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Abstract. The Adomian decomposition method is used
to investigate a linearised Burgers equation. The analytic solu-
tion of the problem is calculated in the form of a series with eas-
ily computable components. The nonhomogeneous problem is
effectively solved by employing the self-canceling “noise” terms
of the phennomean where sum of components vanishes in the
limit. Comparing the methodology with some known techniques
shows that the present approach is powerful and reliable.

1. Introduction. The present paper deals with Burgers equation dif-
ferently by utilizing the Adomian decomposition method [1-3]. Our objective
is to obtain an analytic solution which is obtained in a rapidly convergent se-
ries with easily computable components and then to have numerical results
in order to compare the accuracy.

In this paper, we are concerned with a linearised Burgers equation. The
problem, posed as a model test problem by Sincovec [4], the equation, in
u(zx,t), is

du 0%u

ou
' L 2y 0<z<1, >0
(1.1) Y \I/(ﬂv,t)+6m2 cax,O_:z:_ , t>0,

where c is a constant and ¥(z,t) is given function of z and ¢. The boundary
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conditions and initial condition posed are

u(z,0) = g(z), (0 <z <1),
(1.2) - u(0,t) = f1(t),
% 1,1) = 1a(0), (42 0)

Physically, this problem can represent a simple model of a fluid flow,
heat flow, or other phenomenon, in which an initially discontinuous profile
is propagated by diffusion and convection, the latter with a speed of c [5].

The numerical solution of the Burgers equation has been studied before
in [7,8]. The studies of motivated by the desire to obtain analytic solutions
and numerical approximations to (1.1) with high accuracy level. Forrington
[7] and Sanugi and Evans (8] used a Fourier series technique to transform
the original partial differential equation (1.1) to a system of ordinary differ-
ential equations with initial conditions. In our approach, we will apply the

Adomian’s decomposition method and the noise-terms phenomena.

2. Analysis of the method. To apply the decomposition method,

we write (taking ¢ = 1) equation (1.1) in an operator form
(2.1) Liu = ¥(x,t) — ug + Lyu,

where L; and L, are the differential operators

0 o?

2.2 _9 9
(2.2) L. ot’ Le Ox2

It is clear that L, is invertible and L;* is the one-fold integration from 0 to
t.

Applying the inverse operator L;* to (2.1) yields
L7 Lou(z,t) = L7 (2, 1) — L7 (ue) + L7 Lo,
from which it follows that

(2.3) w(z,t) = g(z) + L7 1 0(x,t) — L (ug) + L7 ' Lou.
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The decomposition method [2] consists of decomposing the unknown
function u(z,t) into a sum of components defined by the decomposition

series
(2.4) w(z,t) =) un(a,1),
n=0

substituting (2.4) into (2.3) leads to the recursive relationship

25 uo = g(z) + Ly " ¥(z, 1),

Unt1 = —L; "(un)z + L7 Lo(u,), for n>0.
It is useful to note that the recursive relationship is constructed on the basis
that the zeroth component ug(z,t) is defined by all terms that arise from
the initial condition and from integrating the source term. The remaining
components u,(z,t), n > 1, can be completely determined such that each
term is computed by using the previous term. Accordingly, considering few

terms only, the relation Eq. (2.5) gives
ug = g(z) + Ly ' (¥(z, 1)),
Uy = —Lt_l(uﬂ)x + Lt—le(UO)a
up = =L (w)s + Ly La(w1),

and so on. As a result, the components ug, %1, us, ... are identified and the
series solution thus entirely determined. However, in many cases the exact

solution in a closed form may be obtained. For numerical purposes, the

approximation
(2.6) u(z,t) = nllr%o On,
where
n—1
(27) ¢n = Z 'u'k(x7t)a
k=0

can be used. It is clear that better approximations can be obtained by
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evaluating more components of u(x,t). We note here that the convergence
question of this technique has been formally proved and justified by [1,3].
Adomian and Rach [2] and Wazwaz [6] have investigated the phenomena
of the self-canceling “noise” terms where sum of components vanishes in the
limit. An important observation was made that “noise” terms appear for
nonhomogenous cases only. Further, it was formally justified that if terms
in ug are canceled by terms in u;, even though u; includes further terms,
then the remaining non canceled terms in ug constitute the exact solution
of the equation only after justification. To give a clear. overview of the

methodology, the following examples will be discussed.
3. Examples.

Example 1. We consider a homogeneous linearised Burgers equation
in order to illustrate the technique discussed above. The problem is of the

form

(3.1) Up — Ugg = —Ug, 0<2<1, >0,

with initial condition

(3.2) u(z,0) = —e™".

Using (2.5) to determine the individual terms of the decomposition, we find
(3.3) uy = —e

and

Uy = —Lt_l(’u,g)m + L;le’u,o

(3.4)
= —2te™ %,
Uy = "L;l(ul):c + Lt_lL.’cul
(35) 4t2 _
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uz = —L7 (ug)e + L7  Lous
83 _.
= -5
and so on for other components.
Substituting (3.3)-(3.6) into (2.4), the solution u(x,t) of (3.1) in a series

form

(3.6)

-z —x 4t2 —z 8t3 —z
(3.7 u(z,t) = —e™* — 2te ST TP

follows immediately. After some tedious algebra factoring, (3.7) can be

rewritten as

442 83
(3.8) u(z,t) = —e (1 + 2t + 5 + ETR +...).

It can be easily observed that (3.8) is equivalent to the exact solution
(3.9) u(z,t) = —e T2 |

This can be verified through substitution.
In order to verify numerically whether the proposed methodology leads

to higher accuracy, we can evaluate the appproximate solution using the

n-term approximation to u(z,t) by ¢,, such that ¢, = Z;é ug(z,t) or
$1 = —e" " =uy,
¢ = —e % — 2te™" = ug + uy,
¢y = —e"F —2te™® — 2—!26—’: = up + u1 + ua,
¢3 = —e T —2te™" — %e"” — i’i:e_”’ = ugp + u1 + ug + us,

Table 1 below illustrates the errors obtained by using the procedure
outlined above. We achieved a very good approximation with the actual
solution of the equations by using 10 terms only of the decomposition derived
above. It is evident that the overall errors can be made smaller by adding

new terms of the decomposition.
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Table 1 Absolute errors obtained for Example 1

t
X 0.5 1.0 1.5 2.0
0.5 -0.165660D-07 -0.100478D-07 —0.609428D—08 -0.369637D-08
1.0 -0.100478D-07 -0.225841D-07 -0.136979D-04 -0.830822D-05
1.5 -0.356139D-02 -0.216009D-02 -0.131016D-02 -0.794654D-03
2.0 -0.940401D-01 -0.570382D-01 -0.345954D-01 -0.209832D-01

The Adomian decomposition method avoids the difficulties and massive
computational work by determining the analytic solution. We compare the
approximation solution of (3.1) with the exact solution of the equations
in Té,ble 1. Numerical approximations shows a high degree of accuracy
and in most cases ¢,, the n-term approximation is accurate for quite low
values of n. The numerical results we obtained justify the advantage of this

methodology, even in the case of few terms approximation.

Example 2. We next consider the nonhomogeneous Burgers equation
of the form

(3.10) Uy + Up — Upg = €2° +cost — 2te®®, 0 <z <1, >0,

with initial condition
(3.11) u(z,0) = 0.

Using (2.5) to determine the individual terms of the decomposition, we find

(3.12) uo = t€2 + sint — 26,
and

Uy = —Lt_l(’ll,o)z + Lt_le’u,o
(3.13)

2
— t262$ — §t3e2x,
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U = —-Lt_l(ul),',. + L;leul

3.14
3 3

Uz = —Lt—.l(’LLg)w + L;ILEUQ
(3.15)

%t;ezz _ 2t562z

and so on for other components. It can be easily observed that the self-
canceling “noise” terms appear between various components. Canceling the
third term in ug and the first term in u;, the second term in u; and the first
term in uo, and so on keeping the non canceled terms in ug yields the exact

soluticn of (3.10) given by
(3.16) u(z,t) = te’® + sint,

which can be easily verified.

In cloosing, the methods avoid the difficulties and massive computa-
tional work by determining the analytic solution. The solution is very rapid-
ly convergent by utilizing the Adomian’s decomposition method. The de-
composition method provides a reliable technique that requires less work
and highly accurate results if compared with the traditional techniques.

It is worth noting that the Adomian methodology is very powerful and
efficient in finding exact solutions for wide classes of problems. The conver-

gence can made faster if the noise terms appear as discussed in [2,6].
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