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Abstract. Consider the second order linear differential
equation (E) = + p(t)z’ + g(t)z = 0 on (to,o0) where p, q €
Cltg, o). Sobol proved that if lim;— o —p(t)/2 + f; [g—p%/4] =
oo, then (E) is oscillatory. Extensions of Sobol’s theorem are
given which comprises results of Wintner, Hartman, Kamenev,
and Bultler, Erbe and Mingarelli for the undamped equa-
tion =" + ¢(t)z = 0.

1. We are here concerned with the oscillatory behavior of solutions of

the second order linear differential equation with damping term:
(1) " + p(t)x’ + ¢(t)z = 0, t >t >0,

where p and g are continuous on [, 00) and allowed to take on negative
values for arbitrarily large ¢t. A solution of (1) is said to be oscillatory if it
has arbitrarily large zeros. Equation (1) is said to be oscillatory if all its
solutions are oscillatory and nonoscillatory otherwise.

There is a not so well known theorem of Sobol [6] which states that if
p, q satisfy

@ gmso=pm {0 [ oo -T2 =eo
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then equation (1) is oscillatory. When p(t) = 0, condition (2) becomes
the well known Fite-Wintner-Leighton oscillation criterion (see [2], [7], [5]),

namely
t
3) lim Q(t) = lim / ¢(s)ds = oo,
t—o00 t—o0 to
is sufficient for the oscillation of the undamped equation
(4) ' +q(t)r =0, t>1t>0.

For the simpler equation (4), there is a large volume of literature and in

particular there are known extensions of condition (3), notably

@

T
lim 1 Q(t)dt = oo, Wintner [7];

T—oo T to
(II)
1 (T
(a) lﬁlgff /to Q(t)dt = Cp > —oc0, and
1 T
(b) limsup — Q(t)dt > Cy. Hartman [3];
T—oo T to

(IIT) Condition (IT)(a), and

1 /T
lim sup 7 / Q*(t)dt = co. Butler, Erbe, Mingarelli [1];
to

T—o0

(IV) For some o > 1
1 [T
lim sup Ta (T - t)*~1Q(t)dt = 0. Kamenev [4].

T—oc0 toy

Equation (1) can be reduced via suitable Strum Liouville transforma-
tion to the undamped equation. In fact, if p is in addition assumed to be

continuously differentiable, then the change of variable

(0 =20 0xp (3 [ p(s)as)

reduces equation (1) to
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t p'(t
®) g (a0 =B 7Yy —0, 12050,

which is in the form of (4) where g(t) is replaced by S'(t). If we apply the
Fite-Wintner-Leighton oscillation criterion (3) to (5), we find that condition
(2) becomes an oscillation criterion of (5). Since the change of dependent
variable y = zexp(3 ftto p) preserves oscillation, oscillation of (5) is equiv-
alent to the oscillation of (1). Likewise, we can apply oscillation criteria
(I), (II), (IIT) and (IV), each of which is implied by the stronger hypothesis
(3), to equation (5) and obtain similar oscillation criteria for equation (1)
under the additional assumption that p(t) is differentiable or at least p(t)
is absolutely continuous so that p’(t) is defined. However, this superfluous
condition was not assumed in Sobol’s criterion (2), so the resulting criteria
are not extensions of Sobol’s result. The purpose of this paper is to show
that oscillation criteria (I)—(VI), valid for equation (4), are indeed oscillation
criteria for equation (1), if we simply replace Q(t) by S(t). This results in
four new oscillation criteria for equation (1), each of which is an extension
of the result of Sobol. Furthermore, if p € L2[t,00), then we shall show
that conditions (I)-(IV) involving only Q(t) are in any case valid oscillation

criteria for equation (1).

2. Let z(t) be a non-oscillatory solution of (1) which can be assumed
to be positive on [tg,00). Denote u(t) = z'(t)/x(t). In view of (1), u(¢)

satisfies the Riccati differential equation
(6) uw +ut+put+qg=0,

which upon integration becomes the Riccati integral equation

(7 , u(t) + /t u?(s)ds + / p(s)u(s)ds + Q(t) = u(to)

to to

Define w(t) = u(t) + p(t)/2, and rewrite (7) as follows

(8) w(t) +/ w?(s)ds + Q(t) — p( ) i/t p?(s)ds = u(to)-
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Since S(t) = Q(¢) — p(t)/2 — i—ftto p*(s)ds, (8) can be simplified to

(9) w(t) + / w?(s)ds + S(t) = u(to).

to
Suppose that lim;— S(t) = o0, i.e., (2) holds, then we can choose #; suffi-
ciently large so that

(10) w(t) +/tt wi(s)ds <0,  t>t.

Denote W (t) = ft w?(s)ds. We obtain form (10)

(11) W2(t) = (/tt 11)2(3)ds)2 < w(t) = W'(t),

0
for ¢ > ¢,. Dividing (11) through by W2(t) and integrating from ¢; to ¢, we
find
t—1 < L < . )
W(to) W(t) = W(t)

which gives a desired contradiction upon letting ¢ — co. Thus, z(t) cannot

be positive on [tg, c0) and equation (1) is oscillatory. This gives an alterna-
tive proof of Sobol’s theorem. The original proof of Sobol’s result was based
upon an argument using polar coordinates. Sobol was apparently unaware
of either Wintner’s result [7] or Leighton’s result [5].

Our main result is therefore the following

Theorem. Let S(t) = Q(t) — p(t)/2 — ft p*(s)ds. Then any one of

the following is an oscillation criterion for equation (1):

(1 Jim / S(t)dt =
(S2) (a) hmmf—~/ S(t)dt = C; > —c0, and

(b) Iimsup—/ S(t)dt > Cy;

T—o0

(S3) Assume (S2)(a) holds and

1
limsup — S’Q(t)dt = 00;
T— o0 T to

(S4) For some real number o > 1,
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1 T
limsup — | (T - £)*18(t)dt =
to

T—oo
Proof. To prove (S1)-(S4), again we assume that equation (1) has
nonoscillatory solution z(¢) which can be assumed to be positive on [tg, c0).

This gives rise to the existence of a solution w(t) to the Riccati integral

equation (9), or in another form,

(12) wm+[uﬂaw+aw=mm—ﬂ?hdm

We shall show that each of (S1)-(S4) is incompatible to the existence of a
solution of (12).

Let (S1) hold and again denote W (t) = [ w +, W (s)ds. Integrate (12) from
tp to T and divide through by T to obtain

1 [T 1 [T 1 /T
13 —/ wtdt—l——/ Wtdt+——/ S(t)dt = Kp.
(13) 7, (t) 7, (t) 7). (1) 0

By (S1), we can choose Ty > ¢ such that for 7' > T}
1 [T 2 1 T z 1 (T 1
— | W@k)dt) <= Hdt) < = 2()dt = =W(T
(7 [ W) < ([ wow) <5 [ wen= v,

where we apply the Schwartz inequality to ftf w(t)dt. Define &(T) =
ftf W (t)dt and rewrite (14) as follows
1
(15) _ T<I>2(T) < ®'(T).
Integrating (15) from 77 to T', we obtain

1 _ 1 < 1
(1) ¥T) - ()’

which gives a desired contradiction as T — oo. This shows that the Riccati

logT —logTy <

integral equation (12) has no solution hence (S1) is an oscillation criterion
for equation (1).

Next let (S2) and (S3) hold and again denote W (t) = [, w ,, W(s)ds as
before. Assume that w ¢ L2[ts,0). By (S2)(a), we obtain from (13) that
there exist t; > ty and constant K; > Ky such that
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1/t I
(16) ! / w(s)ds + ~ / W(s)ds < K,
t to t to
for t > t;. Also from (14), we can estimate (16) from below by
(17) L w4 /tW(s)ds <K
\/_t_ t to - o

Recall ®(t) = f; W (s)ds and since w ¢ L?[ty,00), 50 lim;_.o W(t) = oo
hence lim;_, o, ®(t)/t = oco. Therefore, we can choose ¢; < ty such that
B(t)/t — Ky > ®(t)/(2t) for t > ¢;. Using this in (17) we find

1 2 1
il < == = —d'(t f > t.
(20) < (VW) = 3w =¥, for t24
which becomes

2
— t).
4t© (t) < @'(t)

Upon a quadrature of the above we obtain a desired contradiction as before,
so any solution of equation (12), if exist, must belong to L2[ty, c0).

Now suppose that w € L%[tg,00). It is easy to see that lim; ., ®(t)/t
exists as a finite number in this case. On the other hand, we have by (14)
lim; o0 (1/1) fti w(s)ds = 0. Thus, we can deduce from (13) that lim, .o
1/ . :0 S(s)ds exists and is finite. This contradicts (S2)(a)(b), so equation
(1) is oscillatory.

Returning to the case when (S3) holds, we obtain from (12)

S2(t) = (Ko — w(t) — W(t))? < 3(KZ + w?(t) + W2(t)).
Hence
1
) / S (1)dt < 3{ K3 + W(T / W2 (t)dt} < oo,

. to
which is bounded above since w € L2[tg, c0), 50 lim;_,, W(t) is finite. But
(18) is incompatible with (S3). This prove that (S3) is an oscillation for
equation (1).

Finally we assume that (S4) holds. Return to (12) and multiply through

by (t — s)*~! and integrate from ty to ¢t we obtain
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1 t t
o / (t = 5)*Lw(s)ds + / (t — 81 W (s)ds

to to

+ /tt(t - s)"‘“IS(s)ds} <o 'K

Integrating the second integral in (19) by parts, we obtain

(19)

(20) /t (¢ Ws)ds = ~w(to)(1-2) "+ 1 / (= )P u(s)ds.

to

Completing squares in w(s) as follows, we find

i%;{ /t [(t —5)* lw(s) + (t — s)°‘w2(s)] ds}
(21) N .
= {107 t:(t —5)* (w(s) + %(t - s)—l)2 ds — E (t s)"‘“2ds.

Putting (20) and (21) into (19) and taking limsup as t — oo, we obtain

. cx 1
11zrp_§;1°pT / (T - S(s)ds

(22)
< L) + Kol + 7 Jim / (T - 5)2ds.

The last integral in (22) above has limit zero. Thus (22) is incompatible
with (S4). This proves that (S4) is an oscillation criterion for equation (1),

and the proof of the Theorem is complete.

It is useful to note that if in addition p € L2[tg, c0), then the Theorem
have the following

Corollary. Let p € L*[tg,00). The equation (1) is oscillatory when g
satisfies any one of (I), (II), (IIT), (IV).

Proof. We need to show that p € L2[tg,c0) plus (I) imply (S1) and
likewise with (II), (ITT), (IV) would imply (S2), (S3) and (S4) respectively.
Observe that

1 T 1 T 1 T 1 T t )
(23) —:,:/to S(t)dt = T/t(, Q(t)dt—ﬁ,—/to p(t)dt—zﬁ—_,—/to /tcp (s)dsdt.
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e 2

If p-€ L?[to, 00), then the last item in (23) has a finite limit. Let Ly = o
We note that

1 T p 2 - 1 (T 2 0

Using (24) in (23), we have

lim / S(t)dt= Jim ~ / Qt)dt

proving that (I) is an oscillation criterion for equation (1) involving only ¢
when p € L2[tg, 00).
Next let (II)(a) hold, and note that (23) implies by (24) that

5 tmintL [ S(t)dt = mint 2 ot - 11, >
1m — = int — —_— —
T—oo T to T—oo T to 4 0 oo

so that (S2)(a) holds. Similarly, by taking limsup instead of liminf in (25),
we find (II)(b) implies (S2)(b). Thus, (II)(a), (b) becomes an oscillation
criterion for equation (1) when p € L%[tg, 00).

If condition (IIT) holds, we observe by (24) that

1 [T 9
— Q*(t)dt
T o (t)

= %/: [S(t)+@+i—/t:p2]2dt

(26) r r
3 2 1 2 1 T T22
< —_ t — t —
_T{/to S“U/top”d“w [ (/top)dt}
3 T 3 3
== | S*t)+ Lo+ —1I2
T/to )+ 3L+ 3510

It therefore follows from (26) that (III) implies (S3). Hence (ITI) is an
oscillation criterion for equation (1) when p € L?[ty, o).
Finally, assume that (IV) holds and p € L?[ty,00). Let o > 1 and note
that
1 /T ¢
(27) lim — [ (T —¢)*! / p*(s)dsdt = Ly < oo,

o
T—oo T to to
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where Loy = ftzo p?, and

(28) /t N et = a / e / o2 (s)dsdt.

to tg

Now by Schwartz inequality, we have

T(T - t)a—%zt).

to

(29) | f(T-t)a-lp(t)th <( / T(T—t)&p%t)dt)(

Since limp_, o0 (1/T) ftZ(T —tg)*2dt = 0, we see from (27), (28) and (29)

that
1 [T 1
im — — )« =0.
(30) m Ta J,, (T—-t)*""p(t)=0

Observe also that

(31) %;/:(T—t)"“ls(t)dtz %/:(T—t)a‘l [Q(t)—@—%/t:pﬂdt.

Using (27) and (30) in (31), we deduce that (IV) implies (S4) in this case

and the proof of the corollary is complete.

3. In this section we illustrate with examples the results discussed
in the previous section. It is perhaps useful to firstly consider oscillation
criteria for the undamped equation. We therefore give a series of coefficient
function ¢(t) showing the usefulness of oscillation criteria (3), and (I)—(IV)
as follows:

(i) Let g1 (t) =t~ ! +sint. Here ¢1((4k — 1)7/2) <0, for k =1,2,3,...
and Q(t) = Int + O(1) as t — oo. Thus, the well known Fite-Wintner-
Leighton condition (3) is satisfied and the equation "’ +¢;z = 0 is oscillatory.

(i) Let go(f) = 7! + /tsint. Here ¢o((4k — 1)7/2) < 0, for k =1, 2,
3, ... and Qa(t) = Int —v/tcost+O(1) as t — co. Also, for positive integer
k, Q2((2k +1)7) < 0 so condition (3) is not satisfied, but 7'~* ftf Q2(t)dt =
InT+O(1) — o0 as T — co. Thus by Wintner’s condition (I), " + g2z =0
is oscillatory.

(iii) Let gs(t) = 2+t cost. Here g3((2k + 1)7) <0, for k=1,23, ....
Also, Q3(t) = 2t+t? sint—2t cos t+O(1) as t — o0, so that Q3((4k—1)7/2) <
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0 for k =1,2,3,... and condition (3) fails. It is easy to see that
T

(32) Al{Qg(T)}:%t Qs(t)dt = T+ Tcos T+ O(1) as T — oo

so that g¢3 also fails to satisfy Wintner’s condition (I). On the other hand,
we have from (32) and £ =1,2,3,...

—o0 < lﬁiifAl{Qg(T)} =A1{Qs(2k+ 1)m)} =0
< A1{Q3(2km)} = 4k < lijrpsup A {Q3(T)} = oo.

so that Hartman’s oscillation criterion (II)(a)(b) is satisfied, so the equation
z" + g3(t)z = 0 is oscillatory.

In this case, we can also apply Butler, Erbe, Mingarelli’s criterion (III)
since condition (II)(a) is satisfied and it is easy to verify limsup 4; {Q3(T)}
= . . e

(iv) Let ga(t) = t* cost. Here, q4((2k +1)7) <0 for k =1,2,3,... and
Qa(t) = t*sint + O(t*~1) as t — oo. It is easy to see that for p > 2 that
Q4(t) does not satisfy any of conditions (3), (I), (II)(a)(b) and (II)(a), (III).
However, choose @ = 2 in (IV) we find

1 T
lim sup —ﬁ/ (T — t)Q4(t)dt = 0
to

T— o0

so equation " + g4(t)z = 0 is oscillatory.
Returning to equation (1) with damping, we first note that as an im-

mediate consequence of the Corollary the following equation is oscillatory
for o < —1/2

(33) z" +t7|sint|z’ + ¢z = 0, i=1,2,3,4

where g; are given in (i)-(iv) above. Observe that the damping term in (33)

is not differentiable but belongs to L2[ty, 0o).

Another example of equation (1) is the equation
(34) 2" + (at* sint)z’ + (bt* cost)z = 0.

When @ = p = 0, equation (32) was first studied by Yelchin [8] using
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Fourier series methods and it was proved that the equation z’ +costx = 0 is
oscillatory. Here ¢(t) = cost fails to satisfy (3) and indeed any of conditions
(I), (II), (III), (IV), all of which require that the integral average of Q(%)
diverges in some sense. This requires at least g > 0. When A < —1/2 then
p(t) = at’sint € L?[t 00), so equation (34) is oscillatory if ¢(t) = bt cost
satisfies any of oscillation criteria above. It is easy to see that for all values
b and g, ¢(t) fails to satisfy conditions (3), (I), (IT) and (III). However, for
i > 1, we can choose o > 1 so that o < 1, and verify that in this case ¢(¢)
satisfies (IV) for all b # 0. Thus, equation (34) is oscillatory for arbitrary
a,b#0if A< —-1/2 and p > 1.

Remark 1. We noted earlier that oscillation criteria (3), (I)-(IV) are
ineffective concerning z"+costx = 0, i.e., a = g = 0. Our theorem (S1)—(S4)
is equally ineffective for equation (34) with A = g = 0. Indeed, the equation
concerning oscillation of the damped equation z” + (sint)z’ + (cost)z = 0

1s still open.

Remark 2. The equation whether oscillatory behaviour of equation
(4) 2" +q(z)x = 0 is preserved when subject to a small linear damping term
p(t) in equation (1) was discussed with Professor Ming-Po Chen during this
author’s visit to the Institute of Mathematics, Academic Sinica, Taipei in
1992. It was shown in the above Corollary that these well known oscillatory
criteria (I), (II), (III), and (IV) for equation (4) remain valid for equation
(1) when the linear damping term p(t) € L%[ty, c0). We speculate that the
same also holds when p(t) € LP[ty,00) for any 8, 1 < 8 < 2.

Add-in-Proof. The question raised in Remark 1 concerning the oscil-
lation of the damped equation z” + (sin t)z’ + (cost)z = 0 has been settled
in the affirmative. In Remark 2, it was conjectured that the condition that
p € L*[tp,00) in the Corollary could be weakened to that of p € LB[ty, 00),
for any B8, 1 < 8 < 2. This conjecture has also been answered in the af-
firmative. These conclusions follow from further extensions of Kamenev’s

condition (IV) and will appear elsewhere.
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