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Abstract. We study the critical length for a degenerate
parabolic equation. We show that the critical length exists and
is finite.

1. Introduction. The aim of this work is to study the critical length

of the following degenerate parabolic initial boundary value problem

(11) Uy — (xaux)a: = (1 - u)_ﬂ, (iE,t) € (070‘) X (OaT)a
(1.2) u(0,t) = u(a,t) =0, t € (0,7),
(1.3) u(z,0) = ug(z), = € [0,a],

where 0 < @ <1, 8> 0,0 < T < oo and uy € C?**7(0,a) N C[0, a] for some
v € (0,1) with 0 < up < 1 and ug(0) = up(a) =0, and f; z*[uy(z)]*dz < oo.
The problem (1.1)-(1.3) was studied by Ke and Ning [5] for the case
0 < B < 1 and for the more general diffusion coefficient p(x) which including
the case p(z) = sc"", 0 < a < 1. Here we restrict our attention on the typical
case when p(z) = z%, 0 < a < 1, so that the equation becomes degenerate
on the left-hand boundary z = 0. But, we only assume that 8 > 0.
Applying a method used in [5], we show in Section 2 that a unique

classical solution of problem (1.1)-(1.3) exists for a small time interval. Let
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T be the largest time so that the solution u of problem (1.1)-(1.3) is classical.
If T < oo, then we must have max,¢p,1 u(z,t) — 1 as t — T. In this case
we say that the solution quenches.

Quenching phenomena for various types of problems have been studied
by many authors during past years. For more references, we refer to the
nice survey papers of Chan [1,2].

In is well-known that the steady state solutions of the parabolic problem
play an important role in studying the quenching problem. In our case,
w(z) is a steady state solution of the problem (1.1)-(1.3) if w(z) satisfies
the following boundary value problem (D,):

(z%w'(z)) +(1—w) P =0, 0 <z < a,

w(0) = w(a) = 0.

A number a* is called the critical length for the problem (1.1)-(1.3) if
the problem (D,) has a solution for any a < a* and has no solution for
any a > a*. Applying a method used in [4], we prove in Section 3 that the
critical length of the problem (1.1)-(1.3) exists and is finite. We emphasize

that our method is entirely different from the one used in [5].

2. Local existence and uniqueness. In this section, we prove that
there exists a to > 0 such that a classical solution of the problem (1.1)-(1.3)
exists uniquely for 0 <t <.

Let € € (0,a). Consider the following problem

(2.1) (te)e — (2%(te)z)e = (1 — uE)—ﬁa (z,t) € (e,a) x (0,T),
(2.2) ue(€, t) = uc(a,t) =0, t € (0,7),

(2.3) ue(z,0) = up(x), z € [¢,qal,

where 0 < o < 1, 8 > 0, and the initial data ug satisfies the conditions stated

in Section 1. It is well-known (cf, [3]) that a classical solution . of (2.1)-
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(2.3) exists on some time interval (0,¢.) and the solution . is continuous in
[e,a] x [0,%c) except possibly at the point (¢, 0).
We define a function h(t) on (0,%) by

h(t) =1 —{[L — h(0)}P** — (B + 1)t} 7=

where £ = [1 — h(0)]?+!/[8 + 1] and ~(0) = max,e[o,1 Uo(z). It is easy to
check that h(t) is an upper solution of (2.1)-(2.3). Hence, by taking any

to € (0,%), we have the estimate
te > to, Ve > 0.

Now, we fix a ¢ty € (0,%). By the strong maximum principle, it is easy to
show that . is monotone increasing as e decreases, that is, if 0 < €; < €3 <
a, then u,, > u, for all z € (e2,a),t € (0,t9). Thus 611_1{(1) ue(z,t) = u(z,t)
exists. We will show that u(z,t) is a classical solution of (1.1)-(1.3) with
T > 1.

Lemma 2.1. There exists a constant ¢ independent of € such that
/a 2%(uez(z, 1)) %dz < ¢
€

for t € (0,t5).

Proof. First, we note that

ue(z,t) < h(t) < h(to) < 1, Yz € [¢,a],t € (0,10).
Following [5], we let
E(t;e) = %/a % (teg (z, 1)) 2dz —~ /a /Ous(l ~8) Pdsdz
for t € (0,tp). Then, using integration by parts, we can derive that
E'(t;e) = — /a(uet)zda: <0.
e

Hence E(t;e) < E(0;¢€) for t € (0,¢9). Then



4 JONG-SHENQ GUO & YUNG-JEN LIN GUO [March

%/Ea % (tes (2, t)) 2 dz <; /a [uo(x ))2dz —/ / (1 — s)"Pdsdx

// (1 —s)"Pdsdx

h(to)
<—/ sl (2)]2de + a/ (1= 5)~Pds.
2 Jo 0
Let
a h(to)
c= / 2uf ()2 dx + 2a/ (1—s)"Pds.
0 0

Then ¢ < oo and the lemma follows.

Using Lemma 2.1, we can prove that u(x,t) is the unique classical
solution of the problem (1.1)-(1.3) with 7" > to. Moreover, u(z,t) is positive
in (0,a) x (0,%0). The proof can be found in [5] and we omit it.

3. Critical length. In this section, we study the critical length of
the problem (1.1)-(1.3). Hence we shall study the following boundary value

problem:
(3.1) W' @) +(1-w)P=0,0<y<a,
(3.2) w(0) = w(a) = 0.

First, we make the following transformations

$(@) =wly), 2=, A=

Then w(y) is a solution of the problem (3.1)-(3.2) if and only if ¢(x) is a

solution of the boundary value problem (D,):

(3.3) (z°¢'(z)) + M1 -¢)? =0, 0<z <1,

(3.4) $(0) = $(1) = 0.

Let L be the operator such that Lu(z) = (z*u'(z))’. It is well-known
that the Green’s function G(z,y) for the operator —L in (0,1) with zero
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Dirichlet boundary condition exists. Indeed, G(z,y) is given by

' *(1-y'"*)/(1~a), 0<z<y<],
G(x,y) = l-—a l—cx
y' 1 -z7)/(1-a), 0<y<z<l.
Define
1
U(x) =/ G(z,y)dy, 0 <z < 1,
0
and

uo)y=UQ1)= ’0.
Then U(z) is continuous on [0, 1] and satisfies the equation
(z°U'(z)) +1=0,0<z < L
By the maximum principle, we see that U > 0 in (0,1). Set

M = max U(z).
z€[0,1]

Notice that a classical solution ¢ of (3.3)-(3.4) exists if and only if there
is a o € (0,1) such that 0 < ¢(z) < g, for all z € [0,1].
Now, given a fixed o € (0,1), define the set

X ={peC%0,1]): 0< ¢ <0in0,1],4(0) = ¢(1) = 0},

and define the mapping T : X — C°([0,1]) by

Ay Gz, y)L - ¢)]Pdy, 0<z<1,

Tolw) = {0, z=0,1,

for any ¢ € X.
Note that X is a Banach space with the sup norm || - ||c. Applying the

contraction mapping principle, we obtain the following theorem.

Theorem 3.1. The problem (D)) has a solution if X is sufficiently

small.

Proof. Since, for any ¢ € X,
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0 <To(z) < M1—0)"PM, Yz €|0,1],
and by the mean value theorem, for ¢1,¢s € X,
(T — Tha)(x)] < AB(L — )P M1 — ¢2leo, V2 €[0,1],

T is a contraction mapping from X into X if A is chosen sufficiently small.
From the contraction mapping principle, if A is sufficiently small, then T
has a unique fixed point ¢, in X. Clearly, ¢, is a solution of the problem
(Da). '

In fact, the solution ¢y in the proof of Theorem 3.1 is unique when we

“restrict ourselves to the space X for a fixed o.

We will prove the following result by the method of super-sub-solution.

Theorem 3.2. If a solution of the problem (D) exists for some Ay > 0,
then there exists a solution of the problem (D)) for any A < A;.

Proof. Let w be a solution of (Djy,). Given a fix A < A;. First, we

know that v = 0 is a subsolution of (D,). Since
(z*w' (z)) + A1 — w)™?
< (@' (@) + M1 - w)™P
=0,Vz € (0,1),

w is a supersolution of (D). Now, define ¢9 = 0 and ¢, be the solution

of the problem

(2% @n41(2)) + A1 - ¢n) P =0, z € (0,1)
¢n+1(0) = ¢n+1(1) = 0,

for any n > 0. Then {¢41} is a bounded monotone sequence in [0,1] such
that

0§¢n§¢n+1gw-

Hence {(1 — ¢,,)7#} is also uniformly bounded in [0,1]. Therefore, there is
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a function ¢ such that ¢, — ¢ uniformly and ¢ is a solution of the problem
(Dy).

Next, we define

A* = sup{A : (Dy)has a solution}.

Theorem 3.3. \* < oo.

Proof. Since (D)) has a solution ¢, for any A < X*, we have

1
$r(z) = A /0 G(z,y)[L — $2(v)] P dy.

It follows that
1> ¢a(z) > AU(z), Vz € (0,1).
Hence AM < 1, VA < A%, and so \* <1/M < co.

Hence the critical length for the problem (1.1)-(1.3) exists and is finite.
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