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NOTE ON DERIVATIONS WITH
ENGEL CONDITION ON LIE IDEALS
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Abstract. Let R be a prime S;-free ring and L be a
noncommutative Lie ideal of R. Suppose that d and § are.two
derivations of R such that [d(z™)z™ — 2P8(=?),2"]x = 0 for all
z € L, where m,n,p,q,r, k are fixed positive integers. Then
d=0and §=0.

Throughout this note R is always a prime ring with center Z, extended
centroid C, left Utumi quotient ring U and two-sided Martindale quotient
ring Q. By d we mean a derivation of R. For z,y € R, set [z,9}1 = [z,y] =
zy—yz and [z,9]x = ([T, y]k-1,¥] for k > 1. A well-known theorem of Posner
[9] states that R must be commutative if it admits a nonzero derivation d
centralizing on R, that is, d(z)z — zd(z) € Z for all z € R. Many related
generalizations have been obtained by a number of authors in the literature.
In [1], Bresar generalized Posner’s result by showing the result [1, Theorem
B]: Let R be a prime ring and A a nonzero left ideal of R. Suppose that
derivations d and 8 of R satisfy d(z)x — zé(z) € Z forall z € A. 1If d £ 0,
then R is commutative. A Lie version of Brefar’s theorem was proved by Lee
and Wong [6]. We refer the reader to [5, Theorem)|, (2, Theorem 7] and (8,
Theorem 1] for further results concerning derivations with Engel conditions
on Lie ideals. The goal of this note is to give a unified version of the above

three theorems. More precisely, the following result will be proved.
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Main Theorem. Let R be a prime Sy-free ring and L be a moncom-
mutative Lie ideal of R. Suppose that d and & are derivations of R such
that

(1) [d(z™)z™ — 2P§(x9), 2], = 0

for all x € L, where m,n,p,q,r, k are fized positive integers. Then d = 0
and § = 0.

Here, the R is called an S4-free ring if R does not satisfy Sy, the stan-
dard identity of degree 4. We first dispose of the simplest case R = M,(F),

the £ by £ matrix ring over a field F, and d, § are inner derivations
Lemma. Let R = M,(F), where F is a field and £ > 2. Suppose that
(2) la,2™]z" — 2P[b,29],2"], =0 for all z € [R,R),

where m,n,p,q,r, k are fized positive integers. Then a,beF.

£

Proof. Write a = Ze ajje;; and b = Zi’j=1 b;jeij, where {e;;]1 <

=1
i,j < £} are the matrix units of R. Since ¢ > 3, we may take three distinct
integers 4,7 and s. Setting = = [e;j, ;5] = e;; — e;; in (2) and multiplying
ess from the left, we see that essa(e;; + ej;) = 0. This implies a,; = as; =0
for all distinct integers 7,7,5. So a is a diagonal matrix. Note that uau—1
must be diagonal for each invertible element v € R, since [[uau™!,z™]z"™ ~
aPlubu™!, 29,27y = 0 for all z € [R,R|. Hence for each j > 1 we see
that a;; — a1, the (1,7)-entry of (14 e1;)a(1 4 e1;)~%, equal to 0. That is,
aj; = a1 for all j > 1 and hence a € F. By symmetry, b € F' follows. This

proves the lemma.

Proof of the Main Theorem. If R is not a PI-ring, then by a result of
Lee [7, Theorem 2], R and L satisfy the same differential identities. This
implies [d(z™)z" — 2P8(x?),2"], = 0 for all 2 € R. By [8, Theorem 1], we
have d = 0 and § = 0. So we may assume that R is a prime PI-ring. Suppose
on the contrary that either d # 0 or § # 0. By symmetry, we may assume
that d # 0.
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Suppose first that d and é are Q-inner, namely, d = ad(a) aand § =
ad(b) for some a,b € Q. Since d # 0, this implies a ¢ C. Since L is a
noncommutative Lie ideal of R, it is well-known that [R[L, L]R, R] C L (see
the proof of [4, Lemma 1.3]). Set I = R[L, L|R, a nonzero ideal of R. Let

f(X’Y) = [[a" [X> Y]m”X7 Y]n - [Xa Y]p[ba [X7 Y]q]7 [X7 Y]T]k- |

Then f(X,Y) is a nontrivial generalized polynomial identity (GPI) for I.
By [3,Theorem 2|, f (X ,Y) is also a GPI for Q. Denote by F the algebraic
closure of C' or C according as C is infinite or finite. Then by a standard
argument [6, Proposition], f(X,Y) is also a GPI for Q ®¢ F. Since R is
a prime Pl-ring, this implies Q ®¢ F' = M,(F') for some positive integer £.
It follows that £ > 3 because R is Sy-free. It follows from the Lemma that
a € F, a contradiction.

To continue the proof we set

m—1 g—1
(3) 9X,Y)= Z XY X™ 17 and R(X,Y) = ZXiYXq“l‘i,
=0 i=0

two noncommuting polynomials in variables X and Y. Note that d(z™) =
g(d(z),z) and 8(z?) = h(6(z),z) for z € Q. Then by (1) we have

(4) [g(d(z), z)z™ — zPh(6(z),x),2 | =0 forall = € L.

Suppose next that d and § are C-independent modulo @Q-inner derivations.
Applying [7, Theorem 1] to (4) yields that [g(y,z)z"” — 2zPh(z,z),2"]x = 0
for all x,y,z‘e [R,R]. For u € [R,R], replacing y, z by [u,z], 0 respec-
tively and then applying the fact that [u,z™] = ¢(Ju,z],z), we see that
[[u,z™]z™, 2" = 0 for all u,z € [R, R]. The first case implies that u € C.
Thus R is commutative, a contradiction.

Finally, by symmetry, we may assume that d is not Q-inner and 6 =
Bd + ad(b) for some B € C, b € Q. In view of (4) we see that

(5) lg(d(z), z)a™ — BaPh(d(x),x) — =P [b, 2], 2], = O

for all x € L. Applying [7, Theorem 1} to (5) yields that
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(6) [9(y, x)z™ — BxPh(y,z) — 2P[b,z%),2"]r =0

for all z,y € [R, R]. Setting y = 0 in (6), we obtain [zP[b,z7],z"]; = 0 for
all z € [R, R] and hence b € C by the first case. Now (6) reduces to

(7) [g(y7x)mn - ,BIL'ph(y,CL‘),CIIT]k =0

for all z,y € [R,R]. Let u,z € [R,R]. Replacing y by [u,z] and using
the fact that g([u,z],z) = [u,z™] and h([u,z],z) = [u,z9], we see that
[lu,z™]z™ — 2P[Bu,z9],2"], = 0. Applying the first case again yields that
u € C for all v € [R,R] and so R is commutative, a contradiction. This

completes the proof.

As a corollary to the Main Theorem we have the following result which

is proved in [2, Theorem 7).

Corollary. Let R be a prime ring and L be a noncommutative Lie ideal
of R. Suppose that d is a nonzero derivation of R such that [d(z™),xz™]x = 0
for all z € L, where n, k are fized positive integers. Then dimcRC < 4.

Proof. By assumption, we have [d(z"),z"]y = 0 for all z € L. In
particular, we see that [d(z™),2"]x+1 = 0 for all z € L. Now, we are done

by setting d = § and m = n = p = ¢ = r in the Main Theorem.
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