TOTALLY REAL SURFACES IN QP^2 WITH PARALLEL MEAN CURVATURE VECTOR.

BY

LIU XIMIN (劉西民)

Abstract. It has been shown, under certain conditions on the Gauss curvature, every totally real surface in quaternion projective space QP^2 with parallel mean curvature vector is either flat or totally geodesic.

1. Introduction. A quaternion Kaehler manifold is defined as a 4n-dimensional Riemannian manifolds whose holonomy group is a subgroup of $Sp(1) \cdot Sp(n)$. A quaternion projective space $QP^n(c)$ [5] is a quaternion Kaehler manifold with constant quaternion sectional curvature c > 0.

Let M be an n-dimensional Riemannian manifold and $j: M \to QP^n(c)$ an isometric immersion of M into $QP^n(c)$. If each tangent 2-subspace of M is mapped by j into a totally real plane of $QP^n(c)$, then M is called a totally real submanifold of $QP^n(c)$ [2]. Chen and Houh [2], Funabashi [4] and Shen [6] studied this class of submanifolds and got many interesting curvature pinching theorems. In the present paper, we consider the totally real surface in QP^2 with constant quaternion sectional curvature c > 0.

2. Preliminaries. We give here a quick review of basic formulas for totally real submanifolds in a quaternion Keahler manifold, for details see [2].

Let $QP^n(c)$ be an 4n-dimensional quaternion projective space with con-

Received by the editors October 9, 1996 and in revised form June 25, 1998.

AMS 1991 Subject Classification: 53C40, 53C55.

Key words and phrases: totally real surface, quaternion projective space, Gauss curvature.

stant quaternion sectional curvature c > 0. Let M be an n-dimensional totally real submanifold in $QP^n(c)$. We choose a local field of orthonormal frames in $QP^n(c)$:

$$e_1, \ldots, e_n; e_{I(1)} = Ie_1, \ldots, e_{I(n)} = Ie_n; e_{J(1)} = Je_1, \ldots, e_{K(n)} = Ke_n.$$

in such a way that, restricted to M, e_1, \ldots, e_n are tangent to M, where (I, J, K) are the almost quaternion structures on $QP^n(c)$.

We will use the following convention on the range of indices unless otherwise stated:

$$A, B, C, \ldots = 1, \ldots, n, I(1), \ldots, I(n), J(1), \ldots, K(n);$$
 $i, j, k, \ldots = 1, \ldots, n; \ \phi = I, J, \text{ or } K;$ $u, v, \ldots = I(1), \ldots, K(n);$

Let ω^A and ω_B^A be the dual frame field and the connection forms with respect to the frame field chosen above. Then, the structure equations of $QP^n(c)$ are

$$d\omega^A = -\sum \omega_B^A \wedge \omega^B, \omega_B^A + \omega_A^B = 0,$$

$$d\omega_B^A = -\sum \omega_C^A \wedge \omega_B^C + \frac{1}{2} \sum \bar{R}_{ABCD} \omega^C \wedge \omega^D.$$

where

$$\bar{R}_{ABCD} = \frac{c}{4} (\delta_{AC}\delta_{BD} - \delta_{AD}\delta_{BC} + I_{AC}I_{BD} - I_{AD}I_{BC} + 2I_{AB}I_{CD} + J_{AC}J_{BD} - J_{AD}J_{BC} + 2J_{AB}J_{CD} + K_{AC}K_{BD} - K_{AD}K_{BC} + 2K_{AB}K_{CD})$$

Restricting these forms to M, we have

(1)
$$\omega^{u} = 0$$
, $\omega_{i}^{u} = \sum h_{ij}^{u} \omega^{j}$, $\omega_{j}^{i} = \omega_{\phi(j)}^{\phi(i)}$, $h_{ij}^{u} = h_{ji}^{u}$, $h_{jk}^{\phi(i)} = h_{ki}^{\phi(j)} = h_{ij}^{\phi(k)}$
Define h_{ijk}^{u} by [3]

(2)
$$\sum_{k} h_{ijk}^{u} \dot{\omega}^{k} = dh_{ij}^{u} - \sum_{k} h_{ij}^{u} \omega_{j}^{l} - \sum_{k} h_{lj}^{u} \omega_{i}^{l} + \sum_{k} h_{ij}^{v} \omega_{v}^{u}$$

Then the Gauss-Coddazzi-Ricci equations of M in $QP^n(c)$ are

(3)
$$R_{ijkl} = \frac{c}{4} (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + \sum_{u} (h_{ik}^{u}h_{jl}^{u} - h_{il}^{u}h_{jk}^{u})$$

$$h_{ijk}^u = h_{ikj}^u$$

(5)
$$R_{uvkl} = \frac{c}{4} (I_{uk}I_{vl} - I_{ul}I_{vk} + J_{uk}J_{vl} - J_{ul}J_{vk} + K_{uk}K_{vl} - K_{ul}K_{vk}) + \sum_{i} (h_{ik}^{u}h_{il}^{v} - h_{il}^{u}h_{ik}^{v})$$

The Laplacian Δh^u_{ij} of the second fundamental form h^u_{ij} is defined by $\Delta h^u_{ij} = \sum_k h^u_{ijkk}$. By a simple calculation we have

(6)
$$\sum h_{ij}^{u} \Delta h_{ij}^{u} = \sum h_{ij}^{u} h_{kl}^{u} R_{lijk} + \sum h_{ij}^{u} h_{li}^{u} R_{lkjk} - \sum h_{ij}^{u} h_{ki}^{v} R_{uvjk}$$

Denote by $S = \sum (h_{ij}^u)^2$ and $H^2 = \frac{1}{n^2} \sum_u (\sum_i h_{ii}^u)^2$, then S and H are the square of the length of the second fundamental form and the mean curvature, respectively.

If M has parallel mean currature vector, then

$$\sum_{i} h_{iik}^{u} = 0$$

3. Main results and proofs. In this section, let QP^2 be an 8-dimensional quaternion projective space with constant quaternion sectional curvature c > 0 and M be a totally real surface in QP^2 . Then the Gauss equation of M is

(8)
$$2K = \frac{1}{2}c + 4H^2 - S$$

If M has parallel mean curvature vector, from (1) and (7) we can obtain

(9)
$$\sum (h_{ijk}^u)^2 = 8(\sum_{l=1}^2 ((h_{lll}^{I(l)})^2 + (h_{lll}^{J(l)})^2 + (h_{lll}^{K(l)})^2))$$

Theorem 3.1. Let M be a totally real surface in QP^2 with parallel mean curvature vector, then

$$(10) S \ge 3H^2,$$

80

if the equality holds, then M has parallel second fundamental form.

Proof. Using (1), by a direct calculation we have

so (10) holds. If $S = 3H^2$, from (11) we have

(12)
$$h_{11}^{\phi(1)} = 3h_{22}^{\phi(1)}, \ h_{22}^{\phi(2)} = 3h_{11}^{\phi(2)}, \ \phi = I, J, K.$$

From (1) and (2) we have

(13)
$$\sum_{k} h_{11k}^{\phi(1)} \omega^{k} = dh_{11}^{\phi(1)} + 3h_{11}^{\phi(2)} \omega_{\phi(2)}^{\phi(1)}, \ \phi = I, J, K$$

(14)
$$\sum_{k} h_{22k}^{\phi(1)} \omega^{k} = dh_{22}^{\phi(1)} + h_{22}^{\phi(2)} \omega_{\phi(2)}^{\phi(1)} - 2h_{11}^{\phi(2)} \omega_{\phi(2)}^{\phi(1)}, \ \phi = I, J, K$$

From (12), (13) and (14), we get

(15)
$$h_{111}^{\phi(1)} = 3h_{221}^{\phi(1)}, \ h_{112}^{\phi(1)} = 3h_{222}^{\phi(1)}, \ \phi = I, J, K$$

Combining (15) with (7) and (1), we obtain $h_{111}^{\phi(1)} = h_{111}^{\phi(2)} = 0$, then from (9) we have $h_{ijk}^u = 0$, so the second fundamental form of M is parallel.

From Theorem 3.1 and the Gauss equation (8) we have

Corollary 3.1. Let M be a totally real surface in QP^2 with parallel mean curvature vector, then the Gauss curvature of M satisfies

$$K \le \frac{c}{4} + \frac{1}{2}H^2,$$

when the equality holds, M has parallel second fundamental form.

Just like the proof of Theorem 3.1, we can prove

Theorem 3.2. Let M be a totally real surface in QP^2 with parallel mean curvature vector, then $3S \geq 8H^2$, the equality holds if and only if M is totally geodesic.

Lemma 3.1. Let M be a totally real surface in QP^2 with parallel mean curvature vector, then

(16)
$$|\nabla S|^2 = 2(S - 3H^2) \sum (h_{ijk}^u)^2.$$

Proof. From (1) and (7) we have

$$\left|\frac{1}{2}\nabla S\right|^{2} = \sum_{k} \left(\sum h_{ij}^{u} h_{ijk}^{u}\right)^{2} = \left(\left(h_{11}^{I(1)} - 3h_{22}^{I(1)}\right)^{2} + \left(h_{22}^{I(2)} - 3h_{11}^{I(2)}\right)^{2} + \left(h_{11}^{J(1)} - 3h_{22}^{J(1)}\right)^{2} + \left(h_{22}^{J(2)} - 3h_{11}^{J(2)}\right)^{2} + \left(h_{11}^{K(1)} - 3h_{22}^{K(1)}\right)^{2} + \left(h_{22}^{K(2)} - 3h_{11}^{K(2)}\right)^{2}\right) \left(\sum \left(h_{111}^{u}\right)^{2}\right)$$

this together with (9) and (11) we have (16).

From (3) we know that the first term in the right side of (6) is

$$\sum h_{ij}^{u} h_{kl}^{u} R_{lijk}$$

$$= \sum (h_{12}^{u} h_{12}^{u} R_{1212} + h_{12}^{u} h_{21}^{u} R_{1221} + h_{11}^{u} h_{22}^{u} R_{2112} + h_{22}^{u} h_{11}^{u} R_{1221}$$

$$= (\sum (2(h_{12}^{u})^{2} - h_{11}^{u} h_{22}^{u})) R_{1212}$$

$$= 2(\sum ((h_{12}^{u})^{2} - h_{11}^{u} h_{22}^{u})) (\frac{1}{4}c + \sum h_{11}^{u} h_{22}^{u} - \sum (h_{12}^{u})^{2}).$$

Similarly, the second term in the right side of (6) is

$$\sum_{i,j} h_{ij}^{u} h_{li}^{u} R_{lkjk} = \left(\sum_{i} ((h_{11}^{u})^{2} + (h_{22}^{u})^{2} + 2(h_{12}^{u})^{2}) R_{1212} \right)$$
$$= S\left(\frac{1}{4}c + \sum_{i} h_{11}^{u} h_{22}^{u} - \sum_{i} (h_{12}^{u})^{2}\right).$$

Note that $h_{jk}^{\phi(i)} = h_{ki}^{\phi(j)} = h_{ij}^{\phi(k)}$, $\phi = I, J, K$, so from (5) it is easily know that the third term in the right side of (6) is $2(\sum (h_{11}^u h_{22}^u - (h_{12}^u)^2))(\frac{1}{4}c + \sum h_{11}^u h_{22}^u - \sum (h_{12}^u)^2)$.

On the other hand, $S-4H^2=2\sum (h_{12}^u)^2-2\sum h_{11}^u h_{22}^u$, from the Gauss equation $2K=\frac{1}{2}c+4H^2-S$, we can get $K=\frac{1}{4}c+\sum h_{11}^u h_{22}^u-\sum (h_{12}^u)^2$. So

from (6) we have $\sum h_{ij}^u \Delta h_{ij}^u = K(4\sum (h_{12}^u)^2 - 4\sum h_{11}^u h_{22}^u + S) = K(3S - 8H^2)$, then we have

(17)
$$\frac{1}{2}\Delta S = \sum (h_{ijk}^u)^2 + K(3S - 8H^2)$$

Theorem 3.3. Let M be a totally real surface in QP^2 with parallel mean curvature vector. If M has constant Gauss curvature K or M is compact and has nonnegative Gauss curvature K, then M is either totally geodesic or flat.

- *Proof.*.(i) If M has constant Gauss curvature K, from (8) we know that S is a constant, from Lemma 3.1 and Theorem 3.1, M has parallel second fundamental form. By (17), $3S = 8H^2$ or K = 0, i.e., M is either totally geodesic or flat.
- (ii) If M is compact and Gauss curvature $K \geq 0$, from (17) and Theorem 3.2, we have $3S = 8H^2$ or K = 0, i.e., M is either totally geodesic or flat.

Theorem 3.4. Let M be a totally real surface in QP^2 with parallel second fundamental form, then M is either totally geodesic or flat.

Proof. M has parallel mean curvature vector. Then by Lemma 3.1, S is a constant, so from (17) we know that M is either totally geodesic or flat, this finishes the proof of Theorem 3.4.

Acknowlegements: The author would like to express his thanks to the referee who gives some very useful suggestions and finds some mistakes in the earlier version of this paper.

References

- 1. M. A. AL-Gwaiz and S. Deshmukh, Totally real minimal surface in CP^2 with parallel mean curvature vector, Inter. J. Math. and Math. Sci., 15 (1992), 589-592.
- 2. B. Y. Chen and C. S. Houh, Totally real submanifolds of quaternion projective space, Annali di Math. Pura ed Appl., 120 (1979), 185-199.
- 3. S. S. Chern, M. P. do Carmo and S. Kobayashi, Minimal submanifold of sphere with second fundamental form of constant length, Functional analysis and related fields, Springer, New York, 1970, 59-75.

- 4. S. Funabashi, Totally real submanifolds of quaternion Kaehler manifold, Kodai Math. Sem. Rep., 29 (1978), 261-270.
 - 5. S. Ishihara, Quaternion Kaehler manifolds, J. Diff. Geom., 9 (1974), 483-500.
- 6. Y. B. Shen, Totally real minimal submanifolds in a quaternion projective space, Chin. Ann. of Math., 14B (1993), 297-306.

Department of Mathematics, Nankai University , Tianjin 3700071, P. R. CHINA Current address: Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R.CHINA e-mail: xmliu@dlut.edu.cn