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Abstract. In this paper necessary and sufficient condi-
tions have been obtained so that every solution of

() () —p y(t - ' + QWG(y(t - 0)) = f(t)

is oscillatory or tends to zero ast — co for 0 < p < 1 or p < 0 but
# —1. For p > 1, necessary and sufficient conditions have been
obtained so that every bounded solution of (*) is oscillatory or
tends to zero as t — oo.

1. In a recent paper [2], Das and Misra have obtained necessary and

sufficient conditions for nonscillatory solutions of

(1) (W) —py(t - 7)) + QWG - 7)) = f(2)

to tend to zero as ¢ — oo. Their assumptions include 0 < p < 1, G €

C(R, R) such that it satisfies generalized sublinear condition, viz.

+K dt “ e

o G
for every positive constant K, and f € C([0,00),(0,00)). The method
adopted by them has made the proof unnecessarily complicated and does

not allow f to be identically equaI to zero. Thus their result is applicable

to only strictly nonhomogeneous cases. Further, the method prevents p to
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take values in other ranges and is not applicable to cases when G is either
linear or superlinear. ‘

In this paper, we have established a similar theorem. The method we
devised to prove our theorem allows p to take more values, viz, 0 < p < 1,
p < 0 but p # —1 and p > 1, permits G to be linear or superlinear and
is applicable to homogeneous equations. Moreover, the method is simple.
This is possible due to repeated use of a lemma in [3].

The authors of the paper [2] have rightly observed that there are very
few results concerning necessary and sufficient conditions for oscillation of
all solutions of (1) except a few with f(¢) = 0 and the coefficient functions
are real constants (see [4,5]). The oscillatory behavior of such equations
are usually characterized by the nonexistence of real roots of the associated
characteristic equations.

By a solution of (1) on [Ty,00), T, > 0, we mean a function y €
c([Ty — r,00), R) such that y(t) —p y(t — 'r)‘ is continuously differentiable
and (1) is satisfied identically for ¢ > T,, where r = max{r,s}. Such
a solution of (1) is said to be oscillatory if it has arbitrarily large zeros;

otherwise, it is called nonoscillatory.

2. We present our main results in this section. The following lemma

(See p. 17, [3]) is needed for our work in the sequel.

Lemma 2.1. Let f,g:[0,00) — R be such that
f@)=gt)-pglt—0), t>g¢

where p € R but p # —1 and ¢ > 0. Let tgrgo f(t) = £ € R exists. Then the
following statements hold:

() If 1igglfg(t) =a € R, then £ = (1 - pla
and

(ii) Iflimsupg(t) =b € R, then £ = (1 — p)b.
t—o0

We consider Eq.(1) with 7 >0, 0 > 0, f € C(]0, ), [0, 00)) such that
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/ ~ f(tdt < oo,
0

G € C(R,R) such that zG(z) > 0 for z # 0 and G is nondeceasing and
Q € C([0,00),[0,00)). We prove following results:

Theorem 2.2. Let0<p<1lorp<0 butp# —1. If
@) | i =,
0

then every solution of (1) is oscillatory or tends to zero as t — oo.

Proof. Let y(t) be a nonoscillatory solution of (1) on [T}, ), T, > 0.
Hence there exists a Ty > T, such that y(¢) > 0 or < 0 for t > Ty. We show
that tll)rgo y(t) = 0. The proof is divided into two different parts according
to two ranges of p.

(i) let 0 < p < 1. Suppose that y(t) < 0 for £ > Tp. Setting

(3) z(t) =y(t) —pyly— 1),

we obtain

(4) Z(t) + Q)G (y(t — 0)) = f(t)

for t > Tp. Hence 2/(t) > 0 for t > Ty + 0. Then 2(t) > 0 or < 0 for
t>Ty >To+o0. If2(t) >0, then y(t) >py(t—7) >yt —7) fort > T3
and hence y(t) is bounded. Consequently, z(t) is bounded, tl_l_)I{.lo z(t) = ¢
exists and limsup y(¢) exists. We claim that limsupy(t) = 0. If not, then

t—o0 t—oo

limsupy(t) = a < 0. For 0 < ¢ < —a, there exists a T > T} such that

t—oo

y(t) < a+e¢ for t > Ty. Hence, for t > T3 > Tb + o,

Q(s)G(y(s — 0))ds < G(a+e) | Q(s)ds
T3 T3

Thus
| ewct(t - o)t = ~oo
T3

due to (2). On the other hand, integrating (4) from T3 to ¢ yields
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t

: Q(s)G(y(s — 0))ds = —=2(t)

Hence
/T " QU)G(t — 0))dt > —oo,

a contradiction. Hence limsupy(f) = 0. From Lemma 2.1 it follows that
¢ = 0. This is impossible bt(:,::;ouse z(t) > 0 and nondecreasing. Thus z(t) < 0
for t > T;. Since z(t) is nondecreasing, then tll)rgo z(t) = a < 0 exists. Let
a<0. Fort>T; + 7, y(t) < 2(t) < a. Hence integrating (4) from T3 to ¢,

where T} + 7+ 0 < Ty < t, we obtain
t t
o(t) ==(Ty) + /T f(s)ds — /T Qs)Gly(s — 0))ds

> 2(Ty) +/T f(s)ds — G(a)/T Q(s)ds

Thus tl}glo 2(t) = oo by (2), a contradiction. Hence tl.lfﬁlo z(t) = 0. We claim
that y(t) is bounded. Otherwise, there exists a sequence (t,) such that ¢, —
00 as n — 00, Y(t,) — —oo as n — oo and y(t,) = min{y(t) : T3 <t < t,}.
Hence z(t,) = y(tn) —p y(tn — 7) < (1 — p)y(t,), that is, lim 2(t,) = —o0,
a contradiction. Thus hm mf y(t) and hm .Sup y(t) exist. Usmg Lemma 2. 1

we get hm y(t = 0. Next suppose that y(t) > 0 for t > Tj. Setting

(5) w(t) = y(t) —p y(t — ) / £(s)ds,
: 0

we obtain

(6) o/ (£) + QU)G((t — o)) =0

for t > Ty. Hence w'(t) <0 for t > Ty + o implies that w(t) > 0 or < 0 for
t>Ty > To+o. If w(t) >0 for t > Ty, then tlggj w(t) exists. From the
assumption on f it follows that tl_lg; z(t) exists, where z(t) is given by (3).
If ligglfy(t) > 0, then y(t) > a > 0 for ¢ > Ty > T). Then, for T3 > Ty +o,

QHG(y(t - 0))dt > G(a) ) " Q)
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implies that
/T QG ((t - ))dt = co.

However, integrating (6) yields

/T " QW)C(t - o))dt < oo,

a contradiction. Thus liﬂ glfy(t) = 0. From Lemma 2.1 it follows that
tl_l»rgo z(t) = 0. We claim that y(t) is bounded; otherwise, there exists a
sequence (t,) such that ¢, — oo as n — oo, y(t,) — 00 as n — oo and
y(tn) = max{y(t)} : Ty <t <t,}. Then

2(tn) = y(ta) —p y(tn — 7) > (1 — p)y(tn)

implies that tlim z(tn) = 00, a contradiction to the fact that tlim z(t) = 0.
Hence y(t) it bounded. Consequently, lim sup y(t) exists and is equal to zero

t—o0
by Lemmq 2.1. Thus tlim y(t) = 0. Let w(t) < 0 for ¢t > Ty. Hence

o y(t) <p y(t — 1) + /0 f(s)ds

<py(t—71)+ L

for t > T3, where
L= / f(t)dt.
0

If y(t) is unbounded, then we may find a sequence (t,) such that ¢, — oo
and y(t,) — 00 as n — oo and y(t,) = max{y(t) : Ty <t < t,}. Hence

from (7) one gets
y(ta) <py(tn —7) + L <py(ta) + L,
that is,

L
nli_{%o y(tn) < -7 < o0,
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a contradiction. Hence y(t) is bounded. Consequently, w(t) is bounded,
lim w(t) exists, hm 1nfy(t) exists, limsup y(t) exists and hm z(t) exists,
v;ilere z(t) is given by (3). Proceedmtg as in the case w(¢) > 0 for t > Ty,
we may show that htr_n_) gf y(t) = 0. Hence from Lemma 2.1 it follows that

tlim y(t) =0.

(ii) Let p < 0 but p # —1. Suppose that y(t) < 0 for t > Tp. Setting
z(t) as in (3), we notice that z(t) < 0 and 2’'(t) > 0 for ¢t > Ty +7+0. Hence
z(t) is bounded and tlirglo z(t) exists. Further, z(t) < y(t) for t > To+7+0
implies that y(¢) is bounded. If liﬁil.}p y(t) # 0, then y(t) < a < 0 for

t>Ty > To+ 7+ 0. Integrating (4) from Ty to t (T1 +0 < Tp < t) we

obtain
() > «(Ty) + /T £(s)ds - G(a) /_T Q(s)ds

Hence, by (2), z(t) > 0 for large ¢, a contradiction. Thus hm sup y(t) = 0.
Consequently, le y(t) = 0 by Lemma 2.1. Next suppose that y(t) > 0
for t > Ty. Setting w(¢) as in (5), one obtains w'(t) < 0 for ¢t > Ty + 0.
Let w(t) > 0 for t > T1 > Tp + 0. Hence w(¢) is bounded and tl_l_)rglo w(t)
exists. Thus 2(¢) is bounded and tl_l_)Ing z(t) exists, where z(t) is given by (3).
Clearly, z(t) > y(t) > 0 implies that y(¢) is bounded. Proceeding as in case
0 <p <1 when y(t) > 0 and w(t) > 0, we obtain IitIilNi)Iolfy(t) = 0. Thus, by
Lemma 2.1, tli)rglo y(t) =0. Let w(t) <0for t >T) >Tp+o. If f=0, then
we get a contradiction because 0 < y(t) —py(t —7)<Ofort > T + 7. If
f#0, then

y(t) < /0 f(s)ds < L,

for t > Ty + 7, that is, y(t) is bounded for ¢ > T} + 7. Hence w(t) is
bounded and tli>1£10 w(t) exists. Thus tlirglo z(t) exists. If litrg glf y(t) > 0, then
y(t) > a > 0 for t > T > Ty + 7. Integrating (6) from T} to ¢ and using
(2) we obtain tliglo w(t) = —o0, a contradiction. Hence litril, igf y(t) = 0 and
consequently, by Lemma 2.1, tll)r{.lo y(t) = 0. Thus the proof of the theorem

1S complete.
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Remark. Theorem 2.2 holds if f = 0.

Theorem 2.3. Let 0 < p <1 orp < 0 but p# —1. Suppose that
G satisfies Lipschitz condition on intervals of the type [a,b], 0 < a < b. If

every solution of (1) is oscillatory or tnds to zero as t — oo, then (2) holds.
Proof. If possible, let
(8) / Qb)dt < oo.
0

We show that (1) admits a positive solution which does not tend to zero as
t — co. Let 0 < p < 1. It is possible to choose T' > 0 large enough such
that

/ f(t)dt<( dK/ Qydt < 1=P) sp)

where K = max{K, K5}, K; is the Lipschitz constant of G in [(11_0”) ,1] and
Ky = max{G(u) : (1 p) <u<1}
Let

1 —
X = {:c : [T, 00) — R|z is continuous and (—10—?—)

<a) <1
For u,v € X, we define
d(u,v) = sup{|u(t) —v(t)| : ¢ > T}.

Hence (X, d) is a complete metric space. Define S : X — X as follows: for

Yy e X,
SY)(T + ), te T, T +7]
(Sy)() = py(T — +-———-+/ Q(s)G(y(s — o))ds
—/ £(s)ds, £>T+r,

where r = max{r,¢}. Clearly, (Sy)(t) is continuous and for t > T +r,

p(l—p)+1—p l-p_1-p

(Sy)(®) 2 =5 5 10 - 10
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and
(Y <p+—=+Kz | Q(s)ds
t
1-p i
Sp'i‘T‘I'K Qt)dt <1
T

Thus S : X — X. Futher, for u,v,€ X,

(Su)(T +71) = (ST +71), te[T,T+r]
plu(t —7) —v(t - 1)}

+ / " Qs){Gluls - 0)) — Glu(s - o))}ds,

t>T+r

(Su)(8) - (Sv)(t) =

Hence
d(Su, Sv) < [p+ K, / ” Q(s)ds] d(u,v)
- t

< :p +K /T - Q(t)dt] d(u, v)

~ 1~

Thus S is a contraction. From Banach fixed point theorem it follows that
S has a unique fixed point yo € X. Hence yo(t) is a solution of (1) on
[T + r,00) such that (—1—1})”—) < yo(t) < 1. Thus yo(t) is a positive solution of
(1) which does not tend to zero as t — co. If —1 < p < 0, then one is to
take [r° f(t)dt < L2, K [ Q(t)dt < 12 and

. 1
X = {z : [T, 00) — R|z is continuous and ——1—%—2 <z(t) <1}

and K7 and K, are to be modified accordingly. Further, we define

(Sy)(T +r1), te[T,T +r]

(Sy)(t) = py(t—7)+ = —54p + /t°° Q(s)G(y(s — 0))ds

—/ f(s)ds, t>T+r,
t

The proof is similar to the case 0 < p < 1. If p < —1, then the proof

proceeds as in the case 0 < p < 1 with the following changes:
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o 1+p /°° 1+p
Hdt < —P g f)dt < ~ P
/T s < L2 x [ qua < 1L

X = {z : [T,00) — R|z is continuous and %—’1 <z(t) <1},

(ST +7), t € [T,T +r]
ylt+71) 1 [
yae+7) 1 Cluls —
(Sy)(t) = P P Jepn Q(s)G(y(s — 0))ds
1 had 2 2 _ 3 _ 1
ol f(s)ds + l’..?f_%, t>T+r,

Hence the theorem is proved.

_ Corollary 2.4. Suppose that 0 <p <1 orp <0 but p # —1. Let G
satisfy Lipschitz condition on intervals of the type [a, b, 0 <a <b. Then
every solution of (1) is oscillatory or tends to zero as t — oo if and only if
(2) holds.

This follows from Theorems 2.2 and 2.1.
Example 1. Consider
&) eyt -1+t -1) =9, £ > 2

From Theorem 2.2 it follows that every solution of the equation is oscillatory
or tends to zero as t — oo. In particular, y(t) = e~? is a solution of the

equation which tends to zero as ¢t — co. Here 0 < p < 1.
Example 2. Clearly y(t) = cost is an oscillafory solution of
[y(t) + %y(t - w)] . %y (t - g>= 0, >0
This illustrates the case —1 < p < 0.
Example 3. Consider
[z(t) +2z(t — 1)] + (e-%(zt“) +2e7 501 4 1)x%(t ~1) =3¢ t>9

This example illustrates the case p < —1. Clearly, y(t) = et is a solution

of the equation.
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Example 4. We may note that y(t) = €' is an unbounded positive

solution of the equation
[y(®) —p y(t — 7)) +e(e™™ +pe™" — Nzt —0) =", t > 1,

where 7,0 € (0,00) and p > € > 1. This example has provided motivation

for the following theorems.

Theorem 2.5. Let p > 1. If (2) holds, then every bounded solution of

(1) is oscillatory or tends to zero as t — co.

Proof. Let y(t) be a bounded solution of (1) on [Ty, 00), T, > 0. If
y(t) is oscillatory, then there is nothing to prove. Suppose that y(t) is
nonoscillatory. Then y(t) > 0 or < 0 for ¢ > Ty > Ty,. Let y(t) < 0 for
t > Tp. Setting z(t) as in (3), we obtain (4). Hence 2/(t) >0 fort > Ty + o
implies that z(t) > 0 or < 0 for t > Ty > Ty + 0. Let 2(t) > 0 for t > T.
Since y(t) is bounded, then z(¢) is bounded and hence tlirgo z(t) exists. Using
(2) we may show that li?l sup y(t) = 0 and hence tlinolo y(t) = 0 by Lemma
2.1. Let 2(t) < 0 for ¢ > T;. Hence tll)r{.lo z(t) exists. If tliglo 2(t) = a <0,
then z(t) < afor t > Ty > Ty. Hence from (3) it follows that y(t) < 2(¢) < «
for t > 15, thus, for t > T3 > T5 + 0,

" QUG -t < Gla) [ Q= —oo
Ts Ty

On the other hand, integration of (4) yields
Q1)G(y(t — 0))dt > 2(T3) > —oo,
Ts

a contradiction. Hence tli)rgo z(t) = 0. Consequently, tl_l_glo y(t) = 0 by Lemma
2.1. Suppose that y(t) > 0 for ¢ > Tp. Setting w(t) as in (5), we obtain
w'(t) <0 for ¢t > Ty + o by (6). Hence w(t) >0or <0fort>T, > Ty +o.
If w(t) > 0 for t > T3, then

y(t) >py(t—7) > y(t—1)

for t > Ty > T1 + 7. Thus y(t) > m~> 0 for t > T5, where
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m = min{y(t) : t € [Ty, T> + 7]}

Consequently,
| a6 - ot = oo,
T3

where T3 > T3 + 0. However integrating (6) we obtain

/T QWG - o)t < oo,

a contradiction. Hence w(t) < 0 for ¢ > Ty. Since y(t) is bounded, then w(t)
is bounded and hence tliglo w(t) exists. This implies that tlirgxo z(t) exists,
where z(t) is given by (3). If litrg ilgf y(t) > 0, then we get a contradiction by
(2). Hence litrg (i)l;lf y(t) = 0. From Lemma 2.1 it follows that tllglo y(t) = 0.

Thus the theorem is proved.

Example 5. From Theorem 2.5 it follows that every bounded solution
of

[y(t) —ey(t -1 +(e+ )yt —1) =e*[t(2> +e—1)+1-3e> —¢], t > 2

is oscillatory or tends to zero as t — oo. In particular, y(t) =t et is a

bounded solution of the equation which tends to zero as ¢ — co.

- Theorem 2.6. Let p > 1 and G be Lipschitzian on intervals of the

form [a,b], 0 <-a < b. If every bounded solution of (1) is oscillatory or

tends to zero as t — oo, then (2) holds.

Proof. One may complete the proof proceeding as in the proof of The-

orem 2.3 and with the following changes:
e —1 e —1
/ ftyde < p—, K/ Q(t)dt < ?—,
T 2 T 2

where K = max{K;, Ky}, K; is the Lipschitz constant of G in [%, p] and
K; = max{G(u) : 252 <u < p},

p—1

X = {z : [T, 00) — R| z is continuous and < z(t) < p}
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and
(SY(T +7), te[T,T+7)
N L R MO CR T
41 °°f(3)ds+_:.l, £ T4
P t+71 2

Equation (1) admits a solution yo(t) on [T +7 47, 00) with % < yolt) < p.

- Thus the theorem is proved.

Corollary 2.7. Let p > 1. Suppose that G is Lipschitzian on inter-
vals of the form [a,b], 0 < a < b. Then every bounded solution of (1) is

oscillatory or tends to zero as t — oo if and only if (2) holds.
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