ON AFFINE SKEW SYMMETRIC KILLING VECTOR FIELDS

BY

FILIP DEFEVER* AND RADU ROSCA

Abstract. We study the conditions for a skew symmetric Killing vector field to be an affine vector field; we give explicit examples of manifolds realizing this situation.

1. Introduction. Let (M,g) be a Riemannian or pseudo-Riemannian manifold and let ∇ be the Levi-Civita connection on M. It is well known that Killing vector fields X (or infinitesimal isometries) play a distinguished role in differential geometry. They play also an important role when dealing with manifolds having indefinite metrics.

A vector field X which satisfies

(1)
$$\nabla X = X \wedge \mathcal{U} \Longleftrightarrow \mathcal{U}^{\flat} \otimes X - X^{\flat} \otimes \mathcal{U},$$

with \wedge the wedge product and \mathcal{U} a torse forming vector field, is said to be a skew symmetric Killing vector field and \mathcal{U} is called the generative of X [1] [2]. One finds that

$$dX^{\flat} = 2\mathcal{U}^{\flat} \wedge X^{\flat} \text{ and } \mathcal{L}_X X^{\flat} = 0,$$

where \mathcal{L} is the Lie derivative, which shows that X^{\flat} is an exterior recurrent form [3], having $2U^{\flat}$ as recurrence form, and also having the property to be a self-invariant form. Following a well-known property, X is an affine vector

Received by the editors October 28, 1998.

AMS 1991 Subject Classification: 53B20, 53B30, 53B50, 53C25, 53C35, 53C80.

^{&#}x27;Key words and phrases: manifolds, space-times, Killing vector fields.

^{*} Postoctoraal Onderzoeker F.W.O.-Vlaanderen, Belgium.

field if it satisfies

$$\mathcal{L}_X(\nabla X) = 0;$$

if M is compact and X is Killing, then following [16] the relation (2) is always satisfied.

Let then (M,g) be a paracompact or noncompact manifold. In the present paper we prove that the necessary and sufficient condition for a skew symmetric vector field X to be an affine vector field, is that the generative form ω of its associated torse forming vector field \mathcal{U} be an exterior recurrent form having \mathcal{U}^{\flat} as recurrence form. In this case, the existence of X is determined by an exterior differential system in involution, and M may be viewed as the local Riemannian product $M = M_X \times M^{\perp}$, such that

- (1) M_X is a totally geodesic surface tangent to X and U;
- (2) M_X^{\perp} is a 2-codimensional submanifold of umbilical (resp. geodesic) index 1.

Next, let σ be the volume element of M_X . If X defines an infinitesimal homothety of σ , then all vector fields of M_X are exterior concurrent, and by reference to [8], we conclude that M_X is a space form. In addition, it is shown in this case, that U^{\flat} is a harmonic form. Finally, we give the following examples:

(1) X is carried by a (2m+1)-dimensional Kenmotsu manifold $M(\phi, \Omega, \eta, \xi, g)$ [17]. It is proved that in this case, in order for X to be affine, one necessarily must have that $\eta(X) = \text{const.}$. Then, X, ϕX and ξ define a commutative triple and ϕX is also a skew symmetric Killing vector field. If $\mathbb{L}: \pi \to \pi \wedge \Omega$ means Weyl's (1.1) operator [4], then the following facts occur:

$$\mathcal{L}_X \Omega = 0, \qquad \mathcal{L}_{\phi X} \Omega = 0,$$

and

$$\mathcal{L}_X(\mathbb{L}X^{\flat} \wedge \Omega^q) = 0, \quad \mathcal{L}_{\phi X}(\mathbb{L}X^{\flat} \wedge \Omega^q) = 0.$$

Thus, X and ϕX define infinitesimal automorphisms of Ω and of all the (2q+1)-forms $X^{\flat} \wedge \Omega^q$.

- (2) Let (M,g) be a space-time manifold having e_4 as time like vectorfield. If M carries two skew symmetric Killing vector fields X and Y, having e_4 as generative, then X and Y are affine Killing vector fields and M is a space form of curvature -1 [15].
- **2.** Preliminaries. Let (M,g) be a Riemannian C^{∞} -manifold and let ∇ be the covariant differential operator defined by the metric tensor g. We assume that M is oriented and that ∇ is the Levi-Civita connection. Let ΓTM be the set of sections of the tangent bundle, and $\flat: TM \to T^*M$ the classical isomorphism (see also [5]) defined by g.

Next, following [5], we set

$$A^q(M, TM) = \operatorname{Hom}(\Lambda^q TM, TM),$$

and notice that the elements of $A^q(M,TM)$ are vector valued q-forms ($q < \dim M$). Denote by

$$d^{\nabla}: A^q(M, TM) \to A^{q+1}(M, TM)$$

the exterior covariant derivative operator with respect to ∇ (it should be noticed that in general $d^{\nabla^2} = d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^2 = d \circ d = 0$). If $p \in M$ then the vector valued 1-form $dp \in A^1(M,TM)$ is the identity vector valued 1-form and is also called the soldering form of M [6]. Since ∇ is symmetric one has that $d^{\nabla}(dp) = 0$.

A vector field Z which satisfies

(3)
$$d^{\nabla}(\nabla Z) = \nabla^2 Z = \pi \wedge dp \in A^2(M, TM); \quad \pi \in \Lambda^1 M$$

is defined to be an exterior concurrent vector field [7] (see also [9]). The 1-form π is called the concurrence form and is defined by

(4)
$$\pi = \lambda Z^{\flat}, \quad \lambda \in \Lambda^{0} M.$$

In this case, if \mathcal{R} is the Ricci tensor of ∇ , one has

(5)
$$\mathcal{R}(Z,Z) = -(n-1)\lambda g(Z,Z).$$

A vector field \mathcal{U} whose covariant differential satisfies

(6)
$$\nabla \mathcal{U} = f dp + \omega \otimes \mathcal{U}; \quad f \in \Lambda^0 M,$$

is called a torse forming vector field [16] and the scalar f is the energy of $\mathcal{U}[10]$. We also remind Rosca's lemma [1]

$$d\mathcal{U}^{\flat} = \omega \wedge \mathcal{U}^{\flat},$$

where ω is called the generative form of \mathcal{U} . A function $\mathbb{R}^n \to \mathbb{R}$ is isoparametric if $\|\nabla f\|^2$ and div ∇f are functions of f [11].

Let $\mathcal{O} = \{e_A | A = 1, \dots n\}$ be a local field of orthonormal frames over M and let $\mathcal{O}^* = \operatorname{covect}\{\omega^A\}$ be its associated coframe. Then the soldering form dp is expressed by

(8)
$$dp = \omega^A \otimes e_A; \quad A \in \{1, \dots n\};$$

and E. Cartans structure equations can be written in indexless manner as

(9)
$$\nabla e = \theta \otimes e,$$

$$(10) d\omega = -\theta \wedge \omega,$$

$$(11) d\theta = -\theta \wedge \theta + \Theta.$$

In the above equations θ (resp Θ) are the local connection forms in the tangent bundle TM (resp. the curvature 2-forms on M).

3. The general case. Let (M, g) be an n-dimensional Riemannian manifold with Levi-Civita connection ∇ . Following [1], a skew symmetric Killing vector field X is defined by

$$\nabla X = X \wedge \mathcal{U} \Longleftrightarrow \mathcal{U}^{\flat} \otimes X - X^{\flat} \otimes \mathcal{U},$$

(A: wedge product of vector fields) where \mathcal{U} , which is called the generating vector field of X, is a torse forming vector field [16], that is:

(13)
$$\nabla \mathcal{U} = f dp + \omega \otimes \mathcal{U}; \quad \omega \in \Lambda^1 M,$$

 $f \in \Lambda^0 M$ is called the energy of \mathcal{U} . Recall also Rosca's lemma (7)

$$d\mathcal{U}^{\flat} = \omega \wedge \mathcal{U}^{\flat}$$

which shows that the dual form \mathcal{U}^{\flat} of \mathcal{U} is exterior recurrent [3] and has the generating form ω of \mathcal{U} as recurrence form. Making use of the structure equations (10), one derives from (12) and (7) that

$$dX^{\flat} = 2\mathcal{U}^{\flat} \wedge X^{\flat},$$

which means that X^{\flat} is also an exterior recurrent form having $2\mathcal{U}^{\flat}$ as recurrence form. We notice that, in view of the fact that

$$X^{\flat} \wedge dX^{\flat} = 0$$

one may write locally $X^{\flat} = \tau_1 d\tau_2, \tau_1, \tau_2 \in \Lambda^0 M$. Setting $s = g(X, \mathcal{U}), 2l_x = \|X\|^2$ ($2l_u = \|\mathcal{U}\|^2$ energy of \mathcal{U}), one finds from (12) and (13) that

(15)
$$ds = s(\mathcal{U}^{\flat} + \omega) + (f - 2l_u)X^{\flat},$$

(16)
$$dl_x = 2l_x \mathcal{U}^{\flat} - sX^{\flat}, \quad dl_U = (f\mathcal{U}^{\flat} + 2l_u \omega).$$

Then by (7), (15), and (16), one has

$$\mathcal{L}_X X^{\flat} = 0,$$

(\mathcal{L} : Lie derivative) which sows that X^{\flat} is a self invariant form. Now, following the well known definition, X is an affine vector field if it satisfies

$$(18) \mathcal{L}_X \nabla X = 0,$$

and by (12), the above equation can be develloped as

$$\mathcal{L}_{X}\mathcal{U}^{\flat}\otimes X - \mathcal{L}_{X}\otimes \mathcal{U} - X^{\flat}\otimes \mathcal{L}_{X}\mathcal{U}.$$

By (12) and (13) one then sees that

(20)
$$\mathcal{L}_X \mathcal{U}^{\flat} = ds - s\omega + \omega(X)\mathcal{U}^{\flat}$$

and

(21)
$$\mathcal{L}_X \mathcal{U} = (f - 2l_u)X + (s + \omega(X))\mathcal{U}.$$

Since (19) holds for any X and \mathcal{U} , and taking account of (17), it follows that

$$(22) f = 2l_u, \quad s + \omega(X) = 0.$$

Therefore, in order for (18) to hold, one must have that

(23)
$$ds - s\omega + \omega(X)\mathcal{U}^{\flat} = 0.$$

Further, by (22) and (23) one finally gets:

(24)
$$\frac{ds}{s} = \omega + \mathcal{U}^{\flat} \Rightarrow d\omega + d\mathcal{U}^{\flat} = 0,$$

i.e. \mathcal{U}^{\flat} and $-\omega$ are homologous, and one may write

$$(25) d\omega = \mathcal{U}^{\flat} \wedge \omega,$$

i.e. ω and \mathcal{U}^{\flat} definde a reciprocal exterior recurrent pairing.

Denote by $D_X = \{X, \mathcal{U}\}$ the 2-distribution defined by X and \mathcal{U} , and by $\varphi = X^{\flat} \wedge \mathcal{U}^{\flat}$ its corresponding simple unit form. Since

(26)
$$i_X \varphi = 2l_x \mathcal{U}^{\flat} - sX^{\flat}, \quad i_{\mathcal{U}} \varphi = s\mathcal{U}^{\flat} - l_u X^{\flat},$$

one can verify that for X', with $X' \in D_X$ one has $\nabla_X X' = 0$, which means that the distribution D_X is an autoparallel foliation and that the leaf M_X of D_X is a totally geodesic surface of M.

On the other hand, taking the exterior differential of φ , and using (13) and (14), one finds that

(27)
$$d\varphi = \omega \wedge \varphi,$$

i.e. φ is exterior concurrent and has ω as recurrence form. This agrees with the fact that the pairing (X,\mathcal{U}) defines a foliation, and consequently the complementary orthogonal distribution D_X^{\perp} is also involutive. If we denote

by M_X^{\perp} the (n-2)-dimensional leaf of D_X^{\perp} , it is easily seen that \mathcal{U} (resp. X) is a normal umbilical section (resp. a normal geodesic section) of M^{\perp} . Therefore M may be viewed as the local Riemannian product

$$M = M_X \times M_X^{\perp}$$

such that:

- (i) M_X is a totally geodesic surface,
- (ii) M_X^{\perp} is a 2-codimensional submanifold of umbilical (resp. geodesic) index 1 (see [2]).

Let \sum be the exterior differential system which determines X. Then by (13), (14), (16), (24), and (25), it follows that the characteristic numbers of \sum are r = 6, $s_0 = 3$, $s_1 = 3$. Since $r = s_0 + s_1$ it follows that \sum is in involution and by E. Cartan's test [12] we conclude that the existence of the affine skew symmetric Killing vector fild X is determined by 3 arbitrary functions of 1 argument.

We may formulate the:

Theorem 3.1. The necessary and sufficient condition for a skew symmetric Killing vector field X on (M,g) to be an affine vector field, is that the generative form ω of its associated torse forming vector field \mathcal{U} be an exterior recurrent form having \mathcal{U}^{\flat} as recurrence form. The existence of such an X is determined by an exterior differential system in involution, and M may be viewed as the local Riemannian product $M = M_X \times M_X^{\perp}$, such that:

- (i) M_X is a totally geodesic surface tangent to X and U;
- (ii) M_X^{\perp} is a 2-codimensional submanifold of umbilical (resp. geodesic) index 1.
 - 4. A speical case. Since we found in section 3 that

(28)
$$i_X \varphi = 2l_x \mathcal{U}^{\flat} - sX^{\flat}, \quad s = g(X, \mathcal{U}),$$

one derives by (16), (22), and (24) that

(29)
$$\mathcal{L}_X \varphi = -s\varphi.$$

This means that X defines an infinitesimal conformal transformation of φ . Therefore, we will discuss in this section the case when X defines an infinitesimal homothety of φ , i.e. $s = g(X, \mathcal{U}) = \text{const.}$. In this case, it follows from (16), (22), and (24) that

(30)
$$\mathcal{U}^{\flat} + \omega = 0 \Rightarrow d\mathcal{U}^{\flat} = 0, \quad f = \text{const.}.$$

Operating now on (12) and (13) by the operator d^{∇} , one derives

(31)
$$d^{\nabla}(\nabla X) = \nabla^2 X = fX^{\flat} \wedge dp \Rightarrow \mathcal{R}(X, Z) = -(n-1)fg(X, Z),$$

and

(32)
$$d^{\nabla}(\nabla \mathcal{U}) = \nabla^2 \mathcal{U} = f \mathcal{U}^{\flat} \wedge dp \Rightarrow \mathcal{R}(\mathcal{U}, Z) = -(n-1) f g(\mathcal{U}, Z),$$

where \mathcal{R} denotes the Ricci tensor field of ∇ and $Z \in \Xi(M)$. Since the property of exterior concurrency is preserved by linearity and f = const., it follows by (31) and (32) and reference to [9] that the surface M_X tangent to the distribution D_X is a space of curvature -f, i.e. up to a sign, the energy of \mathcal{U} .

Let

$$*: \Lambda^p T^* M \to \Lambda^{n-p} T^* M$$

be the star operator on M, and

$$\delta \pi = (-1)^{n(p+1)+1} * d * \pi$$

the codifferential of a q-form π . Taking the codifferential of \mathcal{U}^{\flat} , one obtains

(33)
$$*\mathcal{U}^{\flat} = \sum_{q=1}^{n} (-1)^{q-1} \mathcal{U}^{q} \omega^{1} \wedge \cdots \wedge \hat{\omega}^{q} \wedge \cdots \wedge \omega^{n},$$

and by reference to (13), where in stead of ω one has \mathcal{U}^{\flat} (see (30)), one gets

(34)
$$\delta \mathcal{U}^{\flat} = -*d*\mathcal{U}^{\flat} = -(n-1)f.$$

But f being constant and \mathcal{U} being closed, one may write

$$\Delta \mathcal{U}^{\flat} = d\delta \mathcal{U}^{\flat} = 0,$$

which proves the fact that \mathcal{U}^{\flat} is a harmonic form.

Theorem 4.1. Let X be a skew symmetric vector field on an n-dimensional Riemannian manifold M and let \mathcal{U} be the associated torse forming vector field of X. Let also M_X be the surface tangent to X and \mathcal{U} , which foliates M. Then if X defines an infinitesimal homothety of the volume element of M_X , the energy of the torse forming vector field \mathcal{U} is constant and:

- (i) M_X is a space form of curvature -f,
- (ii) \mathcal{U}^{\flat} is a harmonic form.
 - 5. Examples.
- **5.1 On Kenmotsu manifolds.** Let $M(\phi, \Omega, \eta, \xi, g)$ be a (2m + 1)-dimensional Kenmotsu manifold. We recall that the quintuple $(\phi, \Omega, \eta, \xi, g)$ of structure tensors satisfy:

(36)
$$\begin{cases} \phi^{2} = -Id + \eta \otimes \xi, \ \phi \xi = 0, \ \eta(\xi) = 1, \\ (\phi Z)^{\flat} = -\langle \phi dp, Z \rangle, \ g(\phi Z, Z') + g(Z, \phi Z') = 0, \\ (\nabla \phi) Z = \eta(Z) \phi dp - (\phi Z)^{\flat} \otimes \xi \iff (\nabla_{Z'} \phi) Z \\ = -\eta(Z) \phi Z - g(Z, \phi Z') \xi, \\ \nabla \xi = dp - \eta \otimes \xi; \end{cases}$$

and

(37)
$$\begin{cases} d\eta = 0, \ d\Omega = 2\eta \wedge \Omega, \\ d^{\nabla} \phi dp = 2\Omega \otimes \xi + \eta \wedge \phi dp. \end{cases}$$

(see also [8])

Remark. By the fourth equation of (36) and (37) one sees that ξ is a closed torse forming vector field.

Assume now that M carries a skew symmetric Killing affine vector field X having ξ as generative, that is

(38)
$$\nabla X = X \wedge \xi \Longleftrightarrow \nabla X = \eta \otimes X - X^{\flat} \otimes \xi, \ \mathcal{L}_X \nabla X = 0.$$

In view of (38), (14) now takes the form

$$(39) dX^{\flat} = 2\eta \wedge X^{\flat}.$$

Then, making use of the structure equations (9) and (10), we derive by (38) that

(40)
$$dX^0 = 0; \text{ we have that } X^0 = \eta(X).$$

Defining as usual (see also [13]), by

$$Z \to -i_Z \Omega, \ \Omega^{\flat}(Z) =^{\flat} Z, \ Z \in \Xi(M),$$

the symplectic isomorphism, one derives by (36)

$$(41) d(\phi X)^{\flat} = 2\eta \wedge (\phi X)^{\flat} - 2X^{0}\Omega,$$

where

$$(42) (\phi X)^{\flat} = -^{\flat} X.$$

Then taking the Lie derivative of Ω with respect to X one derives by (37) and (41) that

$$\mathcal{L}_X \Omega = 0.$$

Further, one also finds that

$$(44) \qquad \qquad {}^{\flat}(\phi X) = X^{\flat} - X^{0}\eta,$$

and making use of the structure equations (9) and (10), one also derives

$$\mathcal{L}_{\phi X}\Omega = 0.$$

Hence, (43) and (45) show that both X and ϕX define infinitesimal automorphisms of the structure 2-form Ω . Let now \mathbb{L} be the Weyl operator of type (1.1) [4], acting on 1-forms, such that

(46)
$$\mathbf{L}\pi = \pi \wedge \Omega, \ \mathbf{L}^q \pi = \pi_q = \pi \wedge \Omega^q, \ \pi \in \Lambda^1 M.$$

Then, setting $(X^{\flat})_q = X^{\flat} \wedge \Omega^q$, one derives on behalf of (39) and (40)

$$\mathcal{L}_X(X^{\flat})_q = 0,$$

which says that X defines an infinitesimal automorphism of the (2q+1)forms $X^{\flat} \wedge \Omega^{q}$. On the other hand, with the help of (36) and (39), we obtain

(48)
$$\nabla \phi X = X^0 \phi dp + \phi X \wedge \xi.$$

Since the left inner product $\langle Z, \phi dp \rangle$ is equal to ϕZ , the expression for $\nabla \phi X$ reveals that ϕX is also a Killing vector field, having ξ as generative. Now, by (38), (48), and the fourth equation of (36), one finds:

(49)
$$[X, \phi X] = 0, \ [\xi, \phi X] = 0, \ [\xi, X] = 0.$$

This shows that $X, \phi X$, and ξ define a commutative triple (see also [14], [15]).

If we set as in Section 3, $2l_x = ||X||^2$, then by (38) one gets

$$(50) dl_x = 2l_x \eta - X^0 X^{\flat},$$

and consequently

$$(51) \nabla l_x = 2l_x \xi - X^0 X,$$

which gives

(52)
$$\|\nabla l_x\|^2 = 4l_x^2 - 2(X^0)^2 l_x.$$

Next, by the general formula $\mathrm{div} Z = \mathrm{tr} \nabla Z$ one finds that

(53)
$$\operatorname{div}\xi = 2m,$$

and

(54)
$$\operatorname{div}(\nabla l_x) = 2(m+1)l_x - 2(X^0)^2.$$

Then, since $X^0 = \text{const.}$, it follows from above, that $\|\nabla l_x\|^2$ and $\text{div}l_x$ depend on l_x . Consequently, by reference to [11] (see also Section 2), one

may say that the square of the length of a skew symmetric Killing vector field X on a Kenmotsu manifold $M(\phi, \Omega, \eta, \xi, g)$ is an isoparametric function. Summarizing, we have the following

Theorem 5.1. Let $M(\phi, \Omega, \eta, \xi, g)$ be a (2m+1)-dimensioanl Kenmotsu manifolld. Then if X is a skew symmetric Killing vector field on M, having the Reeb vector field ξ as generative, one necessarily has that $\eta(X) = \text{const.}$, where $\eta = \xi^{\flat}$. In this case ϕX is also a Killing vector field and $X, \phi X$, and ξ define a commutative triple, i.e. $[X, \phi X] = 0$, $[\xi, \phi X] = 0$, $[\xi, X] = 0$. In addition, X and ϕX define infinitesimal automorphisms of the fundamental 2-form Ω and of all (2q+1)-forms $(X^{\flat})_q = X^{\flat} \wedge \Omega$, i.e. $\mathcal{L}_X \Omega = 0$, $\mathcal{L}_{\phi X} \Omega = 0$, $\mathbb{L}(X^{\flat})_q = 0$, $\mathcal{L}_{\phi X}(X^{\flat})_q = 0$.

- 5.2 On space-times. Let (M,g) be a general space-time and let X and Y be two skew symmetric Killing vector fields on M having the unit time like vector field e_4 on M as generative, then both X and Y are affine vector fields, and the existence of X and Y imply the following properties:
 - (i) M is a space form of cruvature -1,
- (ii) the square of the length of X and Y are isoparametric functions,
- (iii) the generalized Faraday form \mathcal{F} on M is a relatively integral invariant of X and Y (see [15]).

References

- 1. R. Rosca, On a class of Killing vector fields, Giornate di Geometria, Univ. Messina 1991.
- 2. R. Rosca, On exterior concurrent skew symmetric Killing vector fields, Rend. Mat. Messina 2 (1993), 131-145.
- D. K. Datta, Exterior recurrent forms on manifolds, Tensor NS 36 (1982), 115-120.
- 4. A. Weyl, Sur la teorie des formes différentielles attachées a une variété analytique complexe, Comm. Math. Helv. 20 (1974), 110-116.
 - 5. N. A. Poor, Differential Geometric Structures, Mc Graw Hill, New York, 1981.
 - 6. J. Dieudonné, Treatise on Analysis, Vol. 4, Academic Press, New York, 1974.
- 7. R. Rosca, Exterior concurrent vectorfields on a conformal cosymplectic manifold admitting a Sasakian structure, Libertas Math. Libertas Math. (Univ. Arlington, Texas), 6 (1986), 167-174.
- 8. I. Mihai, R. Rosca and L. Verstraelen, Some aspects of the differential geometry of vector fields, Padge, K. U. Grussel 2, 1996.

- 9. M. Petrovic, R. Rosca and L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math, 15 (1989), 179-187.
 - 10. C. Udiste, Properties of torse forming vector fields, Tensor NS, 42 (1982), 134-144.
- 11. A. West, *Isoparametric systems*, Geometry and Topology of Submanifolds, 1 (1989), 222-230.
 - 12. E. Cartan, Oeuvres, Gauthier-Villars, Paris, 1955.
- 13. P. Libermann and C. M. Marle, *Géométrie Symplectique*. Bases Théorétiques de la Mécanique, U. E. R. Math. du C. N. R. S., 7 (1986).
- 14. K. Matsumoto, I. Mihai and R. Rosca, A certain totally conformal almost cosymplectic manifold and its submanifolds, Tensor NS, 51 (1992), 91-102.
- 15. F. Defever and R. Rosca, On space-time manifolds carrying two exterior concurrent skew symmetric Killing vector field, Publ. Math. Debrecen, in print.
- 16. K. Yano, On torse forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20 (1944), 340-345.
- 17. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J, 24 (1972), 93-103.

Filip Defever, Zuivere en Toegepaste Differentiaalmeetkunde, Departement Wiskunde, K. U. Leuven, Celestijnenlaan 200 B, B-3001 Leuven, BELGIUM

Radu Rosca, 59 Avenue Emile Zola, 75015 Paris, FRANCE