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 Abstract. An inequality, closely associated with vari-
ational and variational-type inequalities, in reflexive real Ba-
nach spaces, is established and the traditional variational and
variational-type inequalities, studied by many authors, are ob-
tained as particular cases of the newly obtained inequality.

1. Introduction. Lex X be a reflexive real Banach space and let X*
be its dual. Let the value of f € X* at z € X be denoted by (f,z). Let K
be a convex set in X, with 0 € K and T : K — X™* be any map.

The variational inequality problem is to find 2y € K such that

(Tfﬂo,y - .'E()) > 0

forally € K.

The existence of the solution to the above problem is studied by many
authors, such as, D. Kinderlehrer [12] D. Kinderlehrer and G. Stampacchia
[13], J. L. Lions and G. Stampacchia [15], by considering different conditions
on the set K, the map T and the dimension of X. The most general form
of the variational inequality problem is due to F. E. Browder ([3], Theorem
1, p. 780, also see ([17], Theorem 1, p. 90)), which states as follows:

Theorem 1.1. Let T be a monotone and hemicontinuous map of a
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closed convez set K in X, with 0 € K, into X*, and if K is not bounded,

let T be coercive on K, then there exists an xg € K such that
(1) -  (Tzo,y —x0) >0
forally € K. :

The following result of G. Isac ([8], Theorem 4.3.2 p.116) also estab-

lishes the existence of the solution to (1) under different conditions.

Theorem 1.2. Let K be a nonempty convez set in a reflexive real
Banach space X and :let X* be the dual of X. Let T : K — X* be a
mapping such that
(i) =+ (Tz,y — z) 15 upper semicontinuous on K for every y € K,

(ii) there exist a nonempty, compact and convex subset C C K and u € C

Such that '

(Ty,u—y) <0

forallye K - C.
Then there exists xg € C such that

(2)  (Tzoy—20) 20
forally € K.
When K is itself compact, we have the following form of the theorem.

Theorem 1.3. Let K be a nonempty compact conver set in a reflezive
real Banach space X and let X* be the dual of X. Let T : K — X* be a
map such that the map x — (T'z,y — x) is upper semicontinuous for each
y € K. Then there exists an xo € K such that
() - (Tzo,y—0) 20
forally € K.

In [2], the variational inequality (1) given in Theorem 1.1, is generalized

in the following way.
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Theorem 1.4. Let K be a closed conver set in a reflexive real Banach
space X, with 0 € K, and let X* be the dual of X. Let T : K — X* and

0: K x K — X be two continuous maps such that

(i) (Ty,0(y,y)) =0 forally € K,
(ii) for each fized y € K, the function

(Ty79(_7y)) K —-R

i8S conver.

Then there exists xg € K such that
(4) (T:L.Oa 9(']/,.’1)0)) Z 0

for ally € K, under each of the following conditions:

(a) For at least one v > 0, there exists u € D? such that
(Ty, 0w, y)) <0
for all y € S, where
D, ={zeK: |l <r}
DY={reK:|z| <7}
Sr={zeK:|z|=r}

(b) There exist a nonempty, compact and convez subset C of K and u € C
such that

(Ty,0(u,y)) <0
foranyye K - C.
Remark 1.5. If §(x,y) = = — y, then (4) reduces to (1).

The following result ([2], Theorem 2.2) shows that (4) also holds when

K is compact.

Theorem 1.6. Let K be a compact convex set in a reflexive real Banach
space X, with 0 € K, and let X™ be the dual yof X. LetT: K — X* and

0: K x K— X be two continuous maps such that
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(i) (Ty,6(y,y)) =0 for ally € K,
(ii) for each fized y € K, the function

(Ty,0(-)) : K — R

18 convez.

Then there exists xg € K such that
(5) ' (Tzo,0(y,70)) 2 0
forally € K.

The conclusions of the following results generalize the variational in-
equality (1) and those results are studied by Isac [8] and Browder ([4], also
see [17]) respectively.

Theorem 1.7. ([8], Proposition6.2.2,p.170) Let K be a nonempty com-
pact convez set in a reflezive real Banach space X and let X* be the dual of

X. LetT: K — X* and g : K — K be continuous maps such that
(Tz,z — g(x)) 20
for ally € K. Then there exists an xo € K such that

(6) (Tzo,y — 9(z0)) 2 0
forally € K.

Theorem 1.8. [4,17] Let X be a reflexive real Banach space with
dual X*. Let T : X — X* be a monotone and hemicontinuous map and
g: X — R be a convex and lower semicontinuous map with g(0) = 0 such
that

(Tz,x) + g(x)
Iz

Then there exists an xo € X such that

— 00 as ||z|]| — oo.

(7 (Tzo,y — xo) + g(y) — g(x0) 20
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forally € K.

In this paper, our aim is to bring up the variational inequalities (1)-(3)
and the variational-type inequalities (4)-(7) as byproducts of one general

inequality and hence we frame the following problem.

Problem 1.9. Let K be a nonempty convex subset in a reflexive real
Banach space X and let f: K x K — R be any map. Then the prbblem is
to find z¢ € K such that

f(x07y) 2.0
forall y € K.

We shall use the following theorem ([8], also see ([7], Theorem 6.2.1, p.
170)) due to Ky Fan, in the next section.

Theorem 1.10. Let K be a nonempty compact convex set in a Haus-
dorff topological vector space X. Let L be a subset of K x K having the
following properties:

(i) For each z € K, (z,z) € L.
(ii) For each fized y € K, the set

Lly)={zx € K :(z,y) € L}

is closed in K.

(iii) For each z € K, set

M(z)y={ye€ K:(z,y) ¢ L} -

18 CONvex.

Then there exists an zog € K such that

{.’L‘()} x K C L.

2. The main results. We prove the following results with respect to

the problem, as stated in 1.9.
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Theorem 2.1. Let K be a nonempty, compact and convez subset of a
reflexive real Banach space X and let f : K X K — R be any map such that
(i) f(z,z) 20 foraliz € K,
(ii) the map
z— f(z,y)
of K into R is upper semicontinuous for each y € K,
(iii) the map
y— fz,9)

of K into R is convex for each z € K.
Then there erists xg € K such that

(8) | f(zo,y) 20
foralye K.
" Proof. Let
B={(@y) €K xK: [(5,9) > 0}.

E is nonempty since by (i), (z,z) € E for each z € K. Furthermore since
the map

z — f(z,y)

of K into R is upper semicontinuous, the set
E(y)={z€ K :(z,y) € E}
={z€K: f(z,y) > 0}
is closed. Also for each z € K, the set
Fiz)={ye K:(z,y) ¢ E}
={y € K: f(z,y) <0}

is covex since, if y1, y2 € F(z), a, 5> 0, a+b =1 and z = ay; + by,, then
by hypothesis (iii) we have
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f(xi Z) = f(xa ay1 + by2)
< af(z,y1) + bf(z,2)
<0,

showing z € F(z); thus F(z) is convex. Now by Theorem 1.10, there exists
an zg € K such that

{1‘0} xKCE
i.e., f(zo,y) > 0 for all y € K. This completes the proof of Theorem 2.1.

When K is not compact, the following theorem serves as a generaliza-

tion to Theorem 2.1.

Theorem 2.2. Let K be a nonempty convezr subset of a reflexive real
Banach space X and f: K x K — R a map such that
(1) f(z,y) > 0 for each z € K,
(ii) for each x € K, the map

y = f(z,y)

of K into R s convez,

(iii) for each y € K, the map

z— f(z,y)

of K into R is upper semicontinuous,
(iv) there exist a nonempty, compact and convez subset C of K and u € C
such that

flz,u) <0

for everyx € K — C.
Then there exists xo € C such that

forally € K.
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Proof. For each y € K, define
Ey)={z € C: f(z,y) 2 0}.
By (i), E(y) is noneinpty. Since the map
z+— f(z,9)
of K into R is upper semicontinuous, it follows that the set
Fly)={z € K: f(z,y) 2 0}

is closed for each y € K. Hence E(y) = F(y)NC is closed and consequently
compact, for each y € K. It is clear that (9) has a solution if

() E@w) # ¢.

yeEK

For this it is sufficient to prove that the family {E(y) : y € K} has the finite
intersection property.

Let y1,¥2,...,Yn be arbitrary elements of K and let C}, be the convex
hull of

cu {y17y2,"' )yn}-

Clearly Cj, is a compact convex subset of K. Now by Theorem 2.1 there

exists an Zg € Cp, such that

(10) f(Zo,y) 20

for all y € Cp. In fact Zg € C. If %y ¢ C (i.e., F9 € K — C), then by (iv),

there exists an u € C such that
f("iO’ U) < 0

which contradicts (8) when y = u.

Thus Zg € C and in particular :?:0' € E(y;) fori =1,2,...,n, ie,

Zo € ﬂ E(y;).
=1




1999] INEQUALITY ASSOCIATED WITH VARIATIONAL INEQUALITIES 235

Hence

=1
proving that the family {E(y) : y € K} has finite intersection property. So
there exists an zg € K such that

f(x(),y) > 0

for all y € K. Since zg € E(y) for each y € K and E(y) C C, we see that
zg € C. This completes the proof of Theorem 2.2.

The following result establishes the existence of the solution to the

Problem 1.9 when X is finite dimensional.

Theorem 2.3. Let K be a closed convex subset of a finite dimensional
Banach space X, with0 € K, and f: K X K — R be a map such that
(i) f(x,:c)=0for each z € K, '
(ii) the map

y+— f(z,y)
fo K into R is convex for each x € K,
(iii) the map
z~ f(z,y)

of K into R is upper semicontinuous for each y € K.

Then there exists xg € K such that

(11) f(zo0,y) 20

for all y € K, under each of the following conditions:
(a) K is bounded.

(b) ﬂ“z-’ﬁﬁ — —00 as$ ||z]| — o0, z € K.

Proof. (a) Here K becomes compact and the result follows from Theo-

rem 2.1.
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(b) For each real number R > 0 the set
Kp={z e K:|z|| <R}

is nonempty closed and bounded and hence compact. Thus for each R > 0,

there exists an zp € K such that

(12) f(zr,y) 20

for all y € Kg. In fact ||zg|| # R for each R > 0. If ||z|| = R, then since
0 € Kp for each R > 0, we have.

TR, 0
0< f(on,0) = LEBY g
[l
and by the given hypothesis
zg,0
f(zr,0) Izl

[l

can be made negative by choosing a sufficiently large R, which is a con-
tradiction. Thus ||zg|| < R for some R > 0. Now for any z € K, choose
0 < t < 1 sufficiently small such that

yr=tz+ (1 —t)zg € Kpg.

Putting ¥y = yg in (12) and using the convexity of y — f(z,y) we see that

<tf(zr,2) + (1 —t)f(zr,R)
=tf(zg, 2).

Since ¢ > 0 and z € K is arbitrary, the proof of Theorem 2.3 is complete.

The following result generalizes Theorem 2.3 when X is not finite di-

mensional.

Theorem 2.4. Let K be a closed and conves subset of a reflexive real
Banach space X with 0 € K and let f: K x K — R be a map such that
(1) f(z,z) >0 for each x € K,
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(ii) the map |
-y flz,y)
of K into R is convex for each x € K,
(iii) the map
z— f(z,y)

of K wnto R is weakly upper semicontinuous for e_aéh Y 6 K

Then there exists an xg € K such that

(13) f(@o,y) 20

for all y € K under each of the following conditions:
(a) K is bounded. '
(b) f(z,0)

= oo as lzl} = o0, z € K.

Proof. (a) We note that K is weakly compact. Let

E={(z,y) €K x K : f(z,y) > 0}.

237

E is nonempty since by (i), (z,z) € FE for all x € K. Since the map

z +— f(z,y) of K into R is weakly upper semicontinuous, the set
E(y) ={reK:(z,y) € B}
= (g€ K : f(z,9) 2 0)
is weakly colsed for each y € K. Furthermore for each z € K|, the set ;
Fz)={ye K:(z,y) ¢ E}
={y e K: f(z,y) <0}

is convex since if y1,y2 € F(z), a,b >0, a+b =1 and z = ay; + bya, then

we have
f(z,2) = f(z,ay1 + by2)
< af(z, 1) + bf (2, 92)
<0,
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showing z € F(z). Now by Theorem 1.10, there exists xg € K such that
{.’1:0} xKCE,

i.e., f(zo,y) >0forally € K.
(b) This follows from the proof of Theorem 2.3(b). This completes the
proof of Theorem 2.4.

3. Uniqueness of the solution. The following result characterizes

the uniqueness of the solution to the Problem 1.9.

Theorem 3.1. Let K be a closed and convex subset of a reflexive real
Banach space X with 0 € K and let f : K x K — R be a map such that
(a) f(z,y)+ f(y,z) <0 for allz,y € K and
(b) f(z,y) + f(y,x) =0 implies z = y.
find xo € K such that

Then if th bl
on 1t The pro em{ F(z0,9) >0 forally € K

is solvable, then it has a unique solution.

Proof. Let 1,22 € K and

f(xhy) 2> 0
and
f("L.Z,y) Z 0

for all y € K; putting y = x5 in the former inequality y = z; in the later
inequality we see that

F(@1,22) > 0

and

f(m%-’l:l) Z 0

and on adding we get
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f(z1,z9) + f(z2,21) > 0.
This combined with inequality (a) gives
f(z1,22) + f(m2,71) = 0.
Hence by (b) we have z; = z2. This completes the proof of Theorem 3.1.
The following examples illustrate Theorem 3.1.

Examples 3.2. The example (i) given below shows that fulfilment of
conditions (a) and (b) does not gurantee the existence of the solution of the
problem, stated in Theorem 3.1.

(i) Let z =R and K = [0,00). Define f : K x K — R by

f(z,y) = —e"*|lz -yl

Clearly
f@y) + fly,z) = —(e7 +e7¥)z -y <0.
Furthermore
fzy)+f(y,2) =0
implies that = = y. It is obvious that there is no zo € K satisfying
f(@o,y) = —€"™|zo —y| 20

for all ye K.

In the following examples ((ii) and (iii)) the function f : K x K — R
satisfies conditions (a) and (b) of Theorem 3.1 and at the same time the
problem stated m Theorem 3.1 has a unique solution.

(ii) Let X = R and K = [0,00). Define f : K x K — R by

flz,y) =z*(y — x).

Clearly
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fl@,y) + fy,2) = (= +y)(= - y)* <0

Furthermore

f(z,y) + f(y,2) =0

implies that either £ +y = 0 or (z — y)? = 0, since = and y are nonnegative
when z 4+ y = 0 we have x = 0 and y = 0 and when (x — )2 = 0 we have
certainly z = y. Thus the conditions (a) and (b) of Theorem 3.1 hold. In
this example we have a unique solution z¢ = 0 to the problem of Theorem
3.1, for f(zo,y) > 0 for all y € K implies 23(y — 0)% > 0 for all y € K; so
either xozbory—mo > 0forally € K. When y — x> 0 we have 2o < y
for all y € K, i.e., £g = 0. Thus the solution zg = 0 in unique.
(iii) Let X =R and K = (—00,00). Define f : K x K — R by

f(@y) = -2z - yl.

It is clear that f satisfies the conditions (a) and (b) of Theorem 3.1. If
f(zo,y) > 0 for all y € K, then

—x3lzo —y| >0
for all y € K; since |zo — y| # 0, the only solution in this case is also 2 = 0.

4. A Minty’s like Lemma. The following result is known as Minty’s
Lemma ([5], p. 6).

Theorem 4.1. Let K be a nonempty closed convez subset of a reflezive
real Banach space X and let X* be the dual of X. Let T : K — X* be a
monotone operator which is continuous on finite dimensional subspaces of
X (or at least hemicontinuous). Then the following are equivalent:
(a) zo € K, (Txg,y —x0) >0 for ally € K.
(b) zo € K, (Ty,y —z0) >0 for ally € K.

The following result is a parallel version of Minty’s Lemma.

Theorem 4.2. Let K be a nonempty closed and convez subset of a

reflexive real Banach space X and let f : K x K — R be any map such that
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(i) f(z,z) >0 forallz € K,
(ii) the map
z = f(z,y)

of K into R is continuous on finite dimensional subspaces (or at least
hemicontinuous), for each y € K,
(iii) the map
y+— f(z,9)

of K into R 1s convez for each x € K,
(iv) f(z,y) + f(y,z) <0 for all z,y € K.
Then the following are equivalent:
(A) zo € K, f(zo,y) >0 forally € K.
(B) zo € K, f(y,20) <0 for ally € K.

Proof. Suppose that ¢ € K and f(zo,y) > 0 for all y € K. By (iv)

f(yaxO) < _f(x07y) <0

for all y € K.

Conversely suppose that zo € K and f(y,z0) < 0 for all y € K. Now
for any arbitrary x € K, let

ye=tr+(1—t)zy, 0<t<l.

Since K is convex, y; € K. Putting y = y; in (B) we get f(ye;20) < 0. By

the convexity of the function y — f(z,y) we have
0< f(yt7 yt) < tf(yt,l') + (1 - t)f(yth)
ie.,
1-t¢
fye, ) 2 —Tf(yt,xo) 2 0.

Since the map z — f(z,y) fo K into R is continuous on finite dimensional

subspaces (or at least hemicontinuous), taking limit as ¢ — 0 in the above
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inequality, we get f(zo,z) > 0. Since z is arbitrary, the required inequality

follows. This completes the proof of Theorem 4.2.

Note 4.3. Theorem 4.1 is a direct consequence of Theorem 4.2, if we
define f : K x K — R by the rule

f(z,y) = (Tz,y — x)
for all (z,y) € K x K.

5. Some consequences. In this section we present some consequences
of the results obtained in Section 2.

First we prove a result which is a parallel version of Theorem 1.1.

Theorem 5.1. Let K be a nonempty closed convex set in a reflexive
real Banach space X and let X* be the dual of X. LetT:K — X* bea
map such that the map

z = (Ta:,y _x)

of K into R is weakly upper semicontinuous for every y € K. Then there

exists an xo € K such that
(T¢07y - (Eo) Z 0

for ally € K under each of the following conditions:
(a) K is bounded.

(b) T is coercive on K.
Proof. Define a map f: K x K — R by the rule
f(m’y) = (TIL‘,y - .’I:)

for all (z,y) € K x K. Then f satisfies the following conditions:
(1) f(z,z)=0forallz € K,
(ii) for each fixed y € K, the map

T~ f(z,y)
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of K into R is weakly upper semicontinuous,

(iii) for each finxed x € K, the map

y+— f(z,y)

is covex.
(a) If K is bounded, then the conclusion follows from Theorem 2.4(a).
(b) If T is coercive on K, then we have
(Tz,x)
[l

— 00 as |z|| = oo.
Since
(Tx,x) = —(TiL‘,O - il:) = '—f(IL', 0)

it follows that

f(=,0)
[l
and the result follows from Theorem 2.4(b). This completes the proof
of Theorem 5.1.

— —00 as ||z]] — oo,

Note 5.2. If we define f : K x K — R by the rule

f(z,y) = (Tz,y - x)

then Theorems 1.2 and 1.3 follow directly from Theorems 2.2 and 2.1 re-

spectively.
Note 5.3. If we define f : K X K — R by the rule
f(z,y) = (Tz,0(y,z))

then Theorem 1.4(b) and 1.6 follow directly from Theorems 2..2 and 2.1

respectively.

Note 5.4. Theorem 1.7 is a direct consequence of Theorem 2.1 with
f: K x K — R defined by
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fz,y) = (Tz,y — g(z)).
The following result is a parallel version of Theorem 1.8.

Theorem 5.5. Let K be a nonempty conver set in a reflexive real
Banach space X and Let X* be the dual of X. Let T : K — X* and
g : K — R be two maps such that

(i) for each y € K, the map

2 (Tz,y - 7)

of K wnto R is upper semicontinuous,
(ii) g is convez and lower semicontinuous,

(iii) there exist a nonempty compact subset C bf K and u € C such that
(Tz,u—=z) < g(z) — g(u)

forallz e K - C.
Then there exists an o € K such that

(Tzo,y — o) 2 g(z0) — 9(y)
forally e K.
Proof. Defining the function f: K x K — R as
fz,y) = (Tz,y — ) + g(y) — g(z)

and observing that —g is upper semicontinuous when g is lower semicon-
tinuous and that the sum of two upper semicontinuous functions is upper
semicontinuous we see that all the conditions of Theorem 2.2 are fulfilled

and hence the result follows.

It is a pleasure to thank the referee for his comments which resulted in

an improved presentation of the paper.
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