BULLETIN OF THE

INSTITUTE OF MATHEMATICS
ACADEMIA SINICA .
Volume 27, Number 4, December 1999

UNIFORM STABILITY FOR SOLUTIONS
OF n-DIMENSIONAL NAVIER-STOKES EQUATIONS

BY

LINGHAI ZHANG

Abstract. Motivated by recent work of H. Beirao da
Veiga, P. Secchi [20] and Wiegner [22], we are concerned with
uniform stability estimates for solutions of the Cauchy problem
for the n(> 2)-dimensional Navier-Stokes equations u; +u- Vu —
Au+ Vp =0, V:-u = 0. Our main result demonstrates uni-
form stability for the solutions. The next result is concerned
with the temporal asymptotic behavior of the solutions for the
cases ug € H? or ug € L' n H2. Finally for n(> 3)-dimensional
problems, we establish some regularity results by iteration. Qur
primary motivation is to see whether or not the solutions to
n-dimensional problem are uniform stable. Given different ini-
tial velocity uo(z) and wvo(z), with V -ug = V - v = 0, the
corresponding solutions. (u,p) and (v, ¢) will be different. We
are interested in the bound and asymptotic behavior of the dif-
ference (u — v,p — q). The ideas to establish various uniform
stability in different spaces are related to those to obtain the
asymptotic behaviors, but differ in detail. ‘When studying the
uniform stability and the asymptotic behaviors of the solutions,
we need the constants to be independent of ¢, but we do not
care how they depend on the initial data. We establish these
results by various delicate integral estimates.

1. Introduction and main results. The Navier-Stokes equations
occupy a central position in the study of nonlinear partial differential equa-
tions and dynamical systems. In this paper we study uniform stability with

respect to perturbations of the initial velocity for solutions of the Cauchy
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problem for the n(> 2)-dimensional incompressible Navier-Stokes equations

(1) u+u-Vu—Au+Vp=0, V-u=0,
(2) ’LL(.’IJ,O) :’M()(IE), V'UO = Oa

where £ = (21,...,%2) € R*, t > 0. v = (w(z,1),...,un(z,t)) € R and
p = p(x,t) denote the unknown velocity and pressure respectively.

We also study the asymptotic behavior of the solutions for 2-dimen-
sional problem and regularity for n(> 3)-dimensional problem. In the entire
paper, we assume that up and (u,. p) of problem (1-2) satisfy V-ug = V-u =
0, and for all ¢ > 0,

8a1+“'+anu(x,t) _ 3"‘1+"'+"‘"p(:1:,t) _

lim = lim 0
jz]—o0 330‘1"1 e axﬁ" || —o0 830‘1"1 e 8.’13701{" ’
where a7 > 0,...,a, > 0 are integers with oy +--- + o, < 2.

Lemma 1.1. Let n = 2 and ug € H2. Then problem (1-2) enjoys a
unique global solution (u,p) € L°°(0,00; H2)NW1*(0,00;L%)NW2(0,T;L?),

where T > 0 is any constant.

Lemma 1.1 can be proved by the fixed point principle together with
some of the estimates displayed in Lemmas 3.1, 3.2 and 2.2.

Many mathematicians have studied the asymptotic behavior of solu-
tions to (1-2) and have made significant progress, cf [7-12, 19-24]. See
also [27] for the latest and interesting results. They proved that solutions
to n(> 2)-dimensional problem have the same rate of decay as that of the
same dimensional heat equations, provided the initial velocity is in the same
function space. The 2-dimensional problem is much more difficult than the
n(> 3)-dimensional problem, because it is somewhat near the critical case
[12, 21]. The author established the optimal rate of decay for 2-dimensional
problem by a good use of Gronwall’s inequality, which simplified other proofs
[24]. Roughly speaking, the more rapidly the initial velocity uo decays as
|z} — oo, the more rapidly the norm [|(u,p)(t)|| decays as t — oco. So we
must study respectively the best rate of decay of the solutions to problem

(1-2) if up is in different Sobolev spaces.
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Let (u,p) and (v, q) be the solutions of problem (1-2) corresponding to
up and vg respectively. Let (w,7) = (v — v,p — q). Then they satisfy the

equations
(3) wi+w-Vut+v-Vu—-—Aw+Vr =0, V.-w=0,
(4) w(z,0) = wo(x) = uo(x) —vo(z), V- wo=0.

To deal with the uniform stability, we will study the optimal rates of
decay of (w, ) if wo € H? or L' N H2. We employ the method of global en-
ergy estimate. We also employ various inequalities. The comprehensive use
of the Hélder’s inequality, the Gagliardo-Nirenberg’s inequality, the Gron-
wall’s inequality and the relation V-« = 0 are very important and are used
almost everywhere to establish the L? and L® uniform stability.

The decay estimates do not automatically lead to the uniform stability
of the solutions to (1-2). In fact, if n = 2, the proof of the uniform stability
lw(@)]] < exp(Clluol|*)||woll relys only on the elaborate energy estimates:
lu® < lluoll and [|[Vu(t)]|? € L1(0,00). If n > 3, the proof depends only
on the assumptions ug € L? N LP and u € L(0,00; LP), where p > n > 3
and n/p + 2/q¢ = 1. Tt can be clearly seen that the establishment of this
elementary stability is quite independent of all the asymptotic behaviors.
We do not necessarily require that any norm of the solution of problem
(1-2) tends to zero as ¢ — oo to justify this basic uniform stability. On
the other hand, the algebraic rates of decay suggest that certain norms of
w have some algebraic rates of decay. To motivate the definition of the
uniform stability, let us look at the decay estimates. For 2-dimensional
problem (1-2), if ug € L' N H?, the optimal rates of decay of the solution

and its derivatives are as follows, cf [12, 21]
(@ + D)@l + L+ ) [Vu@I? + (1 + )| Au@)]* < C.
If up € L*NL? and fRZ ugdx # 0, then
0<C <@+ )u@)® < Cp < oo

For 2-dimensional problem (3—-4), we have similar results.
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Since w and 7 decay at different rates, and different norms decay at
different rates, we will investigate w and 7 in an unusual functional space.
To get a concrete idea about the uniform stability, we need the least upper
bound of the difference of the solutions depend on the initial difference as

explicitly as possible. The estimate in the following definition is optimal.

Definition. Let X and Y be Banach spaces, let ¢ : X — Y be the
solution operator induced by problem (1-2). If there are constants C > 0
and a > 0, which are independent of ¢, such that

sup [(1 +2)*[|(w, m)()lly] < Cllwollx,
0<t<o0 .

then the solutions of problem (1-2) are uniformly stable.

It is very interesting and important that the least upper bound of cer-
tain norms of (w,n) depends explicitly on wp, but does not depend on t.
Although it is very difficult to study the uniform stability of the solutions
to problem (1-2), we can at least establish the global estimates in different
Sobolev spaces for the 2-dimensional problem, and the n(> 3)-dimensional
problem under some additional restrictions on the initial function and the
solution. These uniform stability results are very interesting, because they
give us general ideas how they depend on wq and how fast they decay. They
illustrate that if vg — wug, in some space, then the corresponding solutions
(v,q) — (u,p) in another space, for all ¢ > 0. They also illustrate that the
solutions depend continuously on the initial velocity. It is very easy to obtain
some of the decay results for the solution (u,p) of 2-dimensional problem
(1-2). This can be done by letting vo = 0, which implies that (v, q) = (0,0).

Before stating the main theorems, let us give the notations. Denote
by C any positive time-independent constant, which may be different from

line to line, and which may depend on ug and vy. Moreover, denote by
LP = L?(R™) and H™ = H™(R"). Let

f(a:)d:c-—-/ flz1,...,zp)dzy - - - dzy,
Rr R™
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n
IN:Zﬁ,
afi
vt =Y 2|

i=1 j=1
ofi 0g;
Vi Vg”z_;zl Bz; ai
AN = IlfF @l 2,
If @)oo = Nf Bz,
If Ol = N fF O,
W piaze = WFlloe + 1f 122y

I llzrnme = Wfllor + 11 fllae-

Define the weighted Sobolev space M to be
{evnm [ f@ds=0, W= [ @+eDifldatiflm <o

For f(z) € L' N L?, define its Fourier and inverse Fourier transformations
by

FINO =76 = | f@)exp(-iz- i
@) = o) = grge [ f@ el €1

The definition can be extended to the Hilbert space L? by continuity. Ob-
viously if f and g € L?, then IFglleo < N7 1 1Igll-

Let us state our main uniform stability theorems. To do this, define
S(fF(),9() = IF DI + A+ DNIVLOI + L+ ) NAF DI |
+ L+ OIFON + @+ 711
+ (1 + DI + @+ 12V + (1 + 1 Ag(®)]?
+ (1 4+ lg@ON% + @+ )% lg DI

Theorem 1. Lei n = 2.
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(1) Let uo and vy € H?, then we have the uniform stability estimate

sup S(w(t), 7(t)) < Cllwoll3-
1<t< 00

(2) Let ug and vo € L' N H2, then we have the uniform stability estimate

sup [(1+1)S(w(t), n(t))] < Cllwol|Z:npe-
1<t<o0 -
(3) Let up and vo € M, then
sup [(1+t)*S(w(t),n(t))] < Cllwoll3;
1<t<0

4) Let ug and vg € L* N H? and [,, wodz # 0, then
R

Cyln(1+¢
Gitwo)| [ wods| - 2D punfanzs < (1497 o)

< Ca|lwof|Lrnrz-

We make the critical assumption for the weak solutions of n(> 3)-

dimensional Navier-Stokes equations (1-2):

(H) There are constant p > n > 3 and ¢ > 2 satisfying n/p + 2/¢ = 1,
such that ug € L2 N LP and u € L9(0, oo; LP).

Theorem 2. Let n > 3 and let (H) hold.

(1) Let vo € L?, then we have the uniform stability estimate

lw(@®)l < Cllwol, /0 IVw®)I*dt < Cllwoll, 7)o < Cllwol,

where the constant C' depends only on the L(0, c0; LP)-norm of u.
(2) There is a constant § > 0, such that if vg € L2NLP and ||ug—vo|r» <
8, then a strong solution v € L"(0,00; LP) to problem (1-2) ezists, where

4p/n(p — 2) < r < oo, such that

sup / lo(®)l|%,dt < C < oo,

vo:|luo—wollLr <6 JO

lw@lize < Cllwollze,

| [ w9 asaes 222 [ (9upr)pasat < cluol,,
0 JR™ P JoJr

8o N3
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where C depends only on the Li(0,00; LP)-norm of u.
(3) Let ug € L>N L™, then for all r > p, there is a constant 6(r,n) > 0,
such that if vg € LN L™ and |Jug — vo||r~ < 6(r,n), then
lw(®llz- < C(n,r)||lwoll -,
[ i veopasde [ 9P < ol
0 JR» o JRn

where C(n,r) depends only on L?"/"=")(0, co; L™ )-norm of u.
(4) Let ug and vo € M N LP, then

sup [("THlw(®))1?] < Cllwoll?,
1<t<o0o

where C(n,r) depends only on L*/(*=7)(0,c0; L")-norm of .
We hope that if ug and vy € H? satisfy either of the following hypotheses
S;}gn(l + |2|°)[luo ()] + lvo(z)l] < C,

/R @+ )o@ + boo(@))dz < C,

then w satisfy the corresponding estimates

sup (1 +8)"(1 + |z|7)|w(z, )] < C sup (1 + |z|)|wo(=)l,
z€R™,0<t<c0 zER™

sup (1+07 [ (4l u(@ 0Pz <0 [ (1+al)uo(@)Pds,

0<t<oo

where C, p, o and 7 are positive constants.

Theorem 3. Let n = 2, We have the asymptotic behaviors for the
solutions of problem (1-2)

Jim [lu(®)| + (1 + ) Vu(®)]?] = 0,
Jim [+ )@ + (1 + VR = 0,

sup [(1 + t)#S(w(t), ©())] < C.
1<t<oo

where =0 ifug € H?, B=1ifug € L' N H?, B=2ifuy € M.
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Theorem 4. Let (H) hold and let ug € L2 L*°, then

we( () 200,002 () L2(0,005L%))
p<r<oo 2<s<00

Therefore u 1s almost in the space L°(R™ X RT). Let n = 3 and let ug €
H2N L, then u € L*(0,00; H?) N L2(0, 00; H?).

Remark 1. If n = 2 and ug € L' NH?, various decay estimates, except
for p and wu., of the solutions of n-dimensional problem (1-2) have been well
established in [12, 21]. We verified the decay estimates of the solutions (u, p)
for all the cases ug € H?, L* N H? or M.

Remark 2. If we consider (1-2) with a forcing term, i.e.
u+u-Vu—-—Au+Vp=f, V-u=V-f=0,

we can get similar results. Even if the forcing term is not divergence free,
we can still do this. In fact, let g be the solution of the equation V- f = Ag,
and let h = f — Vg, then h is divergence free. Substituting p; = p — g for
p, we get

u+u-Vu—Au+Vpr=h, V-u=V-h=0.

The difference of different solutions of this problem corresponding to
different data also satisfies equation (3). That is why the uniform stability
and the long time behavior are similar.

In Section 2, we present a series of elementary estimates. Some inequal-
ities are also listed here. Section 3 is dedicated to temporal asymptotic be-
havior of solutions of 2-dimensional problem (1-2) for the case ug € H?. Af-
ter having established all the necessary asymptotic behaviors with ug € H?,
we prove in Section 4 our uniform stability for 2-dimensional problem (1-2)
with ug, vo € H? or L' N H2. One can directly justify the asymptotic be-
havior of the solutions to problem (1-2) with ug € L' N H?, but it would be
better to do this by letting vg = 0 in the uniform stability estimates. This
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can avoid a lot of unnecessary work. In Section 5, we deal with n(> 3)-

dimensional problems

2. Elementary estimates. In this section we present some elemen-
tary estimates which will be very useful in demonstrating our uniform sta-

bility.

Lemma 2.1. The following preliminary estimates for the nonlinear

effects hold.

- Vul? < | Vul,

[Pl Vull? < 6P @I lu@]?,

V- (w- Vu)l? < [Vol?|Val?,
IV - (w- V)]l < IV [Vu()?,
IV - (w- Va)OIP < 2Vu@ 21Vl + 2wl | Au@)]
7 (@)leo < M@l + [ I,
157 (@)l < WVl + V@I V0],

712 < S5 s + v,

i=1 j=1
I @I? < 2@z, + ROIZ] lo@IE,
IV (@I <4l TUOI + IVl I+ 4l |2+ o1V w @1,
JARI < 20Vu@Es + 19O IT0OIE
oI < U@ IVu@IHI @I VoI 4l Aw@*+ VO
@I < 4lluIZ + WOIZNwe®I? + 4@ + oI el
[ 1-ta- W +h-(o- N =0,

f-(g-Vf)dz =0,
Rn

l/ (o iyas| < /R glIrl|VSldz,

where f, g and h € H* with V - g = 0 are arbitrary vector valued functions.
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Proof. Since

(Z i oz, 8:1:J )15i5n’

one has the estimate by Cauchy-Schwartz inequality

lw - Vu|? = Z'ZWJB

i=1 j=1

<§:Zw Zla—uz

=1 j=1 =1

It is easy to get the following identities by using V- w = 0,

w-Vu= (z”: %(Uiu{j)) L<ica’

71=1
Flw-Vu] = \/:T(Zéjuﬁﬁj)qu-
=1 ==

Thus we get

|F[w Vaf? = Z]Zgju,wg <IN Jaw

i=1 j=1 i=1j=1 j=1

= |wl*|Vul®.

[December

< l¢l? Z Z llws @11 s I = €1 @)1 ()],

i=1 j=1

where we have used iEI <NFOI Ng@®Il-
Now V. u = 0 yields

V- (w- Vu) = Zzaa"::g;‘;.

=1 j=1

Hence one obtains
V- (w- Va) [ J
V- (w- Vu) ;; oo,

Clearly

izz’auz

i=1 j=

= |Vuw|*|Vul?.
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We now arrive at the estimate

- v < [5G0l ol

< IIV'w(t)II IVu(®)ll?.

Because
|V (w - Vu)] iili(zﬂ:wkﬁul)lz
i=1 j=1 Ozj \ = Oz
= N - Qwy, Ou; o%u; |2
- 1:1_;‘;—;?8‘7‘"“ * &Bjaxk‘

<23 S (13 G Sy oo

<23 3[R SR Sy

n n . 2
=2|Vu|2|Vw}2+2[w[22 Z\ O u; l ,

7z 0
i=1 j=1 k=1 9z 0zy,

]

and

62ui

3.’Ej8.’15k

> [5mim
k=

2 8%u; 8%u;
w ————— —————

Jo
.23

i=1 j=1

7 5.2
g Oz Oz}

2
dz = [|[Au(@)|?,

one obtains
IV (w - Vu)@)II? < 2 Va@)Z I Vu@)I? + 2 V@)L | Au)l?.

The following identity follows by taking the divergence of equations (1)

}:Zax (i) + &p =0
=1 j=1 1'
The Fourier transformation yields

SO et + €25 = 0.

=1 j=1
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Similarly one has

SN 65T + 27 = 0.

=1 j=1

Thus we get the identity by subtracting the two equations

(11) YD &k + wwy) + €7 = 0.

i=1 j=1

Triangle inequality and Cauchy-Schwartz inequality give the estimates

PR < DD 1ENE Tws @)l (8)]) + flos @)1 llw; (1]

i=1 j=1

=D l&llwsOI Y 1l O+ 1w @l Y 15lllw; ()
i=1 j=1 i=1 j=1
< EPl@I + lo@)illw @)

Therefore we get
7] <l + lv@Hllw®]-

On the other hand, we have the relation

ZZ%M ~0,

=1 j=1

which leads to
"o [ Ow; Bu;  Bvy Dw;
Zzl(amz Ox; + Ox; 833j> + AT =0.

=1 j=

Applying the Fourier transformation gives

ZZF[an Ou; avj Bwi] Y Ar—0

Pt Ox; Ox; 8xi 0x;
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Therefore we get

il < 35 [FReflgEo]+ X X lszel|5el

(Sl (S el
S (S5 o)

= [[IVu@®ll + [Ve@IIIVw®)]-

We can easily get the estimate by squaring both sides of (11)

4RI = | 3 D0 e + )|

i=1 j=1

<SSl S laww + o

=1 =1 =1 j=1
n n
<Dl + vl
=1 j=1
or
n n
F2 <D0l + )

=1 j=1

Integrating this inequality with respect to £, we obtain

IO = Gy

Z > N wiug + viw) ()11
i=1 j=1

<23 > e @i + llos (Ol 2 llws (O1]

i=1 j=1

< 2@ 2 Nw@ON + 2o @12 lw @)
< 2llu®)llze + IOl @I,

and multiplying that inequality by |¢|? and then integrating with respect to
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¢, we obtain

IVAOIF = eI TR

<Y O IV (wiug + viw;) ()12

i=1 j=1

<4 > IVa @I w2 + llus 012 Vw: )]

i=1 j=1
+ i (D126 1Vw; O + Vo (01 lw; (E)112]
< 4V + Vo) Mlw)liz,
+Allu@IZ + @2 Vw1,

Taking the divergence of equations (3) to get
V-(w-Vu+v-Vw)+ Ar = 0.
By using this identity we get the following

lAz@)I? = IV - (w - Vu+v - Vw)@)]|?
< 2/ (Vu|2|Vw|2dx+2/ Vo) | Vw|?dz
R? R?

< 2IVu@®lizs + IVoOIL V()| Zs-
The following estimates follow directly from equations (3)

lwe®N* < 4ll(w - Vu)OI1? + 4li(o - Vo) (0)]”
+4[Aw®l® + 4 Vr (D))
< Hw® IS IVu®I® + 4@l IV (@)
+ 4l Aw(®)|* + 4|V (D)%

By differentiating (11) with respect to ¢, we have

n n
Z Zfiij[wituj + witje + view; + viwje] + €27 = 0.
im1 j=1
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Thus
n n n n
el < D0 T 16E1P D D IFwi; + winge + view; + viwg] |
i=1j=1 i=1 j=1

= |¢J* Z Z |Flwisu; + wiwge + vigw; + viwg)]?,
i=1 j=1

or equivalently, we have

n n
|7ﬂ|2 S Z Z IF[wituj + WiUje + Vit Wy + ’U.L'U)jt]|2.

=1 j=1

Now by integrating this inequality, we get

e (B)I|” = @ )n Ilm(t)ll2
< B Z il wztuj + wiuje + view; + vzwﬁ](t)ll
(2 i=1 j=1

[
M:

n
Z “ wztuj + wzu]t + ’U’Ltw] + 'U:L'U)]t)(t)“
j=

s
Il
3 -t

<4 Z o ()13 Nwse ()11 + llews (£) 12 e (D))

=1 j=1

+ s (O 2 s (O + o (V2o llwse (8)]1%]
< dllu@) iz w1 + 4llw®lI% lu @]

+ 4llw(®) 1% loe (D12 + 4llv ()12 1w (DI
< 4llu(®) |1, + Il 2w )

+ 4l I + o O Nw (N2

Since

[5G omi=[ YY i

i=1 j=1

/ S5 fi ~(g;hi)d

i=1 j=1
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we get
[ 1f+tg-Vh)da +h- (g V1)ds =
[ 16 via=o
-

In addtion, we have

PRI (Yl )(zzl"’f’

=1 j=1 i=1 j=1

- _ 1, 9F
|| 1t wmas| =] [ nggh s < [ 1glinv lda.

) = Lol 112,

Lemma 2.2. The following preliminary estimates hold for problem
(1-2)
lu- Vul® < ful|Vul?,
|F[u- Vu]|* < JEPlu@)?,
V- (u- Vu)|* < [Val,
|F[V - (u- Vu)]|* < [[Vu(®)]|*,
IV(u- V)OI? < 2IVu@)IIPIVu®)lZ + 2llu@)iZ | Au@))?,
15l < flu(®)]I?,
13p(®) o0 < Va2,
eI < @)% lu®)]?,
IVe@OI? < dllu@li% IVu@)I?,
1A < [IVut)l 24,
lue (O < 3lu@®lZ IVl + 3l Au@)l® + 31 V@)%,

eI < 4llu)liZ, lue (@)1
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This proof is parallel to that of Lemma 2.1 and is omitted.

Lemma 2.3. Let ug and vg € H?, let wo-€ L'. Then
t
|| < Iﬂ)T)IJr?Ifl/0 Hu()l + llv(s)l]llwls)lids
t
< lwollzr + 2|§l/0 [llw(s)I + llo(s) I w(s)llds.

Proof. Applying the Fourier transformation to the equations (3) yields
Wi + €20 + Flw - Vu+v - Vw + Va] = 0.
It follows easily that
[ﬁe|§l2t] Lt Flw-Vu+v-Vw+ Vw]el’slzt =0.
Integrating in time gives
2 ¢ 2
@ = woe ¢t — / Flw-Vu+v-Vw+ V7](¢, s)e Kl (E=2) s,
0
Therefore by using the estimates in Lemma 2.1, we obtain
’ i
@] < |7l +/ \Flw- Vu+v- Vo + Va)|ds
0
t
< we| + 2I£|/0 u(s)I + lv(s)llw(s)llds
t
< llwolz» +2|€|/0 [lle(s)Il + Nw()lllw(s)llds.
The following lemma is due to Schonbek [11].

Lemma 2.4. Let ¢ = g(z,t) and h = h(z,t) € L*=(0,00; H'(R™))
satisfy the energy inequality

L1+ 0@l + 30+ DIV
< O+ g +C + MO,
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where k > 0 and | > 0 are real numbers. Let B(t) = {¢£ € R*|(1 +t)|¢]* <
2C}. Then we have the estimate

L1+ eI+ (1 + 0 I Va) 2

<

R BN GTS

Proof. Rewrite the given inequality as
d ! ~2 2 ! / 21~2
— {1+t d
Glavo [ ara]+savo [ epara
<C(1+ t)’“l/ |9]%d¢ + C(1 + t)k/ |n|2de.
R™ R™
Since R™ = B(t) U B(t)¢, we get
1 ~
S+t [ lepigiae
R'n
1 ~ 1 ~
—5+0 [ jePgta+ ot [ lePiaiae
B(t) B(t)®
>oa+9 [ o

B(t)e

= (1 + 1) / G1%de — C(1 + 1)~ / iG1%de.
R~ B(t)

Substituting this for the original one and using Parseval’s identity, the

lemma is proved.

Lemma 2.5. (Gagliardo-Nirenberg’s inequality) For all 1 < p,q,r <
oo and for all integers n > 1 and m > k > 0, there are constant « : k/m <

a <1 and C > 0 such that for all u € C§°(R™),

ID*ullzr < CID™ullg lulllz®, where
n/p—k = afn/r —m) + (1 - a)n/q,

aﬁl+"'+ﬁﬂ-
DMl = Y |
9P ... gxPr
Bit-+Bn=k 1 n

4

Lr

The only exception is that a # 1 if m—nfr =k and 1 < p < 0.
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Because C° is dense in W™7 N L9, the interpolation inequality holds
for all functions in W™ N L9,

Lemma 2.6. (Generalized Gronwall’s inequality) Let g(t) > 0 and
h(t) > 0 satisfy the inequality

t

dﬂs0+Ag®Mﬂ@,

where C > 0 is a constant, and h(t) € L'(0,00). Then we have the estimate

g(t) < Cexp [/000 h(t)dt].

3. Decay of solutions of problem (1-2) with n = 2. Previous
papers dealt with uniform decay estimates for the solutions of (1-2) for the
case up € L" N L2 with 1 <7 < 2. If for all 1 < r < 2, the velocity uo ¢ L",
but ug € L?, then no known decay result exists.

Let ug € L? and ug ¢ L™ for all 1 <7 < 2, let g be the solution of the

heat equation
9t —Ag=0, g¢(z,0)=uo.

Because

Py —— - 2
WN/IWM=/IW%=/IM%”W%,
R2 R2 R2

one obtains the following by using dominant convergence theorem

Jim [lg(2)]) = 0.

The same asymptotic behavior also holds for the solutions of problem
(1-2).

Before we begin our main work on problem (3-4), we need to establish
some decay estimates for the solutions of problem (1-2) with uo € H 2 and
n=2.

The proof of Theorem 3, case (1) with § = 0 and case (2), will be given

by the following lemmas.
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Lemma 3.1. Let ug € H2. Then we have the following estimates
sup Jlu(®)l|* < fluolf?,
0<t<o0

- |
2 / IVu(®)|2dt < [luoll?,
0
sup [Vu®I® < [Vaol?,
0<t<oo

2 / lAu@)2dt < [Vuo|,
0

sup [(1+8)[Va(®)[?] < fluol?,
0<t<o0o

2 /0 (1 + B[ Au(®)Pdt < [luoll?,
Jim [tIvVu®)|? = o.

Proof. Making the scalar product of (1) and 2u and integrating over
R2, we get ‘
d 2 2
S le@I” +2[Ve@)|® =

It follows from this identity that the first pair estimates hold.

LetA:Z—:zl 2“2 Since V - u = 0, we get

0A _ Ouor  Oup
At AA + Zu, : = 0, A(.’L‘,O) = 8__’32' axl .

Multiplying this equation by 24 and integrating over R% we get
d
Z A1 +2[VA@|* =0

It is not hard to see that || Vu(t)||? = ||A(¢)||? and ||Au(t)||?=||[VA(2)| 2.
In fact

ou Ous |2
2 _ et ']
1A@)I? = /R o2 -52f

_/ rouy |2 + 8u2l 23u1 Oug
- R2 Gt 83)2 (9.’1:1 3.’21 6122

_ c’)ul 8u2
0= Lz 81:1 8.’172 I dz

] ds, and
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__./R[

81L1 2 8u2 2 8u1 8’(1,2
Jzq + dzo + B_acla—a:z]d

Juip |2 [Oui|?2 |Oug|?  |Oug|?
AD|? = / Quy|®  (Bur|®  |Ouz)?  1Oup
” ( )” R2 [ 8m1 + 6562' Bacl + 311’,'2 }d.’li
= | Vu(@®)|>.
Similarly one has
9%u 2 &%u H%uy |2
Al6)[2 / Ug 1 2
IvVA@II i@mlamz 8:1:1 l + dz 3x18x2| ]dm
8 2 82’ILQ 2 82’11,1 2 82U2 2
el [ Jas
0x10x9 ox3 oz5 011014
82u1 621.1,2 (9211,1 62U2
-2
/Rz [&cl 6.’1:183:2 T 92100, 022 [z, and

[
- [,
[
[

62u 2 0%, 0%uq |2
= l + 5 I ]da:
R2 8 8.’1713.’132 61118.’132 8332
82 2uy |2 %uqy |2 9%uq |2
- 2+ |5mrpes] | +|57 ] e
R2 3 81313%2 81171811:2 8.’1,‘2
82’11,1 3211,2 82’11,1 821L2'
2
+ /Rz [Bml dx10x2 + 9z10zy O0x3 | dz,
8%u,q uy 12 10%ug |2
VA(®)|? | 1
IvA@I / |5 l 2 9210051 1022 JE

™

/ | T 8211,2 |2 82’[1,2
e 0x10x, 8:5%
= [|Au()|%.

|z

Thus we have
d 2 2
ST + 2w = 0.
Therefore we obtain the second pair estimates. Moreover we observe that
d
S+ I Va®)|?] + 2(1 + | Au®)l|® = V)l

If integrating in ¢, one obtains

(1 + D Va@)|? + 2 /0 (1+ 5)||Au(s)|2ds
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t
= [Vl + / IVu(s)|Pds
1
< Vol + 2 ol < ol

The third pair estimates follow now. Because ||[Vu(t)||? is monotonically

decreasing, if 0 < s < t < 0o, we have

JT R [ Ivuitar > @ - vl
Thus we obtain
/ " V() ldr > timsup{(t - )| Va(t)|?] = limsuple V(o))

If we choose s large enough, the quality in left hand side can be made

as small as desired. Therefore
Jim (t]u(t)]”] = 0.

Lemma 3.2. Let (u,p) be the solution of problem (1-2) corresponding
to the initial velocity ug € H?. Then

sup [(1+8)*Au(t)]|?] < lluoll; exp(16]luol*],
0<t< o0
/0 (L+1)*[VAu®)l*dt < [luol3 exp[16]|uo|*].
Proof. If we make the scalar product of equations (1) and 2A2u, inte-
grate over R%, we get '
d
EZHAu(t)HZ +2|VAu@)|? = 2/R2 VA - V(u- Vu)dz,
where

/ A%y - Vpdz = 0.
R2
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We have the following estimates.

V(- Ve)R)I? < 2 Vu@ P IVu®)Z, + 2llu®% 1 Au@)]®
< 4llu@ A Vu@OIIV Au@)]]

< VAU + 162V || Au(@)].

W |

Therefore

2 - VAu-V(u-Vu)dr < %HVAu(t)II2 + 2|V (u - V) ()|

< [VAu@®)|® + 32lu@) P Vu@)lI* | Au)]*.
Therefore we get
%IIAWE)II2 +VAu@)|® < 320u@IPIVu@)l* | Au@)]?,

z?z[(l + 1218wl + (1 + 02 VAu()|®
< 2(1+ )| Au()]|? + 32(1 + 1) lu@) P Vu®) 1 Au()].

Integrating in time yields
1+ t)*Au®)|® + / (14 5)?|VAu(s)|*ds
0
< NauolP +2 [ L+ DAl at
0
+ 32/0 lu() PN Vuls)> (1 + 5)?[|Au(s)li*ds

< | Auo||3 + 32/|uoll? /0 V()| + 5)? | Auls) || ds.

Gronwall’s inequality yields
A+ I8u@l? + [ 1+ 9P ITAus)]ds
0

< |luoll2 exp [32||u0||2 /0 - ||Vu(t)||2dt]

< Jluoll3 exp[L6luoll*].
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Lemma 3.3. Let (u,p) be the solutions of problehz (1-2) corresponding
to the initial velocity ug € H?. Then

Jim [lu@®* + (1 + Ollp@NI* + 1 +)*[[Ve(2)]1*] = 0.

Proof. By the equation
d
—llu@* = -2(|Vu@)|? <0,
dt
one concludes the limit
tlim lw(®)|| = 2X >0,

exists. Suppose that A > 0. Let

Ug (.’L‘)

1105(30) m,

where ¢ > 0 is a constant. Then v, € L' N L2 and

lvoell < llwoll,  llvoellzr < v/m/elluoll.

Moreover, vg, converges to ug in L%, as ¢ — 0, by Lebesgue’s dominant
convergence theorem.

By Lemma 4.2, which only assumes the condition uy and vy € L2,
we have the stability estimate [|u(t) — vc(¢)]] < Cllug — voe||, where C is
independent of vo. and t. Choose €9 > 0 sufficiently small, such that for all
t>0,

lu(t) = veo W) < Clluo — voell <

DO >

By Zhang [24], the solution v, of problem (1-2) corresponding to vy,

enjoys the basic decay estimate

llveo (DIl < Cline + )] Hllvoee Il 22 + [|v0eo 1]
< Clinfe + )] [/ /e + [|uoll]lluoll-

Choose £, sufficiently large such that




1999] UNIFORM STABILITY FOR NAVIER-STOKES EQUATIONS 289

Cllae+ to)) ™ [/ + uolluoll < 5-

Therefore one obtains

[l < Nlu®) = veo Nl + llve, W] < A,

for all t > to. Letting ¢ — oo, we obtain a contradiction. So the only
possibility is A = 0. This completes the proof of the first limit.

Other limits can be proved by using the following estimates
L+ OlpOI* < @+ Ollu@® % lu@®)®
< lu@®IPA + )l Au)]),
L+ IVRMI? < 41 + ) [u®) 2 Vu(@)l?
<4lu@I*(1 + 5| Au®)]?,
1+ llAu@)] < C.

Lemma 3.4. Proof of Theorem 3, case (2).

Proof. If we make the scalar product of equations (1) and 2A3u, inte-

grate over R?, we get
d
SIVAUDI? + 21 A% =2 / A2y Alu - Vu)dz.
R2
We have the following bounds

2 Ay - Alu - Vu)dz
R? V

<182l +2 [ |A@: Vo,
R2

|A(u - V)2
. ou; OAu; 2. Bu; O%u; |2
:Z!ZAUJG Z“" ox; 2_2_:2_:8_:;;;833 Oxy,
=1 j=1 j=1 7=1k=1
= Ju; |? NI~ OAu; |2 e Oy 0% 2
S4Z ZAUJ@ZJ +4Z|ZUj 89:]- +SZ’Z — B_aczaxjaxk
=1 j=1 i=1 j=1 1=1 j=1lk=1

< 4| Vul?|Aul? + 4|u]?|VAu|? + 8|Vul?|Aul?, and
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2/ |A(u - Vu)|?dzx

R2

< 24| Vu)lZ 1 Au@)? + 8llu(®) |2 1V Au)]1®

< 24 Vu@)PIVAu®)? + 8llu@)ll Au@) |1 A*u ()]

< 24||Vu(@ I IVAu®)* + %I|A2u(t)||2 +32/u@ VeV Au()]>.

Therefore we get
d
ZIVAuI® + [A%@)I < CIIVu@I*[IVAu®)]?,
or we have the inequality

%[(1 + 1’ VAuB’] + (1 + 3| A%u(®)|?
< 31+ 2 [[VAu@® + C1 + [ Vu@) PV Au(@)|?
< 31+ )2 Au@I A% u(@)] + O + )P Vu®) PV Au(t)|?
<51 +t)[Au@))® + %HA?'u(t)ll2 +CA+)° Va2V Au)|?.

As before, one easily obtain the following estimates
L+ P IV A +3 [ (14 0PIa%u(s)1ds
< IVAu* +5 /000(1 +t)[[Au(t)|?dt + C/Ot IVu(s)II*(L + 5)* [ VAu(s)|*ds
< Jluoll3 + C/Ot IVu(s)I*(1 + 5)* [V Au(s)||*ds, and |
1+ )} VAu®)||? + /Ot(l + 8)3||A2u(s)||ds
<IVauwl? e [¢ [ IvuePal.
Therefore
sup [(1+8)°[|VAu()]?] < [VAu|® exp[Clluolf?),

0<i<o0o

t
/ (1 + 5% A%u(t)|2dt < ||V Auo|]? exp[Clluo?]
0
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By using Lemma 2.5, it is very easy to get the estimates
(1 +)llu@®Z < lu@ll1+)Au@)l < C,
1+ )*[IVu)llz < IVa@li + ) VAu@)| < C.
The following follows directly from equations (1)
IVue@I* < 31V (- V)@ + 3[VAu@)|? + 3] Vp()|I?
< 6IVu)lZ IVe@? + 6llu(®) 1% | Au)||?
+3IVAu@)|? + 3l Ap(t)|I?
< 6 Vu@)IPIVAu@)]| + 6llu(@)|l| Au(®)
+3[VAu(t)|* + 3 Ap()|1*.
By Lemma 3.1-3.3, we get
1+ IVu(®))? < C.
Similar to Lemma 2.1, it is easy to get the estimate

1Vpel? < D0 1V (wivu; + wiuge)] .

i=1j=1
Thus one gets

1
(2m)?

VeI = IVp: 1

< S ST IFIV (s + w02

i=1 j=1

- Z Z IV (uiw; + winge) ()

i=1 j=1

< Y > AVuar @Il (N2 + luaeOI IV (OI1%

i=1 5=1

+ IV @Ol luge (O + s @2 Vui (9117}
< ClIVu I lu®liz, + Cllue I Va2
< Cllu@lll A Vue (@I

+ CIVu@IVAu@llllue@®I* < 1+ 1)~

291
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Remark. The following estimates hold if the initial data ug € H*.
A+ ™MA™u@* < C, L+ VAT < C,

where m > 0 is any integer. In fact we have the following more precise

results
tlim [(1 4+ )%™ A™u(d)]|® + (1 + t)*™ || VA™u(2)|?] = 0.
4. Proof of Theorem 1 and 3. With the aid of the elementary

estimates, the decay estimates of the solutions, we can now develop our

proof for the main theorems step by step.
Lemma 4.1. We have the following estimates
GO+ @)+ A+ Ive@ <caro? [ ok,
%[(1 + ) Aw®)P] + (1 + 1 [VAw@)|* < C(1 + 1) lw (@)%,
where B(t) = {¢ € R*|(1 +t)|¢|2 < C}.

Proof. If we make the scalar product of equations (3) and 2w, integrate

over R%, we get

d 2 2

—Nw@®OI* + 2V =2 [ u-(w-Vw)dr,

dt R2

where / w- (v Vw)dx =0, / w- Vrdz = 0.
RZ R2
The estimate in Lemma 2.1 yields the following
2 [ ue - Vu)ds < 2 el @Ivu O
1
< 2l lw®ll + S 1Vw ().

Therefore we get

%Hw(t)ll2 + gIIVw(t)II2 < 2fu(®) 1% lw®)l1?,
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or

d 3 2 3 3 2

(O lw@IFF] + 51+ )%Vl

< 3(1+ 2 lw®)I® + 201 + ) lu(®) |5 lw ()1
< CA+ 8wl

where by Lemma 3.1 and 3.2,
(L + D@l < lu®lA +BllAu@] < C.
By virtue of Lemma 2.4, we get

%[(1 + 3 lw@®)?] + (L+ )} Vu@®)|® < C(1 + t)z/ @] de,
B(t)

where C is independent of vg, v and t. Actually C = ||luo|| exp[16]|uo]|*].
If we make the scalar product of equations (3) and 2A%w, integrate over
R?, we get

d
ZlAw@®| + 2VAw @)’

=2 [ VAw-V(w-Vu+v-Vw)dz
R2

—%IIVAw(t)lP + 4||V(w Vu)(OII? + 4V (v - Vw)(®)[|?
< LIVAR@IP +8 / V| Vwl2ds + 8 / Vo2Vl dz
+ 8llw) 12 1Au®)|)? + 8llv() 12 | Aw(®) I

We have the following estimates

8 [ IVl vuls < 8IVui Vel
| < Clu@ M2 Au®I O] | Aw (@)
< Clau®lAw@? + Clu@IPIAu@ P lw @I,
s [ 19176l < Clavolilav@l? + Clv@IP Ia@F I
w2 1Au@®]? < Slu@llAu@l Al
< alau@NAw@|” +4Aau@F o).
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‘We now have the estimate

Llaw@l? + SIVAuO?
< CllAu®) + 180 + @ Aw O]
+ Cll@IPIAuOI® + @A + A

Obviously the following hold

L1+ 07 aw@ ]+ 5@+ VAR
< 5(1 + A + O+ i | Aw@ +C(1+ 0P @)
< O+ Aw@)? +C(1 + 0P )],

where for all ¢ > 0,

(1 +)[llAu@®] + 1Av®] + ®)IIZ] < C,
@+ [N Au@IP + lv@OI* Ao + [Au@®)]’] < C.

By using Lemma 2.4, we now obtain
L+ 0PI ]+ (1 + IV A ()P
<ca+vt [ et + o+ il
<oy [ B+ O+ 0P )

< O+ lw@)I*.

Lemma 4.2. Proof of Theorem 1, case (1).
Proof. By using the identity
d
G +21Vu@P =2 [ o (- Vu)ds,
dt R?
we get

d
T @I + 2 Vo)
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<2 /R fellwl|Vulde < 2lu(®)llzs lw@ e V@)l
< Cllu@IM v a@ 2 @I 2 Vw12
< Va@)l? + Cllu@IP IV u@l*lw@)|*.

Integrating this inequality in time to give

lw(®)lI” +/ IV (s)|*ds < Jlwoll® + C/ lu() PNV u(s)I1? [w(s)]Ids-
0 0

By using Gronwall’s inequality and the estimate of Lemma 3.1, we

obtain
ol + [ Vul)ids
< ol oxp [ [ TP IV)17de] < ol explCluol)
Thus

sup [lw(®)||* < llwoll? exp[Clluoll*],
0<t<eo

/0 IV @I?dt < Jwoll? exp[Clluoll]

The constants are independent of vo and v. In fact, they only depend
on the constant C appearing in Lemma 2.5.

The second estimate in Lemma 4.1 yields

210+ 0 IAw @I + (1 + 71V Aw I
< O+ 0Pl < O + 1P’

Integrating in time, we get
1+ lAw@®)® + /0 (1 + s)*[[VAw(s)|*ds < [|Awol® + C(1 + 8)*lwol*.

Thus one obtains

sup [(1+1)*[|Aw(®)||] < Cllwoll3-
0<t<oo
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Further, by Lemma 2.5, we have

A+ )llw@®NZ < lw@®l + Il Aw@)] < Cllwoll3,
1+ )IVe®I* < Jlw®I( + Bl Aw@)l| < Cllwoll3.

Now we employ Lemma 2.1 to estimate others.

Sup [(1+ D)7 @)I”] < Cllwoll3,

0<

sup [(1+8)*[Va(®)]*] < Cllwoll3,
0<t<oo

sup [(1+t)*An()]?) < Cllwoll3,
0<t<oo

sup [(1+8)?[l7(®)lI%,] < Cllwoll3,
0<t<o0

sup [(1 +t)?flw.(t)|I”] < Cllwoll3,
0<t<o0

sup [(1+8)*lm(@)II*] < Cllwoll3-
0<t<oo

This lemma shows that if (ug, Ag) € H?, the solutions of problem (1-2)
are stable. We do not necessarily require that the initial velocity decay more
rapidly, i.e. (up,Ao) € L™ N H?, for some 1 < r < 2.

Lemma 4.3. Proof of Theorem 1, case (2).

Remark. Let ug and vo € H? and the corresponding solutions enjoy
the slow decay estimate ||u(t)||+|lv(¢)|| < C/In(e+t) and let wy € L. Then

the same result holds. Notice this condition is weaker than the original one.
Proof. Using Lemma 4.1 and 2.3, we have
d
Z A+ @]+ @ + Ve

SC(1+t)2/

B(t

<o+ [ {iulo + 21 [ (o)l + oMioo)las ) s

|@]*de
)

< C(L+llwollfn +CA+ t)/0 llu()* + o) Hw(s) ] ds.
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Integrating in time gives
X t
1+ Pl + / (1 + )| Vuo(s)|2ds
[1]
< Jwoll? + C(1 + t)%||wols

+O(1+1)* /0 (lw(s)I? + o) lw(s)l*ds,

or we get
@+l + [ @+ olvu(oP
< Ol +€ [ MO + Io(IPho(e)Pds
< Cluollsngs + [ e + ) u@)Pds
Set

o(t) = (L + Ol + /0 (1 + o)l Vu()|ds,
h(t) = C(1+ )" In(e + )] 2.

By means of Gronwall’s inequality, one obtains

sup [(1+8)llw®)I’] < CllwollZings-
0<t<oo .

In addition, using Lemma 4.1, we have the estimate

%[(1 + % Aw(®)|’] + (1 + )| VAw()|?

<o+ ) lw@? < C( +t)lwollLinL:-
Integrating in time, we obtain
(1 +t)*|Aw®)|® + /Ot(l + 5)%||VAw(s)||*ds
< | Awo|? + CllwollFanzs (1 + 1)
this is just the estimate

sup [(1+)}|Aw(®)|*] < CllwollZinme-
0<t<oco

297
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As before, using Lemma 2.5, we get
1L+ lw@®lZ < Q@+ Y2 |lw@l@ + )*2|Aw@®)l < ClwollZiaz2,
1+ Vu®)|Z < @+ )" lw@lA + ¥ *[|Aw@)] < Cllwollinge-
Further, by Lemma 2.1, we have
@+ 3 < CllwollZange,
A+ )*IVa@)l® < Cllwollrage,
@+’ Al < CllwolZange,
1+ )" @)% < CllwollZsnge,
1+ lw N < CllwolZingz,
@ +)*lm @ < CllwollZrnge
The proof of Theorem 3, case # = 1, is also completed by taking vy = 0.
Lemma 4.4. Proof of Theorem 1, case (3).

‘Proof. For all £ € R?, Lagrange mean value theorem leads to
@1 <16l [ lelluolds < fllwoliy
Using Lemma 4.1 and 2.3, we have »
%[(1 + 8 lw(®)*] + (1 + )3 Vu(@))?

SC’(1+t)2/ |@|>d¢

B(t)

scu+w{ém{ma+maﬂnm@m+nw@wm@ma}da
samm%+c{AMMﬂWHM@wm@mwF

< Cllwolls + Clin(1 + &) wol2an -
Integrating in time gives

0+QWMMP+AO+®WVM@W®

< [lwoll* + Ctllwolls + Ctln(1 + )] llwoll e,
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or
(1+ 2w @I < Clin( + &) lwoll3s-
Iterated once, we have
L+ @I+ (1 + 9V
< C(1+1t)? w|2d
a+o? [ NEE
<ca+o? [+ [ ol + () llw(s)lds ;e
< Cllwoli}; +¢{ / ()l + lo(@iw(s)lids ) < Clhuoliy:
0
Integrating in time gives
(1 + Dl 12 + /0 (1 + )3 Vo(s)]2ds
< flwoll? + Ctllwoll}s,
or

sup [(1+02u(®)°) < Clluoly

Coupling this estimate and the second estimate in Lemma 4.1 yields

210+ 0PI aw @]+ (1L + O AV’
< CQ + 1 @) < Cluolly

Integrating in time gives
t

1+ t)° | Aw@®)l? +/ (1 + 5)°[[VAw(s)|*ds < [|Awol|* + Ctllwollis-
0

Therefore we have

,Sup [(1+ )*Aw(®)?] < Cllwollhy-
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Now it is very easy to get
sup [(1+¢)°[[Vw(®)|®] < Cllwoll3,
0<t<0

sup [(1+1)*lw(t)ll%] < Cllwoll}-
0<t<o0o

Other estimates follow lines which are by now familiar.
The proof of Theorem 3, case 8§ = 2, is also accomplished by taking

Vg = 0.
Lemma 4.5. Proof of Theorem 1, case (4).

Proof. It suffices to prove the lower bound. Let g be the solution of the

linear problem
9t —Ag=0,  g(z,0) = wo,

where wyg is the initial velocity of problem (3-4).
Becuse V - wp = 0, § = wg exp(—|¢|%t), we get V- g = 0.
Let f = w — g. Then it satisfies the equations

fitw-Vut+v-Vu-~Af+Vr=0, V-f=0, f[f(z,0)=0.

If we make the scalar product of this equation and 2f, integrate over
- R?, we get

d
GV 2V O +2 [ f-(w-Vut- Vuyds =0,
R2
or
d 3 2 3 2
Z[AFD MO + 201+ )V
+2(1+ t)3/ f(w-Vu+uv-Vw)dr = 3(1 +t)?| f(2)|]2.
R2
To derive the bounds, we have to control the nonlinear effects.
2(1 + t)3/ |f - (w- Vu)|dz
RZ

<2+ P IF ONllw @)oo I V()]
<A NFOI + @+ @12 I Vu)]?,
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201 + t)° /R2 |f - (v- Vw)|dx
<201+ [ OBl o IV (D]
< (L +O2FOI + (1 + 1) @Ol I Ve Ol

Therefore we get

L1+ PP + 200+ O TF P
< 51+ I OIF + (1 + D @IS IVaI? + 1 + ) @IS IVu I

Let B(t) = {¢ € R?|2(1 + t)|¢|* < 5}. As in Lemma 2.4, we have
d
L1+ IO

5(1+1)° e 2
ST Jy TEOPE
+ (1 + ) @I I Ve@)? + @+ D OISV Ol
<O+ / (1 + ) €[ lwollZ1nz2d€ + Cllwollzrrs
B(t)
< Clln(1 + )*|llwoll sz

where for all ¢t > 0,

(1 + ) lw@)llZ < Cllwollisnre
@+ 1 [l(®lZ < CllvollLsnre

and

o~

F=— | Flw-Vu+v-Vu+ Vale 7 ¢4s,
0

171< 2|§|/ ()l + lv(s)lw(s)llds.
0
Integrating in time gives
L+ 2IFON < Celn(l + O wollZsnze,
or

1 +BIF O < Cln@ +H)llwollZanze-
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Let 2a = | [ g2 Wodz|, then o > 0, and there is a constant § > 0, such
that for all £ € R?, if |¢] < 6, then |wp| > o

Now we have the estimate for the solution of the heat equation
e [ loPda= [ igrae
R? R?
= [ 1@afre el g
RZ
>/ |%|2e—2[§|2(1+t)d€
-

2/ |@B[26—2|£I2(1+t)d§

lgl<s

> '/ wodx|2/ e~ 2P (141 ge
R? lgl<é

2 27 ) 2
> |/ 'wgdxl / / re” 2 I+ grgg
R? Jo Jo

2
ZC'(l—i-t)“ll/ wodx' .
R2

Finally we have

@I = llg@OI = £ B
>C(1+ t)_1/2l /R? wod:cl

- C(l + t)_l ln(l + t)”'l.U()”Llan.

Remark. If there is a constant 0 < Cy < 1, such that

l/ 'LUQdCL'I > Cg/ |w0|da: >0,
R? R?

and
C1+1)71/? /Rz lwoldz — C(1 + )™ In(1 + t) wo | prara
> Co(1+ )7 |lwoll 1nre,
then we get

CillwollZinze < (1 +O)lw@®l® < Callwoll}inge-
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5. n(> 3)-dimensional problems. We are concerned with L? and
LP(p > n > 3)-uniform stability for solutions to Caychy problem for n-
dimensional incompressible Navier-Stokes equation (1-2).

Let us begin with some relevant results on existence and long time

behavior of solutions of problem (1-2).

Proposition 1. Let n > 3.

(1) Let ug € L?, then there is a weak solution u € L*(0,00; L) N
L2(0,T; HY), for all T-> 0.

(2) Let ug € L' N L2, (1-2) has a weak solution u € L>(0,00; L) N
L2(0,T; HY), such that (1 +t)*?||u(t)]| < C.

(3) Let ug € M, then (1+t)1+"/?|ju(t)]| < C.

(4) Let ug € M N LP for some p > n, then ||u(t)]loe = ot~ (/).

(5) Let ug € L*NLP for some p > n, then there is a constant C > 0, such
that the smallness condition ||uo||2®@~™/P(=D||ug||» < C implies problem
(1-2) has ¢ unique global solution u € L*(0,00; H') N C(0, 00; L2NLP). See
[7-8, 12, 19-23].

Recently, there has been much attention to stability of the solutions
fo the n(> 3)-dimensional Navier-Stokes equations. For examples, Secchi
[13] utilized energy method to prove an L? stability result for 3-dimensional
problem. Veiga and Secchi [20], Wiegner [22] studied stability in LP-norm
with p > n for strong solutions to problem (1-2). All these papers es-
tablished very interesting results for n(> 3)-dimensional problems, withoﬁt
employing any kinds of smallness hypotheses. Let us look at their stability

results.

Proposition 2. Let ug € HY with V -ug =0, let f € L*(0,00;L?) N
L?(0,00; L?) and u € W12(0,00; L?) N L2(0,00; H?). Then for each vy €
H, there is a weak solution corresponding to the initial velocity vy and the

external force f, such that ||u(t) — v(t)|| = 0 as t — oo. See [13].

Proposition 3. Letp > 3, let ug € L' N LPY2 and vy € L' N LP with

V-ug = Vo = 0, let u € L=(0, 00; LP*2) be a strong solution corresponding
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to ug. Then there is a constant § > 0, such that if ||ug — vol|rr < 6, a strong
solution of problem (1-2) v € C(0, 00; L?) exists, corresponding to the initial

velocity vg, and
Nu®) —v(@®)llze < C(L+1)73/4,

where § and C depend on L' and LP norms of ug, vg and on the L (0, oo;

LP*2).norm of u. See [20].

Proposition 4. Let the critical assumption (H) hold: There are con-
stants p > n > 3 and q > 2 satisfying n/p+2/q = 1, such that ug € L2NL?
and u € L9(0, 00; LP). Then u € L>=(0,00; L?) and (1+¢)P=2n/4 ||y (1) |5, <
C. Moreover, there is a constant § = §(n,p) > 0, such that if vo € L2 N LP
and |luo — voll» < 6, a strong solution of problem (1-2) v € L"(0, 00; L?)
ezists, where 4p/n(p —2) <1 < co0. See [22].

Wiegner skipped the assumption v € L*(0,00; LP*?) and gave the
proof for all n(> 3)-dimensional problems.

In [19], Veiga proved that if a global solution of n-dimensional problem
satisfies u € L9(0,00; L), then u € L°°(0, c0; LP), where ug € L2 N LP for
some constants p, ¢ satisfying p > n > 3 and n/p +2/¢q = 1. Unfortunately,
the existence of a solution in the class L9(0, co; LP) is still an open problem
for general data ug. In [23] Wiegner prove that if ug € L' N LP, for some
p > n, and if (1 + |z])ug(z) € L' and [, uo(z)dz = 0, then |[u(t)|jec =
Ot~ (»+1)/2),

For 2-dimensional problem, it has been established that for all initial
data ug € H?, there is a unique global strong solution. For n(> 3)-dimen-
sional problem, it is known that for small initial velocity, there exists a
global strong solution. However, we can utilize Veiga’s hypothese rather
than the smallness condition to prove the uniform stability. Then by utiliz-
ing Wiegner’s L°-decay result [23], we can obtain the uniform stability for
(u,p).

We use the critical assumption (H) below.
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Lemma 5.1. Proof of Theorem 2, case (1).

Proof. Making the scalar product of (3) and 2w and integrating over

R™, we obtain
%nw(mﬁ + o Vw2 =2 /R u (w Vu)ds.
Applying Lemma 2.1, gives
—d‘ll’w(t)ﬂ2 +2|| V()| < 2/ [ul|w||Vw|dz
at 2.
< 2wl e lw@)l o [Vl

< Cllu®)llze lw @1~ V(@]
< IVu@)l? + Cllu@lA ™ w1,

where p >n > 3,1 > 2, and

1/p+1/1=1/2,
0<a=n/2—-n/l=n/p<]1,

n/p+2/qg=1,
2/g=1—-n/p=1-q,
¢=2/(1-a).

Therefore
lu@I ™) = lu@®)lf» € L*(0,00).
Integrating the above inequality in time to give
@I+ [ IVue)ds < ol +C )12 () 2.
By using Gronwall’s inequality, we obtain
@l + [ 1vu(@lPds < ol exo [C [ @, ).

Thus
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(oo}
sup [lw(®)||* < Cllwol?, / IVw(@®)li*dt < Cllwol®.
0<t<oo 0
The last estimate follows immediately from the inequality in Lemma 2.1

17 (@lleo < [llu(t) + flo@)]llw(®)])-

Lemma 5.2. Proof of Theorem 2, case (2).

Proof. The first assertion was proved by Wiegner [22]. For the esti-
mates, let ||ug — vollz» < 6. Because ¢ = 2p/(p — n) > 4p/n(p — 2) and
lo@lT, < CQ+1)=k=2n/2@=m) and (p— 2)n/2(p — n) > 1, so

oo
/0 lo@Z»dt < C(n,p,llvoll, llvollze) < C(n, p, lluoll, lluol|zs)-

Hence

sup / W)L, dt < Cn, p, luoll, [uollz») < oo

vo:lfuo—vo|lLp <6 JO

If we make the scalar product of equations (3) and p|w|P~2w, integrate
over R*, we get

d

dt

- p / (w - Vo, [w]P~?w)dz — p / (Y, [wlP~>w)da,
Rn Rn

4(p — 2
Jwldz +p / P Vultds + (Lp—) /R V() de

where
/ (v - Vw, |w|P~2w)dz = 0.
Rn
To justify the uniform stability, we must control the right hand side.

- / (w - Vu, Julr~2w)dz

-3 [ ot (uzwn

1,1_71

%S R

=1 g=1



1999] UNIFORM STABILITY FOR NAVIER-STOKES EQUATIONS

i=1 j=1

+(P—2)12::§1/Rn |w|? 4uzw,w](w, aui)dm
S/ lwlp—z(iimw]l) (iilawll )1/2
i =t =1 j=1

+o-2) [ lwl”‘?’(gluiwd)(;lella—;%l)dw
<@-1) [ flup|Volds
<3 [ lup~vefs + @ -17 | Pz, ana
po =17 [ juPlopds
< p(p = DO Iy
= p(p D (3 16Oy sp—ny  (Where 6 = w)

< cnuwu%pu¢<t>n2<1—“h’>nv¢<t>u?"/"
< Cllu@®I ™o)1 + uv¢(t)n2

= Cllu( L 18I + uv¢<t)n2
= Ol + 222 [ V()P dz, and

(‘77r w|P~*w)dz

_Z/
~6-23 / ruul=* (v, 22 )iz

<(p-2) /R frllwl|Vulds

<1 / P2\ Vel dz + (p — 2)2 / I[P~ d.
4: R-n. Rn

w; )dz

Taking the divergence of equations (3) yields

307
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—Ar =V -(w-Vu+v-Vuw) =Zzax.axl(ui'wj + v;w;).
. 7 g

Applying the Fourier transformation and Cauchy-Schwartz inequality,

one obtains
72 <D0 I, + vy ).
i=1 j=1
By Calderon-Zygmund’s inequality [16], one has
e @)lI7- < Cln,r) > > I (wiw; + viw;) (@),
=1 j=1
where 1 < r < co. Thus
oo -2 [ |aPlupas.
Rn
< p(p - 2)2||7T(t)“ p2/2(p—1) ||w||LP2/(P —-2)
< Cllu@®Izs + lvOIZ w2 s [N (-
= Clllu@®7» + lo@lZ- SN2 2 o2y  (where ¢ = |w[P/2)
< Clilw@®Z» + @l M@ N>E/P ||V et )112"/”
2 —-n 2 -1
< Ol ™™ + o)/ @ >1||¢< I + uw(tw

= Cllw@®ILs + @I NS@N + ”V¢(t)”2
= Clllu®NLs + @O Mw @I, + ————/ V(lw(®)P?)|de.

Now the original equation is simplified to the inequality

d

" |w|”dx+p / P2 | Vu|?de
t Rn

2(1’ —2) p/2112
+ 22 vl s
< Gl + @I Mz,

Gronwall’s inequality yields the estimate

t
/ le”d:c—l-B/ / |w|P~2|Vw|?dzds
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____2(p—2) t wlP/?)|2dzds
+ 2222 [ 9 (up)and

<cep{C [ N, + 1@l 1at} [ wopds

< C(n,p, luoll, uolzv) / fwolPd.
Rn

309

The proof of Lemma 5.3 is finished now. The proof of Theorem 2, case

(3) follows easily from case (2).
Lemma 5.3. Proof of Theorem 4.

Proof. Let vy = 0, then v(z,t) = 0. So we get

sup lu(®)|zr < Clluollze,
t

0<t<oo
P / / |u|P~2|Vu|2dzdt
2Jo Jrn

2(p — 2 o0 i
LA =2 / / IV (julP/?)2dzdt < Clluol%,,
P 0 R™

where C depends only on the L?(0, 00; L?)-norm of u.

Let
me
T n2-2n+4
Then
—2)(2m — -2
1<m<—-n—, and (p )@m mn+n)n___p
n—2 4m(p — n) pP—n

> 1.

Let g1 = 2mp/(mp — n), then n/mp+2/q1 =1, Let f = |u[P/2, Then

one obtains the estimates

lw(®)llzmr = NF @I
< C|lf @)||Emmmntmime || £ ()| (e,

[ < CF@EEmm D =) |7 f (g)][2mm =)/ (o)

< Clf(@|PemmrtmimE=m) 4 |V £ (2)||*

— Cljup|p@mmn ) me=n) | / IV (ulP/?)Pdz,
Rn
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”u(t)||1£(p2m—mn+n)/m(p—n) <C@l+ t)—-(p—2)(2'm—mn+n)n/4m(p-—n)'
Therefore
(@) ™+ € £4(0, 00)
and
/ IV (jul)?/2 2dz € L}(0, 00)
implies that
lu(®)l| s € L*(0, 00),
namely
u € L70,00; L™P) and u € L*[0,00; L™P).
Since mp > n > 3 and n/mp + 2/g; = 1, the initial velocity ugy €
L2 N L™ and the solution u € L%(0,00;L™?) N L*=(0,00; L™?), where
m =n%/(n? — 2n +4) > 1, repeat the same procedure, we obtain
u € L% (0,00, L™ 7)) L=(0, o0; L"jzp).
Therefore if iterated this procedure for infinitely many times, we obtain
u € L9%(0,00; L™7) (| L% (0, c0; L™"),

for all k > 1, where n/mFp+2/q;, = 1. Notice that m > 1, hence m* — oo,
as k — oo.

Let o, 8,7 be real numbers such that 1 <a < < < oo and a < 4.
Let f € L2¢/(2=™)(0, 00; L*) N L2"/("=")(0, co; L"). The Hélder’s inequality

yields the estimate

WO, - [ 1gi0-p-erme-rt-g

(v-B)(v—a) . B-a)/(y—a)
< “dx / Tdx
([ \ea) ([ \a)
< I F@ONGS=P =) £y 7= anq

/0 £ (01286 gt
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o0
< /0 Lf ()220 B Crmed(B=n) ¢4y 27(B=e)/ (r=a)(B=m) gy
(=B)(a—n)/(1-a)(B—n)
200 f(ax—n
< ([ wolrea)

n (B—a)(v—n)/{(y—a)(B—n)
([ wrnoma) T

0
For all 7 with m*p < r < m**1p, let & = mFp, B = 1, v = mF+lp,
Let f(z,t) = u(z,t). Then f € L2*/(®=)(0,00; L*) N L2/0r=7)(0, 005 L7).

Moreover,

lu@lz- = @),
< (@I58~ a0

k41

_ ”u(t)”m kp(m*tip—r)/(m* T p—m P)" Ol Yp(r—m*p)/(m

Lm*r Lm’chl

wlt 2r [ (r— n)dt
[ oy
[ o

o -\ (T=B)(@=n)/(y=a)(8=n)

< ([ )

0

° _n (B-a)(v—n)/{(v—e)(B—m)

< ([ Iz )

[ e )l
0

o0 ety bty (rmmEp) (o) /(mH p—m¥ p)(r—m)
< ( / )P/ P ar) < oo,
0

k
P=mP) < oo,

**1p—mPp)(r—n)

Therefore v € L>®(0,00; L") for all 7 : p < r < co. By Lemma 3.1,
u € L*®(0,00; L?). As before, applying the Holder’s inequality yields u €
L>(0,00; L*) for all 2 < s < oo.

To get a concrete result, let us look at the case n = 3. If we make the

scalar product of equations (1) and 2A%u, integrate over R3, we get
Ll +2vaudI =2 [ Vau-Viu- Vuis
R3

< ;}£-||V7Au(t)ll2 + 4|V (u - Vu)())®
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sy

< ZIVAu®)? + 8 Vu(®)lze + 8llu@)llc [|AuE)*.

S

We have the following estimates. Since p > 3, we have 2(p +12)/3(p +
2) < 2.

u(®)lloo < Clu(IAP IV Au(t) > +2),

IVu(@)zs < Clu@IF @+ ||V Au(r)| 12/ 6F+2),
1)l < Cllu@Z T2 v Au(e)| @ +O3E+),
8IVu(®)lls < Clu(t >nl°"’3<"+2’||VAu(t)n2<P+12>/3<P+2>
< Cllu)| 3/ —||VAu<t>||2,
8lu(®)lI% I1Au@)]® < Cllu <t>u1°"/3<”+2>umu(t>||2<p+12>/3<p+2>
-<qmmf”@3%+§wAmmﬁ

We now have the estimate
LIau@l? + SIVAUDI? < ClulIE/ .
Obviously the following hold

d 3

LA+ O IAu@I] + S (1 + 1) VA
< 5(1+ )| Au)||® + CA + ) ut) ||/ P~
< 5(L+ )4l Au@)|? + C(1 + ¢)°18@=2)/4-3),

By using Lemma 2.4, we now obtain
d
ZIA+ 71w + (1 +)°[VAu@)|?
<Cl+ t)4/ 11t [@)?de + C(1 + )2
B(t)
<Cc(+ t)2/ [a2d¢ + C(1 + t)?
B(t)
< CA+ )2 lu@®))? +C@l + )2

Integrating in time yields
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t
(1 + )5 Au®)]? + / (1 + 5)°[|VAu(s)|[ds < [|Augll? + C(1 + )%,
1]
Therefore
sup [(1+62JAu(®)?]| < C, / IV Au(®)|2dt < C.
0<t<o0 0

By Lemma 2.5 and 3.1, we have

sup [(1+ Dl Au(®)?] < G,
0<t<oo

/ lAu(®)|Pdt < C,
0
1+ )% *u(®)llo < C.

This completes the proof of Theorem 4.

6. Discussion. We have repeatedly used the critical assumption (H) to
justify that u has more regularity and prove the uniform stability for n(> 3)-
dimensional problem (1-2). A natural question is that what space uo should
be in such that (H) holds. Wiegner [21-23] proved that if uo € M N LP for
some p > n, then (1 + £)"+/2||u(t)]loo = O(1) and (1 + £)*+/2||u(t)||? =
O(1). Therefore

le@)l1%, < (@22 lu@I?) = < C(1 + ¢~ HDE-D/E=m,

It turns out that w € L9(0,00; LP), for all p > n > 3 and ¢ > 2 with
n/p+2/q=1.

Another sufficient condition is that ug is small. This is well known.

Let L = {ug € L?> N L?| for some p > n > 3 and some ¢ > 2, satisfying
n/p+2/q = 1, such that u € L9(0, co; LP), where u is the solution of problem

(1-2)}. Our analysis shows L is not empty and is actually an open set in
L2
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