SOME NEW SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

BY

AYHAN ESI

Abstract. In this paper we introduce and examine some properties of three sequence spaces defined by Orlicz function M, which generalize well known Orlicz sequence space l_M .

1. Introduction. Lindenstrauss and Tzafriri [8] used the idea of Orlicz function to construct the sequence space

$$l_M = \left\{ x \in W : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0 \right\}.$$

The space l_M with the norm

$$||x|| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

becomes a Banach space which is called an Orlicz sequence space. The space l_M is closely related to the space l_p which is an Orlicz sequence space with $M(x) = x^p$ for $1 \le p < \infty$.

Let W be the family of all real or complex sequences. Any subspace of W is called sequence space. An Orlicz function is a function $M:[0,\infty)\to [0,\infty)$ which is continuous, nondecreasing and convex with M(0)=0, M(x)>0 for x>0 and $M(x)\to\infty$ as $x\to\infty$. If convexity of Orlicz function M is replaced by $M(x+y)\leq M(x)+M(y)$ then this function is

Received by the editors May 28, 1997 and in revised form October 15, 1997.

¹⁹⁸⁰ Mathematics Subject Classification: 40A05, 40C05, 40D05

Key words: Sequence spaces, almost convergence, Orlicz function.

called modulus function defined and discussed by Ruckle [11] and Maddox [6].

In the present note we introduce and examine some properties of three sequence spaces defined using Orlicz function M, which generalize the well known Orlicz sequence space l_M and strongly summable sequence spaces $[C, l, p], [C, l, p]_0$ and $[C, l, p]_{\infty}$.

Let $p = (p_k)$ be any sequence of positive real numbers, and $A = (a_{nk})$ be a nonnegative regular matrix. We define

$$W(A, M, p) = \left\{ x \in W : \lim_{n} \sum_{k} a_{nk} \left[M \left(\frac{|x_k - L|}{\rho} \right) \right]^{p_k} = 0 \right.$$
 for some $\rho > 0$ and $L > 0 \right\}$,

$$W_0(A, M, p) = \left\{ x \in W : \lim_n \sum_k a_{nk} \left[M \left(\frac{|x_k|}{\rho} \right) \right]^{p_k} = 0 \right\},$$
 for some $\rho > 0$,

$$W_{\infty}(A, M, p) = \left\{ x \in W : \sup_{n} \sum_{k} a_{nk} \left[M \left(\frac{|x_{k}|}{\rho} \right) \right]^{p_{k}} < \infty \right.$$
 for some $\rho > 0$.

When $A=(a_{nk})=(C,1)$ Cesaro matrix, we have the following sequence spaces which are generalization of the sequence spaces W(M,p), $W_0(M,p)$ and $W_\infty(M,p)$ which were defined by Parashar and Choudhary [9]:

$$W(M,p) = \Big\{x \in W: \lim_n \frac{1}{n} \sum_{k=1}^n \Big[M\Big(\frac{|x_k - L|}{\rho}\Big)\Big]^{p_k} = 0$$
 for some $\rho > 0$ and $L > 0\Big\},$

$$W_0(M,p) = \left\{ x \in W : \lim_n \frac{1}{n} \sum_{k=1}^n \left[M\left(\frac{|x_k|}{\rho}\right) \right]^{p_k} = 0 \right\},$$
 for some $\rho > 0$,

$$W_{\infty}(M,p) = \left\{ x \in W : \sup_{n} \frac{1}{n} \sum_{k=1}^{n} \left[M\left(\frac{|x_{k}|}{\rho}\right) \right]^{p_{k}} < \infty \right.$$
 for some $\rho > 0$.

When M(x)=x and $A=(a_{nk})=(C,1)$ Cesaro matrix, we have $[C,1,p],\,[C,1,p]_0$ and $[C,1,p]_\infty$ respectively.

When M(x) = x, we obtain generalization of the sequence spaces [A, p], $[A, p]_0$ and $[A, p]_{\infty}$ which were defined by Maddox [3]. If $x \in [A, p]$, we say that x is strongly almost A summable to L.

We denote W(A,M,p), $W_0(A,M,p)$ and $W_{\infty}(A,M,p)$ as W(A,M), $W_0(A,M)$ and $W_{\infty}(A,M)$ when $p_k=1$ for each k.

Now we study some properties of spaces $W(A,M,p), W_0(A,M,p)$ and $W_{\infty}(A,M,p)$.

Theorem 1. Let $p = (p_k)$ be bounded. Then W(A, M, p), $W_0(A, M, p)$ and $W_{\infty}(A, M, p)$ are linear spaces over the set of complex numbers C.

Proof. Using the same technique of Theorem 1 of Parashar and Choudhary [9], it is easy to prove of the theorem.

Theorem 2. Let $H = \max(1, \sup p_k)$. Then $W_0(A, M, p)$ is a linear topological space paranormed by

$$g(x) = \inf \left\{ \rho^{p_n/H} : \left(\sum_k a_{nk} \left[M \left(\frac{|x_k|}{\rho} \right) \right]^{p_k} \right)^{1/H} \le 1, \ n = 1, 2, 3, \dots \right\}.$$

Proof. Clearly g(x) = g(-x). The subadditivity of g follows from Theorem 1. Since M(0) = 0, we get $\inf\{\rho^{p_n/H}\} = 0$ for x = 0. Conversely, suppose g(x) = 0. Then it is easy to see that x = 0. Finally using the same technique of Theorem 2 of Prashar and Choudhary [9], it can be easily seen that scalar multiplication is continuous. This completes the proof.

Remark. It can be easily verified that when M(x) = x, the paranorm defined in $W_0(A, M, p)$ and paranorm defined in $[A, p]_0$ are same.

In order to discuss further result we need the following definition.

Definition. An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists constant K > 0, such that $M(2u) \leq KM(u)$ $(u \geq 0)$. The Δ_2 -condition is equivalent to the satisfaction of the inequality $M(Lu) \leq KLM(u)$ for all values of u and for L > 1.

Theorem 3. Let A be a nonnegative regular matrix and M be a Orlicz function which satisfies Δ_2 -condition. Then

$$[A,p]_0 \subset W_0(A,M,p), [A,p] \subset W(A,M,p), and [A,p]_\infty \subset W_\infty(A,M,p).$$

Proof. Let $x \in [A, p]$, then

(1)
$$S_n = \sum_{k=1}^n a_{nk} |x_k - L|^{p_k} \to 0 \text{ as } n \to \infty.$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M(t) < \epsilon/2$ for $0 \le t \le \delta$. Write $y_k = |x_k - L|$ and consider

$$\sum_{k=1}^{n} a_{nk} [M(|y_k|)]^{p_k} = \sum_{1} + \sum_{2}$$

where the first summation is over $y_k \leq \delta$ and the second summation over $y_k > \delta$. Since M is continuous

$$\sum_{1} < \epsilon^{H} \sum_{k} a_{nk}$$

and for $y_k > \delta$, we use the fact that

$$y_k < y_k/\delta < 1 + y_k/\delta.$$

Since M is nondecreasing and convex, it follows that

$$M(y_k) < M(1 + y_k/\delta) < 1/2M(2) + 1/2M(2y_k/\delta).$$

Since M satisfies Δ_2 -condition, therefore

$$M(y_k) < 1/2K \ y_k/\delta M(2) + 1/2K \ y_k/\delta M(2) < K \ y_k/\delta M(2).$$

Hence

$$\sum_{2} < \max(1, K\delta^{-1}M(2))^{H} S_{n}$$

This and from (1) and regularity of A, we obtain $[A,p] \subset W(A,M,p)$. Following similar arguments we can prove that $[A,p]_0 \subset W_0(A,M,p)$ and $[A,p]_\infty \subset W_\infty(A,M,p)$.

Theorem 4. (i) Let $0 < \inf p_k \le p_k \le 1$. Then $W(A, M, p) \subset W(A, M)$.

- (ii) Let $1 \le p_k \le \sup p_k < \infty$. Then $W(A, M) \subset W(A, M, p)$.
- (iii) Let $0 < p_k \le q_k$ and (q_k/p_k) be bounded. Then $W(A, M, q) \subset W(A, M, p)$.

Proof. (i) Let $x \in W(A, M, p)$, since $0 < \inf p_k \le 1$, we get

$$\sum_{k} a_{nk} \left[M \left(\frac{|x_k - L|}{\rho} \right) \right] \le \sum_{k} a_{nk} \left[M \left(\frac{|x_k - L|}{\rho} \right) \right]^{p_k}$$

and hence $x \in W(A, M)$

(ii) Let $p_k \geq 1$ for each k, and $\sup p_k < \infty$. Let $x \in W(A, M)$. Then for each $0 < \epsilon < 1$ there exists a positive integer N such that

$$\sum_{k} a_{nk} \left[M \left(\frac{|x_k - L|}{\rho} \right) \right] \le \epsilon < 1$$

for all $n \geq N$. This implies that

$$\sum_{k} a_{nk} \left[M \left(\frac{|x_k - L|}{\rho} \right) \right]^{p_k} \le \sum_{k} a_{nk} \left[M \left(\frac{|x_k - L|}{\rho} \right) \right]$$

Thus we get $x \in W(A, M, p)$.

(iii) If we take

$$t_k = \left[M\left(\frac{|x_k - L|}{\rho}\right)\right]^{p_k}$$

for all k, then using the same technique of Theorem 2 of Nanda [10], it is easy to prove (iii).

Corollary. Let $A = (a_{nk}) = (C,1)$ Cesaro matrix and M can be an Orlicz function. Then

- (i) If $p_k = 1$ for all k and M be satisfies Δ_2 -condition $[C,1]_0 \subset W_0(M)$, $[C,1] \subset W(M)$ and $[C,1]_{\infty} \subset W_{\infty}(M)$.
 - (ii) If $1 < \inf p_k \le p_k \le 1$, $W(M, p) \subset W(M)$.
 - (iii) If $1 \le p_k \le \sup p_k < \infty$, $W(M) \subset W(M, p)$.
 - (iv) If $1 < p_k \le q_k$ and (q_k/p_k) is bounded, $W(M,q) \subset W(M,p)$.

Proof. It is same of Theorem 6 and Theorem 7 of Parashar and Choudhary [9].

References

- 1. P. K. Kampthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York, 1981.
- 2. M. A. Krasnoselskii and Y. B. Rutitsky, Convex Function and Orlicz Spaces, Groningen, Netherlands, 1961.
 - 3. I. J. Maddox, Quartly J. Math. Oxford (2), 18 (1967), 345-355.
 - 4. I. J. Maddox, Math. Proc. Camb. Phil. Soc., 64 (1968), 335-340.
 - 5. I. J. Maddox, Math. Math. Proc. Camb. Phil. Soc., 95 (1984), 467-472.
 - 6. I. J. Maddox, Math. Proc. Camb. Phil. Soc., 100 (1986), 161-166.
 - 7. J. Lindenstrauss, Adr. Math. 5 (1970), 159-180.
 - 8. J. Lindenstrauss and L. Tzafriri, Israel J. Math. 10 (1971), 379-390.
- 9. S. D. Parashar and B. Choudhary, Indian J. Pure Appl. Math. **25** (1994), 419–428.
 - 10. S. Nanda, Acta Math. Hung. 49(1-2), (1987), 71-76.
 - 11. W. H. Ruckle, Canad. J. Math., 25 (1973), 973-978.

Department of Mathematics, Firat University, 23119 Elazig, TURKEY