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Abstract. Necessary and sufficient conditions are given
to ensure that products of (DFM)-spaces are holomorphically
semibornological.

1. Introduction. The concepts of holomorphically bornological, holo-
morphically infrabarrelled and homorphically Mackey spaces have been in-
troduced by Barroso et al. [2]. This classification was extended to others
class of holomorphic spaces called hblomorphica.lly ultrabornological [9] and
holomorphically semibornological [5]. This classification was complemented
by a polynomial theory, similar to the holomorphic and given by several
authors as we can see in [1], [3], [6] and [9].

In this paper we obtain a necessary and sufficient condition for that a
product of (DFM) (resp. (DF)) spaces to be holomorphically (resp. poly-

nomially) semibornological.

2. Terminology and notation. We adopt the notations and termi-
nologies of [3], [5] and [9] and the following conventions. Let E' and F' be
locally convex spaces and U a non-void open subset of E. For each meN
with m > 1, let L(™E;F) be the vector space of all continuous m-linear
mappings from E™ into F. We shall say that a mapping P : E' — F'is a con-

tinuous m-homogeneous polynomial if, there exists AeL(™E;F) such that
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P(z) = Az™ = A(z,..™..,z) for every zeE. We will denote by P(™E; F)
the vector space of all continuous m-homogeneous polynomials from E into
F. A mapping f: U — F is said to be holomorphic in U if, for every £eU,
there is a sequence P,,eP(™E;F)(meN) such that, for every continuous

seminorm ( on F, there is a neighborhood V of £ contained in U with,
Tim (B7(x) = Y Pale — )) =0
k=0

uniformly for zeV. We will denote by H(U; F') the vector space of all holo-
morphic mappings from U into F. We shall say that a mapping f: U — F
is G-holomorphic and we write feHg(U ; F') if the restriction f/(UNS) is
holomorphic for all finite dimensional vector subspace S intersecting U. We
will denote by H,.(U; F) the vector space of all feHg(U; F) such that f is
sequentially continuous. In a similar manner, we can define L;.(™E; F') and
Py (ME; F).

Let f be a mapping from U into F. A subset A of F is said to be a
determining set for f if the relations ANU # 0, f(z) = 0 for all zeANU
imply f(z) =0 for all zeU.

Given a complemented subspace G of E we say that a mapping f :
U — F factors through G if, for every zeU and yeF such that z + yeU and

Hg(y) =0, Ilg : E — G being the canonical projection, then the following
holds f(z +v) = f(x).

It is well known [8] that:
(i) P(™E; F) C H(U; F), VmeN.
(ii) feH(U;F) if and only if feHg(U; F) and it is continuous.

3. Products of holomorphically semibornological spaces.

Definition 3.1. A locally convex space E is a semibornological space

if, for every locally convex space F', we have

L(E;F) = Ly (E : F).
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Definition 3.2. A locally convex space F is a polynomially semi-
bornological space (abbreviated by Psbo) [6] if, for every locally convex

space I', we have

P(™E;F) = P,.("E; F), YmeN.

~ Definition 3.3. A locally convex space E is holomorphically semi-
bornological space (abbreviated by Hsbo) [5] if, for every non-void open

subset U of E and every locally convex space F', we have

H(U; F) = Ho(U; F).

Every Hsbo is a Psbo and every Psbo is a semibornological space, but
the converses are not true as shown in ([5], Example 2.7) and ([6]. Example
13).

The holomorphic and polynomial classification of spaces lead to the
question of the stability under the formation of arbitrary products of this
classes.

Known examples show that such stability can not hold in full general-
ity. For example in E = cMN x C(N), CN being the countable topological
product of copies of C and C™ the countable direct sum of copies of C
endowed with the direct sum topology are holomorphically semibornological
spaces, but their product E is not holomorphically (and even polynomially)
semibornological ([6], Example 13).

This paper is strongly influential by the works of [7] and [12]. For our

purpose, we shall need the following two lemmas.
For the rest of this article we shall denote by I any infinite index set.

Lemma 3.4. Let E be the topological product of a non-void family of
semibornological spaces. Then E is semibornological if C! is semibornolog-
ical [14].
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Lemma 3.5. Let E and F be two locally conver spaces. Every ab-
solutely conver total subset A of E is determining for every feH(U; F), U

being an absolutely conver open subset of E [10].

Given a non-void family (F; : iel) of separated locally convex spaces
and given a non-void subset J of I we shall identify TI(E; : ieJ) with a
subspace of II(E; : iel) in a canonical way. We shall write ®(E; : tel) to
denote the direct sum endowed with the topology induced by II(E; : iel).

Recall that a locally convex space E admiting a fundamental sequence
of bounded sets, is called a (DF)-space [11], if every strongly bounded count-

able union of equicontinuous subsets of E’ is equicontinuous.
Now, reasoning as in [7] and [10], we obtain the following.

Proposition 3.6. Let (E; : iel) be a family of semibornological in-
frabarrelled infinite dimensional (DF)-spaces then,

() If C! is semibornological, then E = II(E; : iel) is polynomially

semibornological if and only if for each iel there is a bounded total

subset M; of E;.

(ii) &(F; : iel) is polynomially semibornological if for each iel there is

a bounded total subset M; of F;.

Proof. (i) Sufficient condition. We may suppose each M; absolutely con-
vex. Consider F a normed space, meN and PePs.(™F; F'). To obtain that P
is continuous it suffices to show that P factors through some finite product
of Els. If it is true, then we have established the existence of a finite subset
L of I and P(z + y) = P(z) for every z,yeE = II(E; : iel),y = (y; : iel)
with y; = 0 for every ieL, therefore there is Q : Ep(:= II(E; : ieL)) — F
such that Q o II; = P where II, : E — II(E; : ieL) denote the canonical
projection. Clearly QePs.(™Er,F). Since the finite product II(E; : ieL)
of semibornological infrabarrelled (DF)-spaces is again semibornological in-
frabarrelled (DF)-space, then Ey, is a polynomially semibornological space

(see [6], Proposition 12) and so Ps.(™EL, F') = P(™EL, F) and we infer that
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PeP(™E; F) as Q and I, are continuous.

If fact, if we assume that P does not factor through any finite product
of Els i.e., if Ly = J is any finite subset of I such that P does not factor
through II(E; : ieL;), then there are z!,y'eF, y' = (y} : iel) with y} =0
for every ieL; such that P(z! +y!) # P(z'). Since the space II(E; : eI\ Ly)
is semibornological (Lemma 3.4), the mapping ¢ : II(E; : tel \ L) — F
defined by ¢, (y) = P(a! + y) — P(z') is holomorphic and ¢; # 0. In this
space Dy = ®(M; : iel \ Ly), is an absollutely convex total subset, then
Lemma 3.5, ensure that D; is determining for ¢,. Since ¢; # 0, there is
zleD; with ¢,(21) # 0, i.e., P(z! + z*) # P(a?).

Proceeding by induction, suppose found {z',2%,...,2"} C &(M; : iel)
and {z',2?%,...2"} C E with N; = {iel : z{ # 0} finite, j = 1,2,...,n, and
such that J, N1, N,,..., N, are pairwise disjoints and P(z7 + 27) # P(z7),
i=1,2,...,n.

Let Lpyy = JUU{N; : 5 =1,2,...,n} which is a finite set of indices,
hence P does not factor through II(E; : i€L,41), so that there are z"+1,
y"TLeII(E; : iel) with y?t! = 0 for every €L, 41 verifying P(z™ ! +y™+1) #
P(zm*1).

Taking now the space IL(E; : €]\ L41) the subset Dy = ©(M; : iel\
Ly +1) and the mapping ¢, 1 : II(E; : ieI\Lyy1) — F defined by ¢, 11 (w) =
P(z™*! + w) — P(z™*'). ¢, is holomorphic and clearly ¢, # 0. We
can apply Lemma 3.5 again to obtain z+! in Dpy1 with P(znHl +2771) £
P(z™t1). Therefore we find two sequences (") C E and (2") C ®(M; : 1el)
with P(z™ + 2") # P(z™), n=12.....

For every fixed n, the mapping 4 : ueE — A(u) = P(u + 2™) — P(u)
is well defined. Tt is G-holomorphic and it is sequentially continuous on E.
Since II(E; : iel) is semibornological (Lemma 3.4), (n™'D) is determining
for A, D being ®(M; : iel), consequentely there is uPen~1D such that
P(u™ + 2") # P(u™).

Moreover h,, : C — F, h,(\) = P(u™ + Az") is a non-constant entire

mapping and hence we apply Liouville’s Theorem to obtain A €C such that



142 MIGUEL CALDAS [June

|1 P(u™ 4+ Apz™)|| > n, for every n = 1,2,.... By construction the sequences
(Anz™) and (u™) converges to zero in II(E; : iel), therefore (u™ + A, 2™) is
convergent to zero, and hence P is not sequentially continuous, contradicting
the fact that PeP, .(™E; F).

Necessity condition. Suppose that there is j € I such that E; does not
contain a bounded total subset, then C™ endowed with the direct sum
topology is a complemented subspace of E; ([4], Lemma 1). Since I is infi-
nite, CN is a complemented subspace of II(F; : il — {j}), then II(E; : iel)
has a complemented subspace isomorphic to cN x C(N), which is not poly-
nomially semibornological ([6], Example 13). Then by obvious modifications
of ([5], Proposition 2.5) II(E; : iel) is not polynomially semibornological.

(ii) Since @(F; : iel) endowed with the topology induced by II(F; : iel)
is semibornological. Then the proof proceeds analogously as we did in case
1).

Now we study the holomorphic case.

Remark 1. Recall that a locally convex space E is a (DFM)-space [8]
if, I is the strong dual of a Frechet-Montel space.

As a consequence of ({13], Proposition 4) we have that a countable
product of (DFM)-spaces with a total bounded subset is Hsbo. We shall

extended this result to arbitrary products of such spaces.

Proposition 3.7. Let (E; : iel) be a family of (DFM)-space. Then:
(i) If C! is semibornological, then TI(E; : iel) is holomorphically semi-
bornological if and only if for every iel there is a bounded total subset
M; of E;.

(ii) ®(FE; : iel) is holomorphically semibonological if for every iel there
15 o bounded total subset M; of E;.

Proof. (i) Sufficient condition. Assume that for every iel there is a
total bounded subset M; of E;. Since each E; is complete, by replacing

M; by the closed convex and circle hull of M; U {0}, we can assume M; is
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absolutely convex. Let U be an open subset of II(E; : ieI) , let F' a normed
space and feH,.(U;F). We may assume without loss of generality that
U = II(U; : iel), where U; is an absolutely convex open subset of E; for
every iel, and U; = E; for every iel \ J, J being a finite subset of I.

First we see that f factors through a finite product of Es spaces ((DFM)
-spaces). If this is not the case, we can proceed as we did in the proof of
Proposition 3.6, to obtain the sequences (u™), (z™) and (\,), with u"en=' @
(M; : iel), z"e @ (M; : ieI) and A,eC such that ||f(u™ + M\ 2™)|| > n for
every n=1,2,....

This is a contradiction since f is sequentially continuous and (u”+A,2™)
is convergent to zero.

The proof is now complete using the fact that the finite product of
(DFM)-spaces is again (DFM)-space and thus holomorphically semiborno-
logical.

Necessity condition. Follows from Proposition 3.6.

(ii) Analogous to Proposition 3.6 making the obvious changes.

Corollary 3.8. If C! is semibornological, then (C),7) is Hsbo, where
T 15 the topology on CD induced by cl.

Our next result improves corollary 3.8.

Proposition 3.9. Let (E; : tel) be a family of metrizable locally convex
spaces F;.  Then:

(i) TI(E; : iel) is holomorphically semibornological if ¢! is semiborno-

logical.

(i1) ®(F; : iel) is holomorphically semibornological endowed with the

product topology.

Proof. (i) Let U = II(U; : iel) be an open subset of II(E; : iel), where
U; is absolutely convex open subset of E; for every iel, and U; = E; for
every iel \ J, J being a finite subset of I. Let f be an element of H.(U; F)
and suppose F' is a normed space. Since finite products of metrizable spaces

are again metrizable and hence Hsbo, it suffices to show that f factors
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through some finite product. If this is not the case taking M; = E; for
every iel, one can proceded analogously to Proposition 3.6 to obtain two
sequences (u™ : neN) in UN D and (2" : neN) in D = ®(E; : iel) with
f(u® + 2z*) # f(u™) for each n with J and N, = {iel : 2] # 0} finite,
n =1,2,... pairwise disjoint.

Let T = {iel : ul? # 0,neN}. T is countable and hence the space
II(E; : i€T) is metrizable. Let (V, : neN) be a basis of absolutely convex
neighborhoods of 0 on II(E; : ieT') with V3 C UNII(E; : ieT). For every neN
we define on U NII(E; : 1¢T) the mappings ¢, : z — f(z + 2™) — f(z)eF.
By construction these mappings are G-holomorphic and does not vanish
identically. Since V,, N @®(F; : ieT) is absolutely convex and dense in the
semibornological space II(E; : ieT'), so that we can apply Lemma 3.5, to
obtain the existence of w™eV,, N ®(F; : 1eT) verifying f(w™ + 2™) # f(w™)
for each neN. Now we take the entire mappings h, : C — F defined by
hn(A) = f(w™ + Az™). Since each h, is not-constant we apply Liouville’s
Theorem to obtain A,eC such that || f(w™ 4+ Ap,2™)|| > n, for each n. But the
sequence (w™ + A\, 2™) converges to zero in D and hence f is not sequentially
continuous. This is a contradiction.

(ii) Recall that @(F; : iel) is semibornological. The obvious modifica-

tions above give the desired conclusion.
Corollary 3.10. (C(I),T) 1s holomorphically semibornological.
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