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Abstract. Let X be a real Banach space and G a bound-
ed, open subset of X. The solvability of the problem Tz+Cz Js,
s € X in D(T)N@ is considered, where T : X 5 D(T) — 2% is m-~
accretive and C : D(T) — X is either compact or is continuous
with (T+171)~? being compact, under the various assumptions of
boundary conditions and coercivities which the operators T and
C possess. Certain eigenvalue results are given involving the
solvability of Tz + ACz 3 0 with respect to (A, z) € (0, c0) x 4G.
Some analogous result on maximal monotone operators are also
discussed in this paper. -

1. Introduction preliminaries. In this paper, the symbol X stands
for a real Banach space with norm | - Il and (normalized) duality mapping
F. For z € X and z* € X*, we use the symbol (zx,z*) or the symbol
{(z*,z) to denote the value of z* at z. An operator T : X D D(T) — 2X is
called “accretive” if for every z,y € D(T), u € Tz and v € Ty, there exists
J € F(z — y) such that

('LL""U,j) 2 0

An accretive operator T is m-accretive if R(T'+ AI) = X for all ) € (0, 00).

An accretive operator T is called “strongly accretive” if there exists a con-
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stant a > 0 such that : for each z,y € D(T) there exists j € F(z — y)
satisfying

(x)  {(w-wvj) 2 allz -yl

for all w € Tz, v € Ty. It is called strongly accretive at zero if 0 € D(T') and
(*) holds for all w € Tz,y = 0 and v € T(0). Let a function ¢ : Ry — R, be
strictly increasing with ¢(0) = 0, where Ry = [0,00). It is called ¢-accretive
if

(u—v,7) = ¢(lz — yIDlz — 9ll,

for all z,y € D(T), u € Tz and v € Ty. It is called ¢-expansive on D(T), if
lu — o]l > ¢(llz — yl|) for all z,y € D(T), u € Tz and v € Ty.

We denote by B,.(0) the open ball with center at zero and radius 7 > 0.
For an m-accretive operator T, A € (0,00) the “resolvent” Jy : X — D(T)
of T are defined by Jy = (I + 3T)~" and the “Yosida approximation”
Ty : X — X of T is defined by Ty = A — J»). For x € X, we define |Tz|
by

|Tz| = lim || Tz

if the limit exists. For a set @, we set |Q| = inf{||y|; v € Q}.
Some well-known properties of Jy and T are given below:
1. |Jaz — Lyl < ||z —yl| for all z,y € X.
2. | Jaz —zll = Tzl < inf{llyll;y € Tz} = +|Tz| for all z € D(T).
3. Ty is m-accretive on X and ||Thz — Thyl| < 2Allz — y|| for all A > 0,
z,y € X.
4. Thx € TJyx for all x € X.
For these facts and other general results involving accretive operators,
the reader may refer to Barbu [1], Browder [4], Cioranescu [5], Deimling [6],
Lakshmikantham and Leela [26] and Pavel [31]. We cite the books of Lloyd
[27], Rothe [33] and the paper of Nagumo [29] as references to the degree

theory discussed herein. For a survey article on recent mapping theorems
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involving compactness and accretivity, we refer to [22]. We denote by I' the

family of all functions 8: Rt — R* such that B(r) — 0 as r — oco.

In the sequel, “continuous” means “strongly continuous” and the Sym-
bol “ — 7 (“ 25 ) means strong (weak) convérgence. The symbol 8G, int
G, G denote the boundary, interior and closure of the set G, respectively.

An operator T : X > D(T) — Y, Y is a Banach space, is bounded if it
maps bounded subsets of D(T') onto bounded set of Y. It is compact if it is
continuous and maps bounded subsets of D(T) onto relatively compact sets
of Y. It is called demicontinuous (completely continuous) if it is strong-weak

(weak-strong) continuous on D(T) into Y.

2. Perturbations of M-accretive operators. Kartsatos introduced
in [19, Theorem 7] a homotopy argument concerning the sum of two opera-
tors T+ C, where T'is demicontinuous, strongly accretive and C is‘compact.
The space X* is assumed to be uniformly convex. He showed in [19] that
the equation Tz + Cx 3 s can be solved under some boundary conditions on
an open, bounded subset G of X. This result is based on Kartsatos’ invari-
ance of domain result for demic'ontinuous, ¢-accretive or strongly accretive
mappings in [18, Theorem 1]. Many authors have established new results
related the involving equations Tz + Cz 5 s and their applications, see [8,
12-13, 16-17, 19-25, 28, 35]. s

Our purpose here is to consider sums of three operators T+ A+ C, where
T is m-accretive, A is demicontinous, bounded and strongly accretive, and
C is compact. Results for such triplets of operators can be proved by using
simple the homotopy theory for Leray-Schauder operators in connection with

the methods and the results that have been developed in [8]-[25]..

Théorem 1. Let X* be uniformly convez and 0 € G be a bounded,
open subset ofX Let T : X D D(T) — 2% be m-accretive with 0 € D(T),
A:Gc DT — X bounded, demicontinuous and strongly accréetive and

C:G — X compact. Assume that Q C X and for every g € Q such that’

(1) (Az+Cz —q,Fz) >0, z€ D(T)NHG.
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Then Q C (T + A+ C)(D(T)NG).
Proof. For fixed q¢ € Q, we want ‘to solvé the problem
Tz + Az +Cz 2 gq.
First, for any positive integer n, we consider the problem
Tox+ Az + Cz = q.

We may assume that 0 € T(0), A(0) = 0, for otherwise, we may consider the
operators Te=Tr —v, Az = Az — u, Cz = Cz + v + u, instead of the op-
erators T, A, C, where v is some point in T'(0) and A(0) = u. It is clear that
these mappings have exactly the same properties as T, A, €, respectively.
We.now note that the operator T : 2 — T,z + Az is demicontinuous and
strongly accretive on U, where U = D(T) N G, because the Yosida approx-
imation T, is a Lipschitz continuous m-accretive mapping defined on all of
X. Due to Theorem 1 in [18], we know that TU is open and TU is closed.
Moreover, T—l exists and is continous and bounded on the set :_FE c TU.
Also 8TU c T(8U) and ‘

718U c 8T (TU) = dU.

These facts can be found in the proof of Theorem 7 [19].

It follows that the Leray-Schauder degree d(H (t,-),TU,0) is well-
defined for the mapping '

Hit,y) =y +HCT 'y—a), we T(U), teo,1).

We also note that H(0,8TU) =y € T(U) and 0 € T(U) because T'(0) = 0.
In order to show that H(1,y) = 0 is solvable in i’—(?)-, we must show that the
equation H(t,y) = 0 has no solution on AT(U) for any t € [0,1). Obviously,
this is trivial for £ = 0. Assume that there exist ¢ € (0,1) and y;, € dT(U)
such that H(t,y:) = 0. Then, let z; = T—lyt € OU, we obtain

Toxe + Azy + tCxy = tg.
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Since T,,(0) = 0, we obtain that
(Tazy, Fxi) >0, z, € U.

Using this fact, we have

0 = (Thx: + Azy + t(Czy — q), Faxy)
2 (A.’L’t + t(Cl‘t - Q), Fxt) > 0.

We now prove the last inequality above, that is, we sﬁow that
(2) (Az; + t(Cz: — q), Fz,) > 0.
To this end, we observe that

(Azy, Fzi) > oflz,))? > 0.

where a > 0 is the strong accretiveness constant of the operator A. This
implies that (2) will be true if

(Czy — q, Fz;) > 0.
Assume that
(Czs — q, ‘Fxt) <.
Then
(Az:, Fzi) < —t(Cz; — q, Fx) < ¥(Ca:t —-q, »F:L't),
which is equivalent to
(Azy + Czy — q, Fx;) < 0.

Since z; € D(T) N 8G, we have a contradiction to the assumption (1).

Consequently, (2) is true and implies that
0= (Thzy + Azy + t(Cxy — q), Fzxy)
> (Al't + t(CIEt - q), F.’Et) > 0.
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This contradiction implies that the equation H(t,y) = 0 has no solution on
- 8T(U) for any t € |0, 1)-, and hence the equation T,z + Az + Cz = ¢ is
solvable with a solution x, € U. Due to the boundedness of the operators
A and C, we have that the sequence {T,z,} is bounded and that {Cz,} is

a precompact set. Then we have
af|zn — T
<(Az, — AZm, F(Zn — Tm))
== (TnZn — TmZm + Cxp — CZpn, F(Tn — Tm))
S - (Tnxn - mem, F(Jnmn - Jmmm» - (Tnxn - mem, F(xn - x'm) .
- F(']nxn - Jmmm» + ”C’mn - me” : ”xn - xm“
<ITnzn — TrmZml| - IlF(:z:n-—— Trm) — F(JnZn — JnZm )|
+|1Czs = Cxm|l - |20 — Zamll-
At this point, we note that || J,zn — Tull < L Tuzall, [Cxn — Czpm|l — 0 as
m,n — 00, and F is locally uniformly continuous. Thus, {z,,} is a Cauchy
subsequence and z,, — ¢ € U as k — oo.
By the fact ||Jn, Zn, — Zol| < [|Jn,Znp — Tnyll + |20, — zol] — 0 as
k — oo, we have J,, z,, — xo. Since A is demicontinuous, Az, LN Azxg,
C is continuous, Cz,, — Cxo, hence v,, 57— Azy — Czg + ¢, where
v, = —Az, — Cx, + q € T'z,,. By the demiclosedness of 7', we have that
2o € D(T)NG and Tzg+ Az + Cxo D qor Q C (T + A+ CHD(T)NG).

As a special case of Theorem 1, we have the following result which is
due to A. G. Kartsatos and X. Liu [24, Theorem 8].

Corollary 1. Let X* be uniformly convex. Let T : X D D(T) — 2%
be m-accretive with 0 € D(T), A : By(0) C D(T) — X bounded, demicon-

tinuous and strongly accretive, and C : By(0) — X compact. Assume that

there ezist v € T(0) and r > 0 such that
(Az + Cz, Fz) > (r+ ||v||)b, z € 0B(0).

Then B,(0) C (T + A + C)(D(T) N By(0)).
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Proof. We may set Q = E,T@, then for every ¢ € ET(O_) we have
(Az +Cz — g, Fz) > (r +||vl))b - (¢, Fz)
2 (r+lvl)o~7-b
= [l - >0,
and Theorem 1 is applicable.

We want to study the applicability of Schauder’s fixed point theorem to
the problem considered herein. Kartsatos gave in [16, Lemma 1] a result in
this direction to which the problem Tz + Cz + %x = [ is solvable for every
fe€X,n=12..., provided that T is single-valued m-accretive operator
with 0 € D(T) and T(0) =0, and C: X — X is compact such that

lim inf{(1/m) sup (||Cz||)} =o0.
meee flzll<m

We show below that we can extend 'the conclusion of this result to

multi-valued operator T and obtain the sum of the operators T'+ C' is dense

and surjective on X.

Theorem 2. Let T : X O D(T) — 2X be m-accretive and C - D(T) —
X continuous with (T + 1)~ being compact. Assume that

(3) limoup {(1/m)|Cal} =0,
Then, for each s € X, the equation

1
(4) Tz +Cz + R

has a solution z, for each n € N. Assume further that

T
i Tz+Cal .
lzll~oo,zeD(T)  ||z|

Then m = X. Furthermore, if one of the following conditions holds:
(a) X is uniformly convez and C : D(T) — X is completely continuous,
(b) C is bounded,

then R(T+C)=X.
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Proof. We may assume that 0 € D(T') and 0 € T(0). Otherwise, for
z € D(T), v € Tz, we may consider the operators T(x) = T(z + z) — v,
C(z) = C(z + 2) + v, for every z € D(T) — z. it is easy to see that the
operator T is m-accretive on D(T) = D(T) — 2. To show the compactness
of the opérator (T + I)~! and hence (T + XI)~%, for every A > 0. We note
that the m-accretivity of the operator T, implies the continuify of (T+I)71.
Let {y.} be a bounded sequence in X and let z, = (T + I)"'y,. Then

Yp = Up + Tp =0y + Ty — 0,
where @, € Tz, and v, € T(z, + 2). Thus,
(zn+2)+vn =9y + 2+,
or
Ty = (T+I)v_1(yn +z+4+v)— 2.

By the boundedness of {y.}, z and v, as well as the compactness of the
operator (T + I)~!, we concluded that {z,} lies in a compact set. This
proves the compactness of the operator (T+1I)~*. To see that (3) is satisfied
for the operator C, we observe that

m(sup (1))

lzl|<m

=m"1 ( sup {|C(z +2) + vll}>

flelf<m

-1
<m (Hfﬁgm{ncw Lol + nvn)

==t sup {lowl) + )

fly—zll<m

Sm_l( sup {ucml})+m-1nvu

vl <m-+|l =]l

=m™(m + ||2]]) - (——1—>( sup {IICyII}) +m ™|

m+ |1zl / \ jyligm+iiz1

— 0 asm — co.
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we have shown that it suffices to prove the theorem with 0 € D(T) and
0 € T(0).

Now, we fix n, and consider the equation
1 \-!
u=(T+;L-I> (s—Cu), ue X.
Now, let u € D(T') be given. Then for j € F(u), we have
1 1 1
5 — 1y — y - 2 > 2
(5) (vt Zug) = (v,5) + ~flull > ~llull®,

where v € T'u. In order to solve (4), we apply the Schauder theorem to the
compact operator U : X — X defined by

-1
Uu= (T+%I> (s—Cu), ueX.

Now we claim that U maps some closed ball of X into itself, suppose that
this is not true. Then for each m € N, there exists u,, such that Um € B, (0)

and [[Uuy, || > m. It follows from (5) that we have

-1
m < [|Uuy,|| = (T-l— %I) (s — Cum)

< (sl + [|Cumll)

and by (3)
1< n[;lz-llsll + %HCumll] —0 asm — oo.

This is a contradiction. Consequently, there is a 7 > 0 such that U(B,(0)) C
m. The Schauder theorem implies the solvability of the equation Uz = «,
Le., the solvability of the inclusion (4).

Let z, be a solution of the equation (4). We claim that {zn} is a
bounded sequence. To see this, assume that ||z,| — oo as n — oo. Then,

by our hypothesis, there exists a positive number p such that

n n . T C
liminf L%+ CZal o Tz+Cal S oo
n—oo |l |l Ilell—co,zeD(T) ||z

However, we know that for some v,, € T'z,,, we have
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1 1
n+Czall =18 — —zn|| < —|lzn
vn + Canll = ||s = ~2a) < —llz Il + Ils]]
which implies
n+CZp !
p< liminf”—'v———lb——il—I < liminf [— + M] =0.
n—oo ||zall n—co [n o ||zall

This contradiction says that {z,} is bounded, and hence %xn —0Qasn —
00. So we have s € E(-T+—C')

Now, if (a) holds, then C' is completely continuous and X is uniformly
convex. Since {z,} is a bounded sequence, we may assume that z, =z
for some zg € Dm and that Cz,, — Cxz¢ implies v, € Tx,,v, = —Cz, —
%xn +5 — —Czp+ 5 asn — 00. By the fact that every m-accretive
operator on uniformly convex space is demiclosed, so we have zo € D(T)
and T'zg + Cxp O s.

In case (b), C is bounded. Since {z,} is a bounded sequence and

satisfies that v, + Cz,, + %xn = s, for some v, € Tz,,. We may have
1 1
T =(T+1I) s—an+(1—-;)a:n.

By the boundedness of the sequence {x,} and the operator C, as well as the
compactness of (T + I)~! implies that {z,} lies in a compact set. Thus, it
has a convergent subsequence {x,, }, say £, — zo € D(T). The continuity
of C implies v,, = —Czyp, — nlkwnk +s — —Cxp+ s as k — oo, and the

closedness of T' implies that g € D(T") and Txo + Cz¢ 3 s.

The following result provides a “product condition” on CJyz for the
solvability of Tz + Cz > s. He [15] studied a variant of equation, for single-
valued operator T, by

1
(6) Thz+ Chz+ L=

This equation is equivalently to the equation x — Sz = 0, where

n
S.

7 St =
() = 14+n

n
1 +n([ - C)Jl.'E‘l'
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If J; is a compact operator, then the operator S is also compact and (6)

can be solved by using homotopy argument associated with the equation
z—Sr=0.

We are going to use equation (7) in order to get a new result for the

range of T+ C.

Theorem 3. Let T : X D D(T) — 2X be m-accretive with 0 € D(T),
0 € T(0) and (T +I)~! compact. Let C : D(T) — X be continuous. Let
$ € X and assume that there ezist K(s) > 0 and 8 = 8, € T such that

(Cha —s,5) 2 ~K(s) - B(|l=l]) =,

for all z € X with ||z|| sufficiently large and some J € F(z). Then s €
R(T + C).

Proof. We consider the approximating equation
1
TJ1x+CJ1:v+;:L':s, n=12...,

where s is a given point in X and J; = (T + I)7!, which is equivalent to

the equation

n n

S.

Define the homotopy mapping H(t,z) as follows: For z € X ,

n

n
H(t,x)-t[ +n(I-—C)J1x+1 ns], t € (0,1],

1

and H(0,z) = 0. Since J; is a compact operator, C is a continuous operator,
therefore for each ¢ € (0, 1], the mapping H(t,z) is compact on z € X. It
follows that the Leray-Schauder degree d(I+ H(t,-), Q,0) is well-defined for
any ball @ = B,.(0) for some r > 0, provided that the equation = — K (t,z) =
0 has no solution on dB,(0) for all ¢ € [0,1].

In order to show that there is some r > 0 satisfying
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d(I - H(t,"), @, 0)=d(I - H(1,-), Q, 0)
=d(I — H(0,-), @, 0)
=1,
for all t € [0,1], we must show that all possible solutions z of the equations
z — H(t,z) = 0 are uniformly bounded, i.e., they all lie in a ball @ = B,(0)
for some r > 0. If this is not true, there exist {tm} C (0,1] and {zm} C X
such that
n-tm
1+n 1+n
and ||#m|| — co. Since J1z,, € D(T), 0 € D(T) and 0 € T(0) we have
|J12mll < |z ||. Hence for some j € F(xm) we have
[2mll? = {Zm, ) < 1—;—” Tmll? ~

<
~ 14

Tm = (I C) J1 .’Em S

1+ - 7.7)

nllxml|2 + i_+7£[K (8) + Bllzm DIz I

and thus

Lzl < K(5) + B0z Dlleml

This shows the boundedness of the sequence {z,, } and implies the solx}ability
of eq. (8). Let u, be a solution of eq. (8) for each n € N. Then for some
j € F(uy), we have

n .
llunll? = (tn, ) = 77 ACTrun — 5,5)

1+ 1+

Sﬁ—ll unl|® + ———[K(S) + B(llunDllual)-

This implies that

%“un“? < K(s) + B(llunlDllunl-

for all large n. We conclude that L|lu,|| — 0 as n — oo in all possible
cases. Thus, we have TJyu, + CJiu, — s, as n — oo. Consequently,
s e R(T +C).

In order to prove our next theorem, we need the following theorem

which can be found in Guan and Kartsatos [14].
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Theorem A. Let G C X be open, bounded with0 € G. Let C:G — X
be compact and such that ||Cz| > «, z € G, where « is a positive constant

number. Then there ezists Ao > 0 and z € 8G such that (I — A\yC)z = 0.

The next result provides a method for proving the existence of certain
eigenvalues for the pair (7, C). A real number X is called an eigenvalue
of a pair of operators (T, C) if the equation M7z + Cz > 0 is solvable in
D(T)n D(C). The following theorem generalizes some results in Guan and
Kartsatos [14]. The operator T' does not have to be ¢-expansive on 8G. We
also assume the boundedness of the operator T only on the set G, for the

approximate solvability of the relevant eigenvalue problems.

Theorem 4. Let G be an open, bounded subset of X with 0 € G. Let
T : G — 2% be accretive with 0 € T(0), 0 ¢ T(8G) and T(8G) bounded.
Let C : G — X be continuous with C(T + I)~! being compact. Let the
constant o > 0 be such that ||Cz|| > o, for all z € 8G, and satisfy one of
the following conditions:
(i) X* is uniformly convez and T is demicontinuous,
(ii) T is continuous.

Then there exist A\g > 0 and o € OG such that \gCzqy € Txz.

Proof. We consider the inclusion problem
(9) Tx-—)\C’a:—!-%waO,n:l,Z,...,
or equivalently
(10) u— AC(T + %1)—% =0

for all n € N. We want to show that (9) has at least one solution, say,
(An,Zn) € (0,00) x IG. Then we shall show that Tz — ACz > 0 is solvable,
with solution (Ag, Zo) € (0,00) X 8G. If (A, u) € (0,00) x d(TG) is a solution
of (10), then (\,z) € (0,00) x 8G is a solution of (9), where T = T + ir
and z = (T + 2I)"'u. In fact, T is a strongly accretive and injective

mapping such that 7'G is open and T'G is closed under the assumption (i)
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[18, Theorem 1] or the assumption (ii) [7, Theorem 3]. Hence, under either

one of these assumptions we have
TG U B(TG) TG c TG =TG=TGU T(8@®),

which’ 1mphes that 8(TG) C T(BG) Consequently, the mapping y — y —
ACT ™ y is well-defined on TG and the range of the mapping y — )\C"f’“ly
onTGisa relatively compact subset of X. We also observe that if u € 8(T'G)
then T 'u € T_l(afG) C 9G and ||C’f’—1u|| > «. Appling Theorem A,
we obtain, for each n, a solution (An,u.) € (0,00) X A(TG) of eq. (10).
Letting z, = ’f“_lun, we have the solvability of (9) with solution (X\,,z,) €

(0,00) x 8G, or
1
Tz, — ACz, + Exn 50, n=1,2,....
Since z,, = T—lun, we have that
. 1
(11) Uy = Up + —Tp
n

for some v, € Tz,. Due to the boundedness of {v,}, {z.}, we have that
{un} is bounded. From the fact that {u,} is bounded and ||C(T+L1)~ u,||
> a, it follows that {A,} is also bounded. Thus, we may assume that
An, — Ao a8 np — oo. From (11), we have

1
Un +xn = Un + (1 - E)mn,

=(T+I)! [un + (1 — %)xn]

1
C(T+ ;L'I)_lun = C-'L'n = C(T+ I)_l I:un + (1 - l)x”] ”
. n

that is

which implies that

The fact C(T + I)~! is compact and {un}, {z,} are bounded imply that
{Cz,} lies in a compact set, we may assume that Cz,, — y € X. Hence

we obtain that
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1
Ung T —Tpy, = An, Ctp — Aoy
N

for some Un, € Tx,,. Moreover, T=T + -};I is a strongly accretive on
0G, thus z,, — =9, for some o € G. Under the hypothesis of (i) T is

demicontinuous, T'z,, — Tz,. By the continuity of C, we have
1
Un, = _'I—’L.k,xnk + )\nkC'xnk g )\QC.’E(),

for some v, € Tzy,. Due to the demiclosedness of T, we have 24 € D(T)
and AgCzg € Txg.

Under the hypothesis of (ii), T is continuous, it is obvious that ACxg €
TSC(),

Corollary 2. Let G C X be open, bounded with 0 € G. LetT:G— X
be bounded, accretive with T(0) = 0 and C : G — X compact. Assume
Jurther that Tx #0, x € G and T is $-ezpansive on OG. Let the constant
o > 0 be such that |[Cz|| > o, = € 3G, and satisfy one of the following
conditions:

(i) X* is uniformly convez and T is demicontinuous.
(it) T is continuous.

Then there exists (Mg, xo) € (0, 00) x 8G such that Txzg— MCzg = 0.

Proof. The fact that C : G — X is compact, it is obviously that C is
continuous and C(T + I)~! is compact. Since T: G — X is bounded, it is
easy to see that T(0G) is bounded. It follows from the proof of Theorem 4,

we have that this conclusion holds.

3. Perturbations of maximal monotone operators. In this sec-
tion, we shall consider analogous results in [12] and [23] with some weaker
conditions. The operator T : X — 2% will be assumed to be maximal
monotone. We assume that the space X is a real reflexive locally uniformly
convex Banach space with locally uniformly convex dual space X*. The

duality mapping F' is now'singe—valued and bicontinuous.
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An operator T : X D D(T) — 2% is monotone if for every z,y € D(T)
and u € Tz, v € Ty we have

(%) | {(u —v,z—y)>0.

A monotone operator T is strongly monotone if 0 in the right-hand side of
(**) is replaced by al|lz — y||*> where o > 0 is a fixed constant. A monotone
operator T is called maximal monotone if R(T + AF) = X~ for all A > 0.
An operator T': X D D(T) — 2X" is said to be of “type (S4)” if for every
sequence {z,} C D(T') with z, = 2o € X, and limsup < vp, Tn—2o >< 0,
for some v, € Tx,, we have z,, — xo. It is weqflglown that, under our
assumptions on the space X, X*, the duality mapping F is of type (S4+) on
X.

For fundamental properties of monotone operators and other related
concepts, the reader can refer to Barbu [1], Barbu and Precupanu [2], Brow-
der [4], Cioranescu [5], Pascali and Sburlan [30], Phelps [32] and Zeidler
[34].

For other recent results of this nature, we refer to the papers by Brézis,
Crandall and Pazy [3], Guan [9-11], Guan and Kartsatos [12-13] and Kart-
satos [23].

The next result improves Theorem 2 of Guan and Kartsatos [12]. There,
it was assumed that T m-accretive and A with positively homogeneous of

degree ¢ € (0,1] and C, positively homogeneous of degree p € (1,00).

Theorem 5. Let X* be strictly conver. Let T : X D D(T) — 2%

be mazimal monotone and strongly monotone at 0" with constant o > 0 and

0 € D(T), 0 € T(0). Let A,C : D(T) — X* be completely continuous.

Assume further that (Cu,u) > 0 for every u € D(T'). Moreover, ""&x’h" — 0

for any sequence {x,} C D(T) with ||z,|| — co. Then R(T + A+ C) = X.

Proof. We want to solve the inclusion

Tz + Az +Cz > f,
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where f is any (but fixed) point in X*. To this end, we consider the ap-

proximate problem
1
(12) Tz+ Az +Cz+ —Fz > f,
: m

for every m = 1,2,.... Since T is maximal monotone, we can define R,, =
(T+LF)~': X* - D(T). Since X is reflexive locally uniformly convex
and X* is strictly convex, the duality mapping F is of type (S+)‘. This

implies that Ry, is continuous [11,Theorem 2.1]. Now, (12) is equivalent to
(13) z+ Rn(Az+Cz - f) =0.

Since R., is continuous and A, C are compact, R,,,(4+C — f): X* — D(T)
is compact. By the Leray-Schauder degree theory (see Lloyd [27]), (13) is
solvable if we can show that there exists b > 0 such that z + tR,(Ax +
Cz — f) # 0 for any ¢ € [0,1], z € 8B,(0). Equivalently, we only need to
show that the solutions of z + tRm(Az+ Cz — f) =0, for any ¢ € [0,1], are
uniformly bounded. This is certainly true for t = 0. If ¢t = 1, then (12) is
solvable, hence we take ¢t € (0,1). Assume that there exist {tn} C (0,1) and
{un} C D(T) such that

Up + tn R (Aty + Cu, — f) =0

and ||u, || — oo as n — co. We have %un = — R (Auy, + Cu, — f) € D(T),
and
T(lun) + iF(iun) + Au, + Cu, D f,
tn m ity
or

lFun € —tnT<—1—un> -ty Au, — t,Cu, +t, f,
m t

which implies

1 , 1

—(FUn,un) = ~t2(v; 5, Z——un) = tn{Atn, ) — 80 (Cun, upn) + ta(f, Un),
m

n

where v; , = _%F(t‘i‘“n) - Ay, — Cu, + f € T(%nun), and we get that
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1
—n—%llunll2 < —tp(Atin, Un) + ta(f, Un),

thus

1oL

Aun) u'rn) n(f)

Un) — 0 as n — 00.

1
[[en | I nll llw nll llen |

This is a contradiction. Hence, we obtain that (12) and (13) are solvable for
any integer m.

Now, we are going to show that all solutions of (12) are uniformly
bounded with respect to m. If this is not true, we may assume that there
exists {wm, } C D(T), T'wm-I—Awm—FCwm—i-—;l—me—f 50, and ||w,|| — o0

- . . . w .
as m — 0o. Since X is reflexive, we may assume that u—g—m—” — wy. Since

1
— AWy, = U + Cwp, + —Fwp, — f,
m
for some v,, € Tw,,, and thus

1
(AW, Win) = (Vm, W) + (CWeny Wrn) + E(me,wm) —{f, Wm)
> of|wmll® — (£, Wm),
which implies

Aw,, Wm

<___ o
nwm” ”wm“

Y2 o= {fy )"

— - a>0
llwml ’

”wm“
as m — oo, the left-hand side of the last inequality converges to zero, and
we have a contradiction. Therefore, we get that {w,} is bounded.

Now, since X is reflexive, we may assume that wn, -5 wy, for some
wp € X. Then %me — 0 and by our assumptions, Cwn, — Cwg, AWy —
Awg. So, vy — —Awg — Cwp + f. Since T' is maximal monotone and T

is demiclosed, hence we have wg € D(T) and Twg > —Awo — Cwo + f or
Twg + Awg + Cwg 5 f.

We now give Theorem 6 below, which generalizes the main result of
Kartsatos in [23, Theorem 7). Here, we assume that without the assumption
that 0 ¢ Tz — v*, for some z € D(T) N G and some v* € Tz, and for every
z € D(T) N3G and without the assumption that (7' + F )~1 is compact.
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Theorem 6. Let T : X D D(T) — 2X" be mazimal monotone and
C: D(T) — X* with C(T + F)~" being compact. Assume, further that
G C X is open, bounded and such that for some peEX*, ze DT)NG
satisfying that

(14) (u+Cz—p,x—2) >0, (z,u) € (D(T) N 8G) x Tx.‘

Then p € (T + C)(D(T) N G).
Proof. We want to solve the problem
(15) Tx—i—C’x—f—%F:L’ap, Vn € N,
or the equivalently equation
(16) utC(T+ - F)lu=p,

We may assume that z=0€ D(T)NG and 0 € T(0). In fact, if this is not

true, we consider the new operators 7', C defined by
Tr=T(z+2)—v,Cz = C(z+z)+v,z € D(T) = D(T) — 2,

where v € Tz. We also set G = G — 2. Tt is easy to see that the operator T
is maximal monotone on D(T). To show the compactness of C(T + F)~1,
we must show that {C(T + F)™'u,} is a relatively compact set, for any
bounded sequence {u,} C X*. To this end, let y, = (T + F)Y~lu,, by the
boundedness of (T + F)~! we have that {yn} is 2 bounded sequence and

Un € Ty + Fyn = T(yn + 2) — v+ Fy,
ZT(yn+Z)+F(Z/11+Z)—U-I-Fyn—F(yn-l'z,),

that is
T(yn +2) + F(Yn +2) 3 iy + v + [Fyn + 2) — Fy],
which implies that

yn+Z=(T+F)—l[un+v+F(yn+z)’“Fyn]a
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and
CT +F) *up=Cyp =C(yn +2) +v

=C(T + F) un +v+ F(yn +2) — Fyn] +v.

By the boundedness of {u,}, v, {F(yn +2)}, {F(yx)} and the compactness
of C(T + F)~*, we have C(T + F)~lu,, is a relatively compact set.

If X* is locally uniformly convex, it is well-known that F' is continuous.
In order to show that C(T + F)~! is continuous, let {u,} C X* with u, —
ug € X*. Since T is maximal monotone and X is locally uniformly convex

space, impliés that (T + F)~! is continuous [13, Lemma 3.1] and we have
Yo = (T + F) uy — (T + F) " o = g0

Moreover, by the continuity of C(T' + F)~1, we have that

C(T + F) Yt = C(T+ F) Mun + v+ F(yn +2) — Fyn] +v
' — C(T+F) 'ug+v+ F(yo+2) — Fyol +v
= C(T + F)"tuo,

completing the proof of the compactness of C(T + F)~!. To see that (14)

is satisfied with z = 0, it suffices to observe that
{(w—v)+Cx+z2)+v—pzx)>0,

for every ¢ € D(T) N 3G and every w € T(z + z). Thus it suffices to prove
the theorem with z = 0 and 0 € T(0).

Since T is maximal monotone and X is locally uniformly convex, we
have (T + LF)~! is a continuous mapping on all of X, if (T + 1F) is
denoted by Ty, then Tp is a set-valued mapping that maps relatively open
(closed) sets in its domain D(T') onto open sets in the space X. For the set
To(GND(T)) is open in X and To(GND(T)) is closed in X [18, Theorem 1].

Hence we have
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To(G N .D(T)) UA(Ty(G N D(T))) = To(G N D(T))
C To(G N D(T))
= To(G N D(T))
= To(G N D(T)) UTo(3G n D(T)),
which implies that 8(To(G N D(T)) C To(G N D(T)). Since

To(G N D(T)) C To(G N D(T)) or Ty Y(8(ToG N D(T))) € 8G N D(T).

Now, we consider the homotopy mapping
1 —_—
H(t,u) =u+t|C(T + EF)_lu —pi, (t,u) €10,1] x To(G N D(T)).

If we show that 0 # H(t,0To(G N D(T'))), then the Leray-Schauder degree
d(H(t,-), To(GND(T)), 0) is well-defined, for all ¢ € [0, 1], because 0 € TQ(O)
‘and the range of the mapping v — C(T + LF)~lu on To(G N D(T)) is a
relatively compact subset of X*. To show that (15) or (16) is solvable, it
suffices to show that H(t,-) has no zero on 8To(G N D(T)) for any ¢ € [0,1).
This is certainly true for t = 0. Assume that u, € 8To(G N D(T)), for some
t € (0,1) and let

Ty = (T + %F) _lut € G N D(T).
Then
(17) o+ 10z, + %Fxt > tp.
Howe'ver‘we shall show that (17) does not hold by sh.owing thaf
(18) (v + t(Cxy — p), z¢) > 0,

for some v, € Tz, for all t € (0,1). If (Cz; — p,z:) > 0, then our assertion

is trivally true. Let (Cz; — p,z;) < 0, by our assumption
(v, 2¢) > —(Czy — p, ) > —t(Cxy — p,x4),

aﬁd
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(’Ut -+ t(C.CCt — p),.’L‘t> > 0.
Combine the inequalities (17) and (18), we get the contradiction:
1 2 1 2
;Ilwtll < ;”xt“ + (vt + t(Czy — p), z¢) = 0.

Thus, H(1,u) = 0 is solvable with solution v € To(G N D(T)), i.e., Tz +
Cz + 2Fz 5 p is solvable with solution z, € G N D(T). Since G N D(T) is
bounded, we have p € (T + C)(D(T) N G).
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