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ON AFFINE SKEW SYMMETRIC
KILLING VECTOR FIELDS
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FILIP DEFEVER* AND RADU ROSCA

Abstract. We study the conditions for a skew symmetric
Killing vector field to be an affine vector field; we give explicit
examples of manifolds realizing this situation.

1. Introduction. Let (M, g) be a Riemannian or pseudo-Riemannian
manifold and let V be the Levi-Civita connection on M. It is well known
that Killing vector fields X (or infinitesimal isometries) play a distinguished
role in differential geometry. They play also an important role when dealing
with manifolds having indefinite metrics.

A vector field X which satisfies
(1) VX=XANU=U QX -X"3U,

with A the wedge product and U a torse forming vector field, is said to be a
skew symmetric Killing vector field and U is called the generative of X [1]
[2]. One finds that

dX® =2’ A X" and Lx X" =0,

where £ is the Lie derivative, which shows that X is an exterior recurrent
form [3], having 2U" as recurrence form, and also having the property to be

a self-invariant form. Following a well-known property, X is an affine vector
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field if it satisfies
(2) Lx(VX) =05

if M is compact and X is Killing, then following [16] the relation (2) is

always satisfied. '

Let then (M,g) be a paracompact or noncompact manifold. In the
present paper we prove that the necessary and sufficient condition for a skew
symmetric vector field X to be an affine vector field, is that the generative
form w of its associated torse forming vector field ¢/ be an exterior recurrent
form having U’ as recurrence form. In this case, the existence of X is
determined by an exterior differential system in involution, and M may be
viewed as the local Riemannian product M = Mx x M=, such that
(1) Mx is a totally geodesic surface tangent to X and U;

(2) M3 is a 2-codimensional submanifold of umbilical (resp. geodesic)
index 1.

Next, let ¢ be the volume element of Mx. If X defines an infinitesimal
homothety of o, then all vector fields of Mx are exterior concurrent, and
by reference to [8], we conclude that Mx is a space form. In addition, it is
shown in this case, that U is a harmonic form. Finally, we give the following
examples:

(1) X is carried by a (2m + 1)-dimensional Kenmotsu manifold M (¢, 2,7,
&9) [17]. It is prdved that in this case, in order for X to be affine,
one necessarily must have that n(X) = const.. Then, X, ¢X and ¢
define a commutative triple and ¢X is also a skew symmetric Killing
vector field. If L : 7 — 7 A Q means Weyl’s (1.1) operator [4], then the

following facts occur:
LxQ =0, LoxQ =0,
and

LxLX"AQY) =0, Lyx(LX"AQI)=0.
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Thus, X and ¢X define infinitesimal automorphisms of Q and of all the
(2¢ + 1)-forms X* A Q1.

(2) Let (M,g) be a space-time manifold having e4 as time like vectorfield.
If M carries two skew symmetric Killing vector fields X and Y, having
e4 as generative, then X and Y are affine Killing vector fields and M

is a space form of curvature -1 [15].

2. Preliminaries. Let (M, g) be a Riemannian C*-manifold and let
V be the covariant differential operator defined by the metric tensor g. We
assume that M is oriented and that V is the Levi-Civita connection. Let
I'T'M be the set of sections of the tangent bundle, and b : TM — T*M the
classical isomorphism (see also [5]) defined by g.

Next, following [5], we set
AY(M,TM) = Hom(AYT M, TM),

and notice that the elements of AY(M,TM) afe véctor valued g-forms (g <
dimM). Denote by

dV . AY(M,TM) — AT (M, TM)

the exterior covariant derivative operator with respect to V (it should be
noticed that in general dV’ = dv odv #0, unlike d> = dod=0). Ifpe M
then the vector valued 1-form dp € A'(M,TM) is the identity vector valued
1-form and is also called the soldering form of M [6]. Since V is symmetric
one has that d¥(dp) = 0.

A vector field Z which satisfies

(3) dV(VZ)=V2Z =n Ndp € A2 (M, TM); =€ A'M

is defined to be an exterior concurrent vector field [7] (see also [9]). The

1-form 7 is called the concurrence form and is defined by
(4) T=AZ", AeA°M.

In this case, if R is the Ricci tensor of V, one has
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(5) R(Z,Z) = —(n—-1)Xg(Z, Z).

A vector field U whose covariant differential satisfies

(6) VU= fdp+w®U; feA’M,

is called a torse forming vector field [16] and the scalar f is the energy of
U[10]. We also remind Rosca’s lemma [1]

(7) dU’ = w AU,

where w is called the generative form of &. A function R® — R is isopara-
metric if ||V f||? and div Vf are functions of f [11].

Let O = {es|A =1,...n} be a local field of orthonormal frames over
M and let O* = covect{w”} be its associated coframe. Then the soldering

form dp is expressed by
(8) dp=w?®eq; Ac{l,...n};

and E. Cartans structure equations can be written in indexless manner as

(9) Ve=0®e,
(10) dw = -0 A w,
(11) dd=—-0N0+0.

In the above equations § (resp ©) are the local connection forms in the

tangent bundle TM (resp. the curvature 2-forms on M).

3. The general case. Let (M,g) be an n-dimensional Riemannian
manifold with Levi-Civita connection V. Following [1], a skew symmetric
Killing vector field X is defined by

(12) VX=XANU=URX-X"QU,

(A: wedge product of vector fields) where U, which is called the generating
vector field of X, is a torse forming vector field [16], that is:
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(13) VU= fdp+w®U; weAlM,
f € A°M is called the energy of U. Recall also Rosca’s lemma (7)

du’ = w AU

which shows that the dual form U’ of U is exterior recurrent [3] and has
the generating form w of U as recurrence form. Making use of the structure

equations (10), one derives from (12) and (7) that
(14) dXx® = A X,

which means that X" is also an exterior recurrent form having 2’ as re-

currence form. We notice that, in view of the fact that
X' AndX* =0

one may write locally X* = 11dry,my, 7 € A°M. Setting s = g(X,U),2l, =
IXI? (21, = ||U]|?energy of U), one finds from (12) and (13) that

(15) ds = s(U’ +w) + (f — 2L,) X",

(16) dl, = 2,U" — sX°, dly = (FU’ + 2l,w).
Then by (7), (15), and (16), one has
(17) LxX’ =0,

(£: Lie derivative) which sows that X" is a self invariant form. Now, fol-

lowing the well known definition, X is an affine vector field if it satisfies
(18) LxVX =0,

and by (12), the above equation can be develloped as

(19) LxU'@X —Lx U — X" ® LxU.

By (12) and (13) one then sees that
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(20) LxU =ds — sw+ w(X)U’
and
(21) LxU = (f —21,)X + (s + w(X)U.

Since (19) holds for any X and U, and taking account of (17), it follows that
(22) f=2,, s+wlX)=0.

Therefore, in order for (18) to hold, one must have that

(23) ds — sw + w(X)U® = 0.

Further, by (22) and (23) one finally gets:

d
(24) —5=w+ub=>dw+d2/{b=0,

ie. U’ and —w are homologous, and one may write
(25) dw=U Aw,

i.e. wand U’ definde a reciprocal exterior recurrent pairing.
Denote by Dx = {X,U} the 2-distribution defined by X and U, and

by ¢ = XP A U its corresponding simple unit form. Since
(26) ixp =2,U" — X", iy =sU —1,X",

one can verify that for X’, with X’ € Dx one has Vx X' = 0, which means
- that the distribution Dx is an autoparallel foliation and that the leaf Mx
of Dx is a totally geodesic surface of M.
On the other hand, taking the exterior differential of ¢, and using (13)
and (14), one finds that

(27) do =wAp,

i.e. ¢ is exterior concurrent and has w as recurrence form. This agrees with
the fact that the pairing (X,U) defines a foliation, and consequently the

complementary orthogonal distribution D% is also involutive. If we denote
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by M3 the (n — 2)-dimensional leaf of Dx, it is easily seen that U (resp.
X) is a normal umbilical section (resp. a normal geodesic section) of M.

Therefore M may be viewed as the local Riemannian product
M= Myx x M5

such that:
(i) Mx is a totally geodesic Surface,
(ii) Mx is a 2-codimensional submanifold of umbilical (resp. geodesic)
index 1 (see [2]).
Let > be the exterior differential systent which determines X. Then
Ey (13), (14), (16), (24), and (25), it follows that the characteristic numbers
of > are r =6, s = 3, 5, = 3. Since r = sy + s; it follows that > isin
involution and by E. Cartan’s test [12] we conclude that the existence of
the affine skew symmetric Killing vector fild X is determined by 3 arbitrary

functions of 1 argument.

We may formulate the:

Theorem 3.1. The necessary and sufficient condition for a skew sym-
metric Killing vector field X on (M,g) to be an affine vector field, is that
the generative form w of its associated torse forming vector field U be an
.emterz'or recurrent form having U* as recurrence form. The existence of such
an X is determined by an exterior differential system in involution, and M
may be viewed as the local Riemannian product M = Mx x M )Jg, such that:

(i) Mx is a totally geodesic surface tangent to X and U;
(i) Mx is a 2-codimensional submanifold of umbilical (resp. geodesic) in-

dex 1.

4. A speical case. Since we found in section 3 that
(28) ixp =2 U — X, s=g(X,U),
one derives by (16), (22), and (24) that

(29) Lxp = —sp.



28 FILIP DEFEVER AND RADU ROSCA [March

This means that X defines an infinitesimal conformal transformation of
. Therefore, we will discuss in this section the case when X defines an
infinitesimal homothety of ¢, i.e. s = g(X,U) = const.. In this case, it
follows from (16), (22), and (24) that

(30) U +w=0=dlU’ =0, f=const.

Operating now on (12) and (13) by the operator dV, one derives

(31)  dY(VX)=V3X = fX" Adp = R(X,Z) = —(n - 1)f9(X, Z),
and

(32) AV (VU) = VU = fU’ Ndp = RU, Z) = —(n - 1) fo(UU, Z),

where R denotes the Ricci tensor field of V and Z € E(M). Since the
property of exterior concurrency is preserved by linearity and f = const., it
follows by (31) and (32) and reference to [9] that the surface Mx tangent to

the distribution Dy is a space of curvature —f, i.e. up to a sign, the energy

of U.
Let

x: APT*M — A PT*M
be the star operator on M, and
b = (—1)*PHDH g g

the codifferential of a g-form w. Taking the codifferential of U l’, one obtains
(33) AU = (1)U A AT AW

g=1
and by reference to (13), where in stead of w one has U” (see (30)), one gets

(34) U = —xdxU’ = —(n—1)f.

But f being constant and U being closed, one may write
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(35) AU = dsU’® =0,
which proves the fact that 2/® is a harmonic form.

Theorem 4.1. Let X be a skew symmetric vector field on an n-di-
mensional Riemannian manifold M and let U be the associated torse forming
vector field of X. Let also Mx be the surface tangent to X and U, which
Joliates M. Then if X defines an infinitesimal homothety of the volume
element of Mx, the energy of the torse forming vector field U is constant
and:

(1) Mx is a space form of curvature —f,

(ii) U’ is a harmonic form.
5. Examples. .

5.1 On Kenmotsu manifolds. Let M(¢,Q,7,&,9) be a (2m + 1)-
dimensional Kenmotsu manifold. We recall that the quintuple (¢,$,7,¢, g)

of structure tensors satisfy:

¢2 :"‘Id+77®§7 ¢€=O, "7(6):1:

(62) = —(¢dp,Z), 9($2,2') + g(Z,¢2") = 0,
(36) (V9)Z =n(Z)¢dp — ($2) ® & <= (V7 $)Z

=—(2)¢Z — 9(Z,9pZ' )¢,

V¢ =dp—-nQ®¢;

and
dn =0,d2=29AQ,

(37) { dVgdp =2QQ €+ 1A ¢dp.

(see also [8])

Remark. By the fourth equation of (36) and (37) one sees that £ is a
closed torse forming vector field.
Assume now that M carries a skew symmetric Killing affine vector field

X having £ as generative, that is

(38) VX=XAEe=>VX=70X—-X"®¢ LxVX=0.
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In view of (38), (14) now takes the form
(39) dx? =2n A X .

Then, making use of the structure equations (9) and (10), we derive by (38)
that

(40) dX°% =0; we have thatX® = 5(X).)
Defining as usual (see also [13]), by
7 — —izQ, O(Z2) =" Z, Z € B(M),

the symplectic isomorphism, one derives by (36)

(41) d(¢X)" =2n A ($X)° — 2X°Q,
where
(42) (pX) = -"X.

Then taking the Lie derivative of Q with respect to X one derives by (37)
and (41) that

(43) LxQ=0.

Further, one also finds that

(44) "(6X) = X" - X°9,

and making use of the structure equations (9) and (10), one also derives
(45) LoxQ=0.

Hence, (43) and (45) show that both X and ¢X define infinitesimal auto-
morphisms of the structure 2-form Q. Let now L be the Weyl operator of

type (1.1) [4], acting on 1-forms, such that

(46) Lr=7AQ, Lin=n,=7AQ% 7€ A'M.



2000] ON AFFINE SKEW SYMMETRIC KILLING VECTOR. FIELDS 31
Then, setting (X"), = X* A Q9, one derives on behalf of (39) and (40)
(47) Lx(X")y =0,

which says that X defines an infinitesimal automorphism of the (2¢ + 1)-

forms X” A Q9. On the othere hand, with the help of (36) and (39), we
obtain

(48) | VX = X%dp + ¢X A€,

Since the left inner product (Z, ¢dp) is equal to ¢Z, the expression for V¢.X
reveals that ¢.X is also a Killing vector field, having ¢ as generative. Now,
by (38), (48), and the fourth equation of (36), one finds:

(49) [X,6X] =0, [£,¢X] =0, [, X] =0.

This shows that X,¢X, and ¢ define a commutative triple (see also [14],
[15]).
If we set as in Section 3, 2I, = ||X||?, then by (38) one gets

(50) dly =2l,n — X°X"*,

and consequently

(51) Vi, =26 - X°X,
which gives

(52) IVLIE = 42 - 2(X0)%1,.

Next, by the general formula divZ = trVZ one finds that

(53) divg = 2m,
and
(54) div(VI,) = 2(m + 1)I, — 2(X°)2

Then, since X° = const., it follows from above, that IVI-|* and divl,

depend on l,. Consequently, by reference to [11] (see also Section 2), one
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may say that the square of the length of a skew symmetric Killing vector
field X on a Kenmotsu manifold M(¢,Q,7,¢, g) is an isoparametric function.

Summarizing, we have the following

Theorem 5.1. Let M(¢,Q,7,&,g) be a (2m+1)-dimensioanl Kenmotsu
manifolld. Then if X is a skew symmetric Killing vector field on M, having
the Reeb vector field ¢ as generative, one necessarily has that n(X) = const.,
where 71 = €. In this case ¢ X is also a Killing vector field and X, ¢X, and
¢ define a commutative triple, i.e. [X,¢X] =0, [(,¢X] =0, [{,X]=0. In
addition, X and ¢X define infinitesimal automorphisms of the fundamentsl
2-form Q and of all (2q+1)-forms (X*)g = X°AQ, i.e. LxQ =0, Lyx2 =0,
L(X")y =0, Lgx(X*)g =0.

5.2 On space-times. Let (M,g) be a general space-time and let X
and Y be two skew symmetric Killing vector fields on M having the unit
time like vector field e4 on M as generative, then both X and Y are affine
vector fields, and the existence of X and Y imply the follbwing properties:

(i) M is a space form of cruvature —1,
(ii) the square of the length of X and Y are isoparametric functions,

(iii) the generalized Faraday form F on M is a relatively integral invariant
of X and Y (see [15]).
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