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A NEW APPROACH TO THE TELEGRAPH
EQUATION: AN APPLICATION OF
THE DECOMPOSITION METHOD

BY

D. KAYA

Abstract. The Adomian decomposition method is used
to investigate the telegraph equation. The analytic solution of
the telegraph equation is calculated in the form of a series with
easily computable components. The nonhomogeneous problem
is quickly solved by observing the self-canceling “noise” terms
whose sum vanishes in the limit. Comparing the methodology
with some known techniques shows that the present approach
is relatively easy and highly accurate.

1. Introduction. Consider the telegraph equation has the form.

(1.1) —g—;;; = LC%};’: + (RC + GL)% + RGu,

where the electrical properties of the cable are described by R, its resistance
per unite length; L, its inductance per unite length; C, its capacitance
per unite length, and G, its conductance per unite length. The boundary

conditions and initial condition posed are
’U,(O,t) = fl(t)v (t 2 0)7
Ou
- = >
(12) Sx (Oa t) f2(t), (t = 0)1
u(z,0) = g(z), 0<z<1).

Given the physical situation, it is desirable that solutions propagate with

undistorted form along the telegraph line [1].

Received by the editors May 21, 1998 and in revised form September 28, 1998
Key words and phrases: The decomposition method, telegraph equation, the self-

canceling noise terms.

51



52 D. KAYA [March

The present paper deals with the problem differently by utilizing the
Adomion decomposition method [2-5]. Our objective is an analytic solu-
tion which is obtained in a rapidly convergent series with easily computable

components.

2. Analysis of the method. Let’s assume LC, (RC + GL), and RG

are constant and all equal to one. Consider the following telegraph equation
described by

u  %u  Ou
(2.1) mw'a—t?'i'a-l-u.
The boundary conditions and initial condition posed are

u(0,1) = f1(t), (t > 0),

ou
(2.2) 5,00 =r0), (20,
u(z,0) = g(x), 0<z<1).
To apply the decomposing method, we write equation (2.1) in an oper-
ator form
(2.3) Lou=wu;+u+ Liu

where L; and L, are the differential operators L; = 8:2, L, = 38—:; It is
clear that L, is invertible and LJ! is the two-fold integration from 0 to .
Applying the inverse operator L7! to (2.1) yields L7 L u(z,t) =

L7 (ut) + Ly u + L7 Ly, from which it follows that
(2.4) u(z,t) = fi(t) + 2fo(t) + L7 (we) + L7 'u + L7 Leu.

The decomposition method [3] consists of decomposing the unknown
function u(z,t) into a sum of components defined by the decomposition

series
(2.5) u(z,t) = D un(z,1).
n=0

Substituting (2.5) into (2.4) identifying the zeroth component uy by terms

arising from boundary conditions and following [2], we obtain the subsequent
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components by the following equations:

(2.6) ug = f1(t) + zfa(t),
and
(2.7) Unt1 = L7N(un)e + L7 up + L2 Lew,, n > 0.

In conjunction with (2.6) and (2.7), all components of u(z,t) in (2.5)
will be easily determined; hence the complete solution u(z,t) in (2.5) can be
formally established. The decomposition method provides a reliable tech-

nique that requires less work if compared with the traditional techniques.
. To give a clear overview of the methodology, we have selected two il-
lustrative examples, the first is a homogeneous problem and second is a

nonhomogeneous case.

3. Examples.
Example 1. We consider the telegraph equation in order to illustrate

the technique discussed above. The problem is of the form
(31) um—utt=ut+u, 03$S1,t>0

‘The boundary conditions and initial condition posed are

u(0,t) =7, (t>0),
Ou
. —(0,t) = e, t>0),
(32) SOn=et, (20
u(z,0) = €%, 0<z<1).
Using (2.6) and (2.7) to determine the individual terms of the decomposition,
we find
(3.3) up = e (1 + x)
and

Uy ZL;I(Uo)t -+ L;l’uo + L;lLt'U,()

(3.4) _fz*  2®
=e ‘2"—+'3—' )
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Ug =L;1(’U,1)t + L;lul + L;lLtul

&9 (5 +5)
4 5 )

us =L;1(UQ)t + L;luz + L;lLt’u,Q

(3.6) -t (f’f N m_7>
- 6 7))

and so on for other components.

Substituting (3.3)-(3.6) into (2.5), the solution u(z,t) of (3.1) in a series

form is given by

22 xd 2t x5 2® T
37 u=it)= (1+x+§+5+5+§+——+7+ )

It can be easily observed that (3.7) is equivalent to the exact solution
(3.8) u(z,t) =

This can be verified through substitution.

If a numerical evaluation is needed, we can use the n-term approxima-

tion ¢,, where we find

$=e (1 +2z) =ug
2 3

$2 = t(1+x+2,+3,) ug + uy
2 3 334 5
¢s = t(1+x+2' 3+E+ =) =ug 4 ur + us
s 2 _,1;3 .’174 .’1)5 IL‘G .’137
¢ (1+.’L‘+§+§"‘+I+—+'€"+7) U()+'IL1+’LL2+U3.

In order to verify numerically that the proposed methodology leads to
higher accuracy, we can eva,luatevthe approximate solution using the n-term
approximation ¢,. Table 1 shows the errors obtained by using the procedure
outlined above. It is to be noted that 10 terms only were used in evaluating
the approximate solution. We achieved better approximation by using 15

terms of the decomposition derived above. It is evident that the overall



2000]

THE TELEGRAPH EQUATION

55

errors can be made smaller by adding new terms of the decomposition. :

TABLE 1
t
b'e 0.5 1.0 1.5 2.0
0.5 0.7740919D-11 0.4695133D-11 0.2847722D-11 0.1727229D-11
1.0 0.1656597D-07 0.1004777D-07 0.6094278D-08 0.3696367D-08
1.5 0.1499821D-05 0.9096873D-06 0.5517532D-06 0.3346553D-06
2.0 0.3723488D-04 0.2258410D-04 0.1369795D-04 0.8308224D-05

Example 2. Consider the nonhomogenous telegraph equation
(3.9) Upe — Uge = U +u — (22 + 12 + 2¢),

The boundary conditions and initial condition posed are

U(O,t) = t27 (t 2 0)7
(3.10) Mon=0, (=0
u(z,0) = 22, 0<z<).

Using (2.6) and (2.7) to determine the individual terms of the decomposition,
we find

2,2 4
g2 _ 2, TV T
(311) Ug = t t 2 12,
and
uy =L;1(u0)t + L;I’LLO + L;lLtuo
3.12) N 42t+ 222 2:54 _ 2zt _ z4t? _ ﬁ
(3. T 2 12 12 24 360°
Uo =L;1(U1)t + L;lul + L;l‘Lt’U,l
3z* 224t %2 528
(3.13) 2z e, rv 0z
12 12 24 360

It is obvious that the self-calceling “noise” terms appear between various

components. Canceling the second and third terms in ug and the second’
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and third terms in u;, keeping the non-noise terms in ug and u; yields the

exact solution of (3.9) given by
(3.14) u(z,t) = 2% + 2,

which is easily verified.

It is worth noting that other noise terms between other components of
u(z,t) will be canceled, as the fouth term of the uo and u; and the first
term of us, etc., and the sum of these “noise” terms will vanish in the limit.
This is formally justified by [2,6].

In closing, the methods avoid the difficulties and massive computational
work by determining the analytic solution. The solution is very rapidly
convergent by utilizing the Adomian’s decomposition method. Numerical
approximations shows a high degree of accuracy and in most cases ¢,, the
n-term api)roximation is accurate for quite low values of n. The numerical
results we obtained justify the advantage of this methodology, even in the
few terms approximation.

It is worth noting that the Adomian methodology is very powerful and
efficient in finding exact solutions for wide classes of problems. The conver-
gence can be made faster if the noise terms appear as discussed in [2,6]. The
method avdids the difficulties and massive computational work compared to

existing techniques.
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