Let p > 1. If (2) holds, then every bounded solution of (1) is oscillatory or tends to zero as $t \to \infty$.

Proof. Let y(t) be a bounded solution of (1) on $[T_y, \infty)$, $T_y \geq 0$. If y(t) is oscillatory, then there is nothing to prove. Suppose that y(t) is nonoscillatory. Then y(t) > 0 or < 0 for $t \geq T_0 > T_y$. Let y(t) < 0 for $t \geq T_0$. Setting z(t) as in (3), we obtain (4). Hence $z'(t) \geq 0$ for $t \geq T_0 + \sigma$ implies that z(t) > 0 or < 0 for $t \geq T_1 > T_0 + \sigma$. Let z(t) > 0 for $t \geq T_1$. Since y(t) is bounded, then z(t) is bounded and hence $\lim_{t \to \infty} z(t)$ exists. Using (2) we may show that $\lim_{t \to \infty} \sup y(t) = 0$ and hence $\lim_{t \to \infty} y(t) = 0$ by Lemma 2.1. Let z(t) < 0 for $t \geq T_1$. Hence $\lim_{t \to \infty} z(t)$ exists. If $\lim_{t \to \infty} z(t) = \alpha < 0$, then $z(t) \leq \alpha$ for $t \geq T_2 > T_1$. Hence from (3) it follows that $y(t) \leq z(t) \leq \alpha$ for $t \geq T_2$, thus, for $t \geq T_3 > T_2 + \sigma$,

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt \le G(\alpha)\int_{T_3}^{\infty} Q(t)dt = -\infty$$

On the other hand, integration of (4) yields

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt \ge z(T_3) > -\infty,$$

a contradiction. Hence $\lim_{t\to\infty} z(t) = 0$. Consequently, $\lim_{t\to\infty} y(t) = 0$ by Lemma 2.1. Suppose that y(t) > 0 for $t \ge T_0$. Setting w(t) as in (5), we obtain $w'(t) \le 0$ for $t \ge T_0 + \sigma$ by (6). Hence w(t) > 0 or 0 < 0 for 0 < 0 for 0 < 0 for 0 < 0. If 0 < 0 for 0 < 0 fo

$$y(t) > p \ y(t-\tau) > y(t-\tau)$$

for $t \ge T_2 > T_1 + \tau$. Thus y(t) > m > 0 for $t \ge T_2$, where

$$m = \min\{y(t) : t \in [T_2, T_2 + \tau]\}$$

Consequently,

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt = \infty,$$

where $T_3 \geq T_2 + \sigma$. However integrating (6) we obtain

$$\int_{T_3}^{\infty} Q(t)G(y(t-\sigma))dt < \infty,$$

a contradiction. Hence w(t) < 0 for $t \ge T_1$. Since y(t) is bounded, then w(t) is bounded and hence $\lim_{t \to \infty} w(t)$ exists. This implies that $\lim_{t \to \infty} z(t)$ exists, where z(t) is given by (3). If $\liminf_{t \to \infty} y(t) > 0$, then we get a contradiction by (2). Hence $\liminf_{t \to \infty} y(t) = 0$. From Lemma 2.1 it follows that $\lim_{t \to \infty} y(t) = 0$. Thus the theorem is proved.

Example 5. From Theorem 2.5 it follows that every bounded solution of

$$[y(t) - e \ y(t-1)]' + (e+1)y(t-1) = e^{-t}[t(2e^2 + e - 1) + 1 - 3e^2 - e], \ t \ge 2$$

is oscillatory or tends to zero as $t \to \infty$. In particular, $y(t) = t e^{-t}$ is a bounded solution of the equation which tends to zero as $t \to \infty$.

Theorem 2.6. Let p > 1 and G be Lipschitzian on intervals of the form [a,b], 0 < a < b. If every bounded solution of (1) is oscillatory or tends to zero as $t \to \infty$, then (2) holds.

Proof. One may complete the proof proceeding as in the proof of Theorem 2.3 and with the following changes:

$$\int_T^{\infty} f(t)dt < \frac{p-1}{2}, \ K \int_T^{\infty} Q(t)dt < \frac{p-1}{2},$$

where $K = \max\{K_1, K_2\}$, K_1 is the Lipschitz constant of G in $\left[\frac{p-1}{2}, p\right]$ and $K_2 = \max\{G(u) : \frac{p-1}{2} \le u \le p\}$,

$$X = \{x : [T, \infty) \to R | x \text{ is continuous and } \frac{p-1}{2} \le x(t) \le p\}$$

and

$$(Sy)(t) = \begin{cases} (Sy)(T+r), & t \in [T, T+r] \\ \frac{1}{p}y(t+\tau) - \frac{1}{p} \int_{t+\tau}^{\infty} Q(s)G(y(s-\sigma))ds \\ + \frac{1}{p} \int_{t+\tau}^{\infty} f(s)ds + \frac{p-1}{2}, & t \ge T+r. \end{cases}$$

Equation (1) admits a solution $y_0(t)$ on $[T+r+\tau,\infty)$ with $\frac{p-1}{2} \leq y_0(t) \leq p$. Thus the theorem is proved.

Corollary 2.7. Let p > 1. Suppose that G is Lipschitzian on intervals of the form [a,b], 0 < a < b. Then every bounded solution of (1) is oscillatory or tends to zero as $t \to \infty$ if and only if (2) holds.

References

- 1. R. S. Dahiya and O. Akinyele, Oscillation theorems of nth order functional differential equation with forcing term, J. Math. Anal. Appl., 109 (1985), 325-332.
- 2. P. Das and N. Misra, A necessary and sufficient condition for the solution of a functional differential equation to be oscillatory or tend to zero, J. Math. Anal. Appl., 204 (1997), 78-87.
- 3. I. Gyori and G. Ladas, "Oscillation theory of Delay Differential Equations with Application", Clarendon Press, Oxford, 1991.
- 4. M. R. S. Kulenovic, G. Ladas and A. Meimaridou, Necessary and sufficient condition for oscillation of neutral differential equations, J. Austra. Math. Soc. Ser. B, 28 (1987), 362-375.
- 5. G. Ladas, Y. G. Sficas and I. P. Stavroulakis, Necessary and sufficient condition for oscillation of higher order delay differential equations, Trans Amer. math. Soc., 285 (1984), 81-90.

Department of Mathematics, Berhampur University, Berhampur-760007, INDIA Department of Mathematics, Govt. Science College, Chatrapur, PIN: 76I 020, INDIA