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Abstract. We provide sufficient conditions for the con-
vergence of Newton-like methods to a locally unique solution of
an equation on a Banach space. We use the concept of the de-
gree of logarithmic convexity in connection with the fixed point
theorem to extend the region of convergence given so far for
these methods. In the case of quadratic equations we find a ring
that contains accessibility points for Newton;s method lying out-
side the sphere of convergence given by the Newton-Kantorovich
Theorem. Our results extend the region of accessibility of solu-
tions by Newton’s method for some quadratic integral equations

appearing in radiative transfer [1], [5], [9].

1. Introduction. In this study we are concerned with the problem of

approximating a locally unique solution z* of the equation
(1) F(z)=0

where F' is an operator defined on a closed convex domain D of a Banach
space F; with vaules in a Banach space F3. We use Newton-like methods

of the form
(2) Tpy1 = ZTn — A(xn) 1 F(z,), (n > 0)(zo € D)

to generate an iteration {z,}(n > 0) converging to z*. Here A(z) € L
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(E1, Ex)(z € D) which is the space of bounded linear operators from E;
into E3. For A(z) = F'(z)(z € D) we obtain Newton’s method [3], [4], [8].
Several other choices for A are also possible [4], [8]. We define the operator
P:DCE;— Eyby

(3)  P(z)=z— A(z)""F(a),
in which case (2) can also be written as
(4) ZTnt1 = P(z,) (n > 0)(zo € D).

Sufficient conditions for the convergence of iteration {z,}(n > 0) to z* have
been given by several authors (see, for example, [4], [8] and the references
there).

A solution z* of equation (1) is said to be accessible from zg by Newton-
like method (2) if

(5) z* = lim z, = lim P"(zg).

The region of accessibility of z* by method (2) is defined to be the set of all
z0 such that (5) is ture.
Let us define operator Ly € L(E, E5) by

(6) Lp(z) = P'(z) (z € D).

This operator is the degree of logarithmic convexity of F' in z and is a
measure of the convexity of the function. It was used in [6], {7] in the
special case when A(z) = F'(z) (x € D). These convergence results were
used to find starting points z¢ lying outside previously found convergence
regions, for which (2) converges to =* in this case. However this was done
only for scalar as well as systems of equations when Fy = Ey = R. This
is because for convergence we need to show ||Lr(z)|| < ¢ < 1, and this is a
very difficult problem in general.

Here we provide sufficient convergent conditions for our method (2)

to a locally unique solution z* of equation (1). Our results reduce to the
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corresponding ones in [6]. Moreover we show how to compute ¢ for quadratic

equations on E;. We also suggest how to compute ¢ for polynomial equations
on E; of degree k € N.

Finally we show how to apply our results to solve quadratic integral

equations appearing in radiative transfer [1], [3], [4], [5], [8], [9].

2. Convergence analysis. Using contraction mapping techniques we

obtain the semilocal convergence results:

Theorem 1. Let F : D C Ey — Ey be Fréchet-differentiable on a
closed conver domain D, A(x) € L(Ey,E;) for all x € D. Assume:
(a) linear operator T'(z)+ A(z)~! ezists and is differentiable for all z € D;

(b) linear operator Lp(z) exists on D and
(7) ILr(z)]| <c<1 forall =z e D

(c) forzp € D, r* > M—ll_’;ﬂ, U(zo,*) = {z € E1|||lz — zo|| < r*} C D.

Then Newton-like iteration {x,} (n > 0) generated by (2) is well de-
fined, remains in U(xo,7*) for alln > 0 and converges to a fized point =* of
P in U(zo,r*) which is unique in D. Moreover the following error bounds

are true for alln >0
(8) lzn — 2% < c™r.
Proof. Newton-like iteration {x,} (n > 0) is well defined on D for all

zo € D since linear operator A(z) is invertible on D. Using induction on

n > 0 we can show
9) Zn € U(mo,r™) and ||z, — 2ol < (1 - ™)r* < r*.

For n = 1 and hypothesis (¢) we have ||z; — zo]] < (1 — ¢)r* < r*, which
shows (9) in this case. Assume that (9) is true for all positive integers

smaller or equal to n. Then we must show

Tnti € U(zo,7*) and  ||Tpg1 — xo) < (1 — T H)r* < 7%,
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By hypothesis (b) and (4) we get

2nt1 = zall =IP(zn) — P(zn-1)ll

(10) < sup P’ @lllzn — Ta-all < cllzn — zn-1l

Ze[mn'—l ’xn]

<Lz =zl = (A = o),
and

|Znt1 = Zoll < l1Zas1 = Tall + llzn — zoll < *(1 —)r™ + (1 — )"

=1 -c"H)rr <,
which completes the induction. Moreover by (10) we obtain, for n,m € N
(11) 1Zngm — zall £ (1 — ™) r".

Estimate (11) shows that {z,} (n > 0) is a Cauchy sequence in a Banach
space E5 and as such it converges to a limit z* € U(zo,7") (since U(zo,7™)
is a closed set). By taking the limit as n — oo is (4) and using the continuity
of F and A(z) we deduce P(z*) = z*. To show uniquencess, let y* € D
with P(y*). Then we can get

lz* ="l = IP") - PGS Y 1P @z -]

zelz* ’y*]

<cflz” -yl

which implies that z* = y* (since c € [0,1)).
Finally, letting n — oo in (11) we obtain (8).
That completes the proof of the Theorem.
Following [4], [6], [7], the region of accessibility to z* is extended to a

closed ball around zo as the following result in dicates:

Theorem 2. Consider the iteration yny1 = P(yn) for yo € Ulzo,r*)
under the hypotheses of Theorem 1. Then iteration {yn} (n > 0) is well
defined, remains in U(zg,7*) and converges to a unique fived point x* of P

in U(zg,r*). Moreover the following error bounds are true for all n > 0:
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'3

Cc

—x*ll <
lvm = 7l < T—

1 = %oll and  Jlyn — 2™ < *[lz” — oll.

Proof.. The result follows immediately by the contraction mapping prin-
ciple [4], [8] provided we show that operator P maps U(xq,r*) into itself.
Indeed let x € U(xg,r*), then we obtain

1 — P(@)]| = [|P(z0) — P(x)|l < cllwo — x| < er”.

That completes the proof of the Theorem.

For D = U(vg,T¢) we can obtain immediately from Theorem 2.

Cofollary. If |lvo — zo|| < 7o — 7* under the hypotheses of Theorem 2
Newton-like iteration {z,} (n > 0) converges to x* for any starting point in
U(xg,r*).‘

In terms of the degree of logarithmic convexity we have the following

result concerning the convergence on Newton-like method (2).

‘Theorem 3. Assume that hypothesis (b) of Theorem 1 holds on D =
U(vo,70). If |A(vo) "1 F(wo)|| £ (1 —¢)ro, Newton-like method {z,} (n > 0)
generated by (2) converges to the unique solution xz* of equation F(x) = 0

i D for any 29 € D.

Proof. We note that a fixed point P is a solution of equation F(z) =
0. The result now follows immediately from the proofs of the previous

Theorems.

Remark 1. For A(z) = F'(z) (x € D) Theorem 1, 2, Corollary,
Theorem 3 reduce respectively to Theorems 2.1, 2.2, Corollary, Theorem 2.4
in [6].

3. Applications to quadratic equations. The verification of con-
dition (b) of Theorem 1 is a very hard problem in general. In [6], [7] and
the references there the authors verified this condition for scalar as well as
systems of real or complex equa’bions. Here we suggest a possible extension

of our results in the case of quadratic equationns of the form



14 IOANNIS K. ARGYROS [March
(12) , F(z)=y+ B(z,z) — x

where B is a bounded symmetric bilinear operator on D C E; and y € E;
is fixed. Hence in the case of F' given by (12) we obtain from (6) for A(z) =
F'(z)(z € D)

(13) Lp(z)(z) = 2(2B(z) - I)"'B(2B(zx) — )" (2)(~z + y + B(z, z)).

Let o € D be such that (F'(zo))™! = (2B(xg) — I)~! exists and set b >

(2B(zo) — I)"'B|| # 0. Let r € [0, 55), and assume U(zg,7) C D. Then .

for z € U(zg,) we have

(14) 2B(z) — I =(2B(z) — I) — (2B(z0) — I) + (2B(=z) — I)
=(2B(zo) — I)[I +2(2B(zo) — I) ™' B(z — )],

and
(15) |12(2B(z0)—I)™  B(z—=o)l| < 2[|(2B(z0)—1)"' B[z —=z0) < 2br < 1.

It follows from the Banch Lemma on invertible operators [4], [8] that F'(z) =
2B(z) — I is invertible on U(zp,r) and

(16) (2B(z) = I)""(2B(xo) = I)|| < (1 —2br) ™.
Moreover we have by (12)
(2B(z0) — I) 7" F(x) =(2B(w0) — 1) (w0 — ) + (y — o)
+ B((z — 20) + Zo, ( — o) + z0)]
=(2B(.’L’0) — I)_I(ZB(QJO) — I)(CL‘ - iL‘(])
+[(2B(z0) — I)7' B](z — z0,z — z0)
+ (2B(@0) = 1)}y — 20 + B(wo, 30))
By taking norms, using the triangle inequality and (4) we get
(2B(z0) — I)"' F()]
A7) <llz — zoll + (2B(z0) — I) ™' Bl - iz — zol|* + l|zo — P(zo)l
<r 4+ br? 4+ ||zo — P(zo)]|.
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It follows from (13), (16) and (17) that

1
(18) O
where
(19) c(r) = ——Zb————(r +8+br?), 6> |lzo— Pz )|
(1= 2br)? » T o/l

Define the scalar function h on [0,4+00) by
(20) h(r) = c17% + car +c3
where
c1 = —2b%, ¢y =6br and c3 = 2b6 — 1.
It is simple algebra to show that ¢(r) € [0,1) if
(21) h(r) <0 and re [0, 513)

It can easily be seen that (21) is true if

(22) 200 <g<'1
and |
r € [0,a)
- where
(23) o= 5)’_—22@

Note that estimate (22).is the Newton-Kantorovich hypothesis for equation
(12) and a is the smallest zero of the scalar equation h(r) = 0 where & is
given by (20) [4], [8]. '

Hence we arrive at:

Theorem 4. Let F : Uo(a:o,a) C Ey — E, be given by (12), and A(z) =

F'(z)(x € D) in (2). Assume that the Newton-Kantorovich hypothesis (22)
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is true for some o € U%(zq,a) at which F'(zq) is inverlible. Then (T7)
is true for all v € [0,a). Moreover if there exists a minimum nonnegative
number r* € [0,a) satisfying the inequality

6
(24) r2 1—c(r)’

then thhe conclusions of Theorem 1 for equation (12) and iteration (2) are

true.

Proof. Tt follows immediately from the above discussion, the proof of
Theorem 1 and the observation that (24) is true if g(r*) > 0 where g is a
function defined on [0, +00) given by

(25) g(r) = dir® + dor® + dgr + dg,
dy = 2b2, dy = —2b(3 + q), ds=1+¢ and d4 = —6.

Remark 2. By Descarte’s rule of signs the equation g(r) = 0 has three
positive zeros or one. Let s denote the smallest such zero in either case. We
note that equation (25) can have zeros in [0,a) even if g(a) < 0. However
it is simple algebra to check that g(a) < 0. Hence we can set r* = s in this

case.

Remark 3. Another approach will be to define the function g; on
[0, +00) by g1(r) = dar? + dsr + d4. We note that by (25) g1(r) > 0 implies
g(r) >0 for all r € [0,400). The discriminant of this quadratic polynomial
is nonnegative if ¢ € [0, 2‘/_%] Let t; < t3 be the real zeros of the equation
g1(r) = 0. Then we easily deduce t; < a. Hence in this case we can set
r* = t; in Theorem 4.

The Newton-Kantorovich Theorem [4], [8] for equation (12) asserts that

if hypothesis (22) is satisfied then z* € U(zo, ) where 7y = 1= “’bl_q. We

easily show:
(i) if g € [0, 2—‘/_1_5’—_3) then 7 < a;
(if) if ¢ € [2/3=5 1] then 4 > a;
(iii) g(rx) <0 and g(ry) = 0.if ¢ = 0 (rr = 0 in this case).



2000] NEWTON-LIKE METHODS AND APPLICATIONS 17

At the end of this study we provide an example where z* € U(zo,7;) C
U(zo, t1)-

Remark 4. Theorem 4 is a crude application of Theorem 1. In practice
one hopes that (7) will be satisfied in cases that do not imply the Newton-
Kantorovich hypothesis (22). Examples where Newton’s method converges
but (22) is violated where given in [6], [7] for scalar or systems of real equa-
tions and in {1}, [3], [4] for quadratic integral equations on various Banach

spaces. See also the example that follows.

Remark 5. Concluding we note that both Newton-Kantorovich and
Theorem 4 apply if condition (22) is satisfied. However the balls centered at
the same point zo that contain the solution x* are not of the same radius.

Let the ring U = U(zg,7*) — U(zo, 1) # 0 then there exists a starting
point wo ¢ U(xo, %) such that Newton’s method (2) converges. However
the Newton-Kantorovich Theorem [4], [8] does not guarantee convergence in
this case. Hence there exists a region of accessiblility for the convergence of
Newton’s method that is missed by the Newton-Kantorovich Theorem [1],

(3], [4], [5], [8], [9], [10]. We confront such a case in the example that follows.

Example. Special cases of (12) are quadratic integral equations of the

form

1
(26) F(2)(s) = y(s) + Aa(s) /0 k(s, )(t)dt — (s) = 0

in the space Fy = E; = C|0,1] of all functions continuous on the interval
[0,1] with norm

Il = max [z(s).

Here we assume that A is a number called the “abledo” for scattering and the

kernel k(s,t) is a continuous function of two variables s,t € [0, 1] satisfying

0 <k(s,t) <1, k(0,0) =1 and k(s,t)+k(t,s) =1, s,t € (0,1].



18 IOANNIS K. ARGYROS [March

Theu function y(s) is a given continuos function defined on [0,1], and z(s)
is the unknown function sought in [0, 1}.

Equations of this type are closely related with the works of S. Chan-
drasekhar [5], (Nobel prize of Physics 1983), and arise in the theories of
radiative transfer, neutron transport and in the kinetic theory of gases in
connection with the problem of determination of the angular distribution of
the radiant flux emerging from a plane radiation field [1], [3], [4], [5], [9]

To apply theorem 4 we need to compute b and § initially. For example

choose K(s,t) = =%, K(0,0) =1, s,t € (0,1], and define

s+t?

B(z,y)(s) = %)\ [w(s) /01 g—i—t-y(t)dt +y(s) /01 ;——i—tx(t)dt] .

Then B is a symmetric, bounded, bilinear operrator on F; with

1
S

27 B = A
(27) (2,2)(s) = Aa(s) /0 o)t
and

1 S
(28) |B]| = |A] max / dtl = [A] In 2.

s,t€[0,1] | Jg $+ ¢

Note that the choice of B given by (27) shows that (26) is indeed a special
case of equation (12). The values of b, § for various choices of X have been
given in [1], [3], [4], [5], [9] and the references there.

Choose as an example zo(s) = y(s) = 1 for all s € [0,1],A = .2, then
from (22), (23), Remark 3, (30) we obtain, ’

| F' (1)~ < 1.3836213, a = .8513131,
b=6<.1918106, g = .0735826, r, = .1954752,

t; =.242025 = 7" and c(r*) = .2074761.

All hypotheses of Theorem 4 are satisfied for f* = t; and U(zg,r:) C

U(zo,t1) (also see Remar 5).
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Finally the results of Theorem 4 can be extended to include polynomial

operator equations of degree k € N given by
F(x) = Mp +M1(37) +M2(~'I7,-'L') + .- +Mk(x,x,... ,:1:) —r =0,

where M; is a bounded, symmetric i-linear operator i = 1,2,...,k and
My € E; is fixed [1], [2], [4], [8], [9]. For the computational details in
deriving the crucial functions ¢(r) and A(r) in this case we refer the reader

especially to [2].

Conclusion. We provide sufficient conditions for the convergence of
Newton-like methods to a locally unique solution of an equation on a Ba-
nach space. We use the concept of the degree of logarithmic convexity in
connection with the fixed point theorem to extend the region of convergence
given so far for these methods. In the case of quadratic equations we find
a ring that contains accessibility points for Newton’s method lying outside
the sphere of convergence given by the Newton-Kantorovich Theorem. Some
applicationé of our results to the solution of quadratic integral equations ap-
pearing in radiative transfer in connection with the proble of determination
of the angular distribution of the radiant flux emering from a plane radia-
tion field are given. Relevant work can be found especially in [1], [4], [5],
9, [10].
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