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B. J. TOMIUK

Abstract. In this paper we are concerned with the study
of the algebra M,(A) of left multipliers on semisimple weakly
completely continuous (w.c.c) Banach algebras A. In particular,
we show how M,(A) is related to the second conjugate space A**
of A for those A which contain a bounded appropriate identity.
This group includes all annihilator B#-algebras in which every
minimal left ideal has the approximation property. We also
consider the group G of isometric onto left multipliers on an
annihilator B#-algebra 4 and show how G is related to the
groups of isometric onto left multipliers on minimal closed ideals
of A.

1. Introduction. Let X be a Banach space and let L(X) be the
algebra of all continuous linear operators on X. Let F(X) be the algebra
of all approximable operators on X. In Section 3 we show that there exists
an isometric algebra isomorphism ¥ mapping M¢(F (X)) onto L(X). Let
G(K) be the set of all T € M,(F (X)) (T € L(X)) which are isometric onto.
Then G and K are groups and ¥(G) = K. Let 74(7,) be the weak operator
topology on Mp(F(X))(L(X)). We show that ¥ is a homeomorphism in the
topology 7¢ on M,(F (X)) and the topology 7., on L(X). Thus, in particular,
G is Te-compact if and only if K is 7,-compact.

In Section 4 we show that if A is a semisimple w.c.c Banach algebra
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with a bounded approximate identity then A** has the same radical for both
Arens products. If A is also Arens regular and the approximate identity is
bounded by 1, then M,(A) is isometrically algebra isomorphic to A**. We
also show that if X is a reflexive Banach space with the approximation
property then M,(F (X)) is isometrically algebra isomorphic to F(X)**.
Thus, since My(F(X)) is isometrically algebra isomorphic to L(X), it follows
in this case that F(X)** is isometrically algebra isomorphic to L(X).

In Section 5 we give a brief discussion of annihilator B#-algebras: B#-
algebras were introduced by F.F. Bonsall in [2] and present a generalization
of B*-algebras. Thus every B*-algebra is a B#-algebra. He showed that a
simple annihilator B#-algebra is isometric and algebra isomorphic to F(X),
for some reflexive Banach space X. In fact, this characterizes all such alge-
bras F(X) [2]. In this section we show that if every minimal left ideal in an
annihilator B¥-algebra A has the approximation property then A4 is a dual
algebra. From this it follows that a B*-algebra with dense socle is a dual
algebra. An annihilator B#-algebra is Arens regular.

Section 6 is devoted “entirely to multipliers on an annihilator B#
-algebra A. If every minimal left ideal of A has the approximation property
then M,(A) is isometrically algebra isomorphic to A**. Thus, in particular,
if A is an annihilator B*-algebra then M,(A) is isometrically algebra iso-
morphic to A** [10]. We also consider the group G of isometric onto left
multipliers on A. Let {M) : A € A} be the family of all distinct minimal
closed ideals in A and let G be the group of isometric onto left multipliers
on My, for each A € A. Give G(G ) the relative topology w(w,) induced
by the weak operator topology on M,(A)(M,(M))). We show that (G,w) is

compact if and only if (G, wy) is compact for each X € A.

2. Preliminaries. All algebras and vector spaces considered in this
paper are over the complex field. By an ideal we will always mean a two-

sided ideal, unless specified otherwise. Let X be a Banach space. We recall
that a continuous linear mapping T : X — X is called weakly completely

continuous {or weakly compact) if, for each bounded subset S of X, T(S)
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is relatively compact in the weak topology o(X, X*) on X.
Let A be a Banach algebra. For any subset S of A, £4(S) and 74(S)

will denote, respectively, the left and right annihilators of S in 4 and cl4(S)
will denote the closure of S in A. A linear mapping T : A — A is called a
left (right) multiplier if T'(zy) = T(z)y (T(zy) = 2T (y)), for all z,y € A.
Let My(A) (M, (A)) be the algebra of all continuous left (right) multipliers
on A. M,(A) (M,(A)) is a Banach algebra under the operator bound norm.
We will be working mainly with the algebra M,(A).

An element a € A is called left weakly completely continuous (Lw.c.c)
if the mapping L, defined by L,(z) = az, z € A, is weakly completely
continuous. Likewise we consider R,, where R,(z) = za, z € A, and define a
to be right weakly completely continuous (r.w.c.c) if R, is weakly completely
continuous. We say that A is lLw.c.c. (r.w.c.c) if each a € A is Lw.c.c.
(r.w.c.c) and call A w.c.c. if it is both Lw.c.c. and r.w.c.c. A semisimple
Banach algebra with dense socle is Lw.c.c. (r.w.c.c.) if and only if every
minimal right (left) ideal of A is a reflexive Banach space [17, Theorem 6.2,
p. 269]. A semisimple right complemented Banach algebra A is r.w.c.c.
since it has dense socle [13, Lemma 5, p. 655] and every minimal left ideal

of A is a reflexive Banach space [13, Theorem 5, p. 656].

Let A be a Banach algebra, and let A* and A** be its first and second
conjugate spaces. Following [14] we will denote the Arens products in A**
by o and o’. Since we will be using mainly the product o', for the sake of
completeness we give its definition. Let z,y € A, f € A* and F,G € A**.
Define zo' f € A* by (o f)(y) = f(yz). Define fo' F € A* by (fo' F)(z) =
F(zo' f). Define Fo' G € A** by (Fo' G)(f) = G(fo' F). A is called Arens
regular if Fo G = F o' G, for all F,G € A™*. '

Let 7 denote the canonical mapping of A into A**. It is an immediate
consequence of the definition of Arens products and [6, Theorem 2, p. 482]
that A is Lw.c.c. (r.w.c.c.) if and only if w(A4) is a right (left) ideal of
A** for either Arens product. It follows from [4, Lemma 3.3, p. 855] and
[8, Proposition 1.6, p. 11] that (A**,0)((A**,0')) has a right (left) identity
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E(E") if and only if A has a bounded right (left) approximate identity. If A
has a right (left) approximate identity bounded by 1 then ||E|| = 1(||E']| =
1).

Let X be a Banach space and X* its conjugate space. For £ € X and
f € X*, 2® f will denote the operator on X defined by (z® f)(y) = f(y)z,
for all y € X. L(X) willl denote the Banach algebra of all bounded linear
operators on X with the operator bound norm, and F(X) the subalgebra
of L{X) consisting of operators with finite-dimensional range. Let F(X) be
closure of F(X) in L(X). F(X) is a topologically simple and semisimple
Banach algebra which is strictly irreducible on X and therefore strictly dense
on X [12, Theorem (2.4.6), p. 62].

Let X and Y be Banach spaces. If § is a subset of X and T is a linear
map from X to Y that T|S will denote the restriction of T to S. We will

follow [12] for all definitions not formally stated in this paper.

3. Multipliers on F(X) and the algebra L(X). Throughout this

section X will denote a Banach space. On occasion we will write the product
ST as S-T, for S,T € L(X).

Theorem 3.1. For each left multiplier T on F(X) there is a unique
operator Tt € L(X) such that T(S) = T7 S, for all S € F(X). The mapping
U T — T7 is an isometric algebra isomorphism of My(F (X)) onto L(X).
Moreover, ¥ is also a homeomorphism in the weak operator topology 7o on
M(F(X)) and the weak operator topology 7., on L(X).

Proof. For convenience of notation let A = F(X). For each T € L(X).
Let L be the left multiplication by T on A, ie. Lp(S) = TS, for all
S € A. Since A is a closed ideal of L(X), Ly(A) C A and Ly € M,(A). Let
T € My(A) and let E = zo® fo be a minimal idempotent in A, where zy € X
and fo € X*. (We have fo(xo) =1.) Then J = AF = {z® fo: z € X}
is a minimal left ideal of A and since 7(J) C J, for each z € X, there is a
unique y, € X such that 7(z ® f3) = y, ® fo. Let T’y be the mapping on
X such that Tr(z) = y,, for all z € X. We have 7(z ® fo) = T7(2) ® fo.
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Since 7 is linear so is T7. Moreover, since 1T (@) foll = 1Tr(z) ® fol =
17z @ folll <IITMzllll foll, we get | 77| < |IT|. Thus T7 € L(X).

We show next that 7(U) = T7U, for all U € A. Since A is topologically
sirhple and semisimple, AEA is dense in A. Let S5,Q € A. Now since
SE =5 -(z0® fo) = S(x0) ® fo = 2 ® fy, where z = S(zo), we have
T(SEQ)=T(SE)Q =T(z® fo)Q = (Tr(2) ® f)Q =Tr - (¢ ® fo) - Q =
Tr - (S{z0) ® fo) - Q = Tr - (SEQ). Therefore by the linearity of 7 we
get 7(V) = T7rV, for all V € AEA. Since AEA is dense in A and 7 is
continuous on A, we get 7(U) = T7U, for all U € A, so that, in particular,
17Nl < ITr]l. In view of the inequality above we get || T]| = ||Tr||, for all
T € My(A). Moreover, ¥ : T — Tr maps M;(A) onto L(X), forif T € L(X)
and 7 = Ly then T = Tr since Lr(z ® fo) = T - (z @ fo) = T(z) @ fo,
for all z € X. Hence ¥ : 7 — T is an isometric valgebra isomorphism of
Me(F (X)) onto L(X).

Now let {7} be a net in M,(A) which 7,-converges to 7 ¢ M(A).
Let T = ¥(7,), for all o, and let 7' = ¥(7). We claim that the net
{To) Tw-converges to T. Let z,y € X and f € X*. Since A is strictly
irreducible on X, there is S € A such that S(y) = z. Let ¢ € A4* be given
by o(U) = f(U(y)), for all U € A. We have (T ,(5)) — ©(7(S)). Hence
f(Ta(2) = f(To(S®) = f(TaS)(¥) = F(Ta(S)NW) = o(Ta(S) —
e(7(5)) = f(T(S)HW) = F(TH(w)) = FT(SW) = f(T(x)). Thus
f(Te(z)) — f(T(x)) for all z € X and f € X*. Hence VU is continuous in
the 7, topology on M,(A) and 7, topology on L(X). It remains to show

that ~! is also continuous in these topologies.

Let {To} be a net in L(X) which 7, converges to T € L(X). Let
To = U7HT,), for all o, and let 7 = U~Y(T). We want to show that
O(To(U)) = o(T(U)), forall U € A and ¢ € A*.

We first show that p(7 o (U)) — (T (U)), forall U € F(X) and ¢ € A*.
Let f € X*, f # 0 and, for ény p € A%, define g € X* by g(x) = p(z®f), for
allz € X. Then o(Ta(z®f)) = o(Ta (2@ f)) = o(Ta(z)®f) = g(Tu(z)) —
9(T(2)) =p(T- (@@ ) =0T (3 f)),ie p(Talz® f)) — o(T(z f)).
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Since every U € F(X) is a linear combination of operators of rank 1, we get
o(T (U)) — o(T(U)), for all U € F(X) and ¢ € A™.

Now let U € A and let {U,} be a sequence in F'(X) such that U,, — U.
Given ¢ > 0, there is a positive intger ng such that ||U, — U] < ¢/2,
for all n > mng. Let ¢ € A* and take U, with n > ng. Since ©(7 o(Uy)) —
(T (Uy)), there is ag such that, for all a > aq, [9(7 «(Un))—¢(T (Un))| <e.

Then, for all a > agp and n > ng, we have
(T o(U)) = o(T(U))] < 1e(TalU)) = ¢(Ta(Un))]
+10(To(Un)) — (T (Un))|
+o(T(Un)) = (T (U))]
<Nl T&lU = Unll + e+ eI 7 1Un - Ul
< llelle/2+ e+ llolle/2 = (1 + llelDe.

Thus @(To(U)) — @(T(U)), for all U € A and ¢ € A*. Hence ¥™' is
continuous in the 7, topology on M,y(A4) and 7, topology on L(X). This
completes the proof.

For any Banach space W, let S(W) = {z € W : ||z]|| < 1}.

Corollary 3.2. S(M,(F(X))) in 1¢-compact if and only if S(L(X)) is

Tw-cOMPact.

Theorem 3.3. Let G be the set of all T € M(F(X)) which are iso-
metric onto left multipliers and let K be the set of all T € L(X) which are

1sometric onto operators. Then ¥ maps G onto K.

Proof. Assume that T € K and let 77 = ¥~}(T). Since ||T7(S)(2)|| =
I(TS) (@)l = IT(S@)]| = [S()l, it follows that |71(S)|| = ||S]], for all
S € F(X) so that, 77 is isometric. To show that 77 maps F(X) onto F(X)
we first show that 77 maps F(X) onto itself. Let Zle y; @ fi € F(X),
where y; € X and f; € X*, ¢ =1,...,k. Since T maps X onto X, there are
elements z1,..., 2z, € X such that T(z;) =y;, ¢ =1,...,k. Hence

k

K K K
TT(ZQH ® fi) =Y Tr(z:@f)=Y T)fi=) v:®fi
=1 =1 =1

=1
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Thus 77 maps F(X) onto F(X). Now let S € F(X) and let {S,} be a
sequence in F'(X) such that S,, — S in the uniform topology on L(X). Since
Tr map F(X) onto itself, there is @, € F(X) such that 77(Q,) = Sy, for
all n, and since Tt is isometric, we have ||Q, ~ Qm| = [|Sn — Sm]|, for
all positive integers m,n. This shows that {Q,} is a Cauchy sequence and
therefore @, — Q for some Q € F(X). We have T1(Q) = S by the
continuity of 7. Thus 77 maps F(X) onto itself and so 71 € G.
Suppose conversely that 7 € G and let z € X. Then for any f € X*

we have

Izlll7ll = llz @ fIl = 1T @@ Ol = I1Tr(2) @ fl| = | Tr (@) I£]

which shows that || T'r (z)|| = ||z||. Hence Tr is isometric. Moreover, since 7
maps 7 (X) onto itself there is S € F(X) such that 7(S) = z®f = T S. Let
z € X be such that f(z) = 1. Then 2 = (z® f)(2) = (T 5)(z) = Tr(S(2)).
This shows that 77 maps X onto X, for if we let w = S(z) then Ty (w) = .

Corollary 3.4. Let H be a Hilbert space. Then T € Mo(F(H)) is

1sometric onto if and only if Ty € L(H) is a unitary operator on H.

Proof. An operator U on H is unitary if and only if U is isometric onto.

The sets G and K of Theorem 3.3 are groups under the operation of
operator multiplication and ¥ (restricted to G) is a group isomorphism of
G onto K.

Corollary 3.5. The group K 15 T,-compact if and only if the group G

18 Tg-compact.

4. Multipliers and the second conjugate space. In this section
we look at the relationship between M,y(A) and A**, where A is a semisimple

r.w.c.c. (Lw.c.c.) Banach algebra.

Lemma 4.1. Let A be a semisimple Banach algebra with a bounded
left approximate identity {u.}. Let E’ be a left identity of (A** o) and,
for each S € My(A), let FS = S**(E'). Then the following statements are

true:
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(i) (fo'F3)(z) = f(S(z)), forallz € A, f € A* and S € M,(A).
(i) S™*(m(z)) = FSo'n(x), for all z € A and S € M,(A).

(iii) FSo'm(z) € m(A), for all z € A and S € M,(4).

(iv) The mapping p : S — F? is a bicontinuous algebra isomorphism of
M,(A) into (A**,0'). Moreover, if {u,} is bounded by 1, then p is an

isometry.

Proof. Let z € A, f € A* and S € M,(A). We first observe that
W §* (50 f) = 20/ S*(f)
since, for all y € A,

(8" (zo' f))(y) = (x0' F)(S(y)) = f(S(y)z) = f(S(yx))

and
(2o S*(fN)(y) = (S™(F))(yz) = f(S(yx)).
(i) Now
f(8()) = (S*(F))(=) = n(x)(S™(f)) = (B'o'm(2))(S"(f))
= m(z)(S*(f)o'E") = (S™(f)o'E')(z) = E'(z0'S™(f))
and

(o' F5)(@) = (/' S™(B"))(z) = S™ (B} w0’ f) = B'(S*(zo' f)).
Therefore in view of (1), (i) is true.
(ii) By (i), we have

(5™ (r(@)(f) = w(2)(S*(f)) = f(S(x)) = (fo'F5)()
w(2)(fo'F¥) = (F¥o'n(2))(f),

which gives (ii).

(iii) By (ii), FSo'm(z) = S*™*(n(x)) = n(S(z)), and S(z) € A. This proves
(iii).

(iv) That p : S € F¥ is an algebra isomorphism is shown in [15, Lemma 3.1

p. 294]. To see that p is bicontinuous we observe that ||F?|| = ||S**(E")| <
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IS IIE'll = IS E']l. On the other hand, from (i), [|S*(f)]| = [|fo'FS|| <
IS0 so that |ES)| > [|S]l. Thus [|S]| < [|FS|| < ||S|[|E'|| which shows
that p is bicontinuous. Now if |[u,|| <1 for all @, then [|[E'|| = 1 and we get

|FS]| = ||S||, for all S € M,(A), so that p is also an isometry.

Theorem 4.2. Let A be a semisimple Banach algebra with a bounded
left approzimate identity. Let Ny = {G € A** : Go'n(z) =0, for all z € A}
and My = {S™(E) : S € My(A)}, where E' is a left identity of (A™*,0').
Then the following statements are equivalent:
(i) A is rw.c.c.
(i) A*™ = M/, + N, i.e, every F € A** is of the form F = S*™(E") + G,
for some S5 € My(A) and G € N;.

Proof. (i) == (ii) This is contained in [15, Theorem 3.2, p. 295].
(ii) = (i). Suppose (i) holds, and let F € A**. Then F = $**(E')+G,
for some S € M(A) and G € N);..Since Go'n(z) = 0, for all z € A,

Fo'n(z) = (F¥ + G)o'n(z) = F¥o'n(z),

for all x € A, and so, by Lemma 4.1 (iii), Fo'n(z) € n(A), for all z € A.
Hence w(A) is a left ideal of (4**,0') so that A is r.w.c.c.

We observe that if A** = M/, + N/, then this sum is direct. In fact
suppose that F' € M) N N). Then F = S**(E’), for some S € M,(A) and
n(S(z)) = Fo'n(z) = 0, for all z € A. Therefore S = 0 and so F = 0.
Hence M, N N, = (0). We note that M/ is a closed left ideal of (A**,o")
and N} is a closed ideal of (A™*,0’) and N/, = {G € A** : Go'E’ = 0} [15,
Theorem 3.2, p. 295].

Similarly if A is a semisimple Banach algebra with a bounded right
approximate identity and E is a right identity of (A** o) then A is lL.w.c.c.
if and only if A*™ = M4 ® Ny, where My = {T**(E) : T € M,(A))} and
Ny ={G € A" : w(x)oG =0, for all z € A}. We have Ny = {G € A** :
EoG = 0} [15, Theorem 3.2, p: 296].

Theorem 4.3. Let A be a semisimple w.c.c. Banach algebra with o
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bounded approzimate identity. Then the Arens products agree on N4 and
NYy and Ny = Nj.

Proof. Let E be an element of A** which is simultaneously a right
identity for (A**,0) and a left identity for (A**,o’) [7, Proposition 1.3, p.
93]. If F,G € N4 then FoG = (FoE)oG = Fo(EoG) = Fo0 = 0. Similarly
if F,G € N/, then Fo/G = Fo/(Eo'G) = (Fo'E)o’G = 0. Hence to show.
that the Arens products coincide on N4(N/) we need only to show that
Ns = N as sets. Let ' € N). Then, for any z € A, n(z)o'F € N
and so (m(z)o’F)o'E = 0. But n(z)o'F € 7(A) since A is w.c.c. and
m(z)o'F = 7(z)oF. Hence

(n(z)o' F)o'E = (n(z)oF)oE = w(z)o(FoE) = m(x)oF.

Hence w(z)oF = 0, for all z € A, and so F' € N4. Therefore N/, C N4.
Similarly we can show that N4y C N/,. Hence N4 = N, and this completes
the proof.

Let A be as in Theorem 4.3. Let R{*(R3*) be the radical of (A**,0)
((A**,0)). By [15, Theorem 3.2, p. 295], Ri* = N4 and, by [15, The-
orem 3.2', p. 296], R3* = N/. Thus R}* = R3* and the Arens products
coincide on R}* = R3*. We have FoG =0 = Fo'G forall F,G € R* = R5*.
These observations fill the gap in the proof of [15, Theorem 4.2, p. 297].

Corollary 4.4. Let A be an Arens reqular semusimple w.c.c. Banach
algebra with an approximate ideﬁtity bounded by 1. Let E be the identity
element of A**. Then the mapping S — S**(E) is an isometric algebra
isomorphism of My(A) onto A™*.

Proof. Since A is Arens regular, A** is semisimple by [15, Corollary 4.3,
p. 298]. Hence N/, = (0) and therefore p : S — S**(E) maps M,(A) onto
A**. Since ||E|| =1, p is an isometry.

A Banach space X is said to have the approzimation property if, for
every compact subset U of X and every € > 0, there is T' € F(X) such that
IT(z) — z|| <e, for all z € U. Every Hilbert space has the approximation
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property.

Let X be a reflexive Banach space with the approximation property.
Then, by [16, Theorem 4.1, p. 404], F(X) is an Arens regular semisimple
w.c.c. Banach algebra with an approximate identity bounded by 1. Thus

F(X)** has an identity element E with ||E| = 1.

Corollary 4.5. Let X be a reflexive Banach space with the approz-
imation property, and let E be the identily element of F(X)**. Then the
mapping T — T**(E) is an isometric algebra isomorphism of My(F(X))
onto F(X)**.

Proof. This is Corollary 4.4 with A = F(X).

Corollary 4.6. Let X be a reflexive Banach space with the approzima-

tion property. Then F(X)** is isometricdlly algebra isomorphic to L(X).

Proof. This is an immediate consequence of Theorem 3.1 and corol-
lary 4.5.

Theorem 4.7. Let X be a reflexive Banach space with the approrima-

tion property. Then S(L(X)) s T -compact.

Proof. Since F(X) is w.c.c. with a bounded approximate identity,
by [14, Theorem 6.1, p. 274], S(M(F(X))) is 7e-compact. Therefore, by
Corollary 3.2, S(L(X)) is 7,-compact.

Remark. There is another way to obtain Corollary 4.6. In fact, if X is
a Banach space with the approximation property then F(X) is isometrically
isomorphic to the injective tensor product X*®.X. If X is also reflexive
than X has the Radon-Nikodym property, and thus the Banach space dual
of X*®.X is the projective tensor product X** ®, X* = X®,X*. Finally,
(X&.X*) = L(X,X*) = L(X,X) = L(X). Note that X®,X* is iso-
metrically isomorphic to the ideal A (X™*) of nuclear operators of X* in this
case. The dualities between F(X), N (X*) and L(X) are induced in a way

similar to that of Hilbert space operators. Moreover, the embedding from
F(X) into F(X)*™ = L(X) isT — T**. (See [9].)
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5. Annihilator B#-algebras. We recall from [2] that a Banach.
algebra A is a B¥-algebra if, for every a € A, there exists an element

a® € A such that ¥ # 0 and, for every positive integer n,
la#a)"||*/™ = [la*|[lall

A B*-algebra is a B*-algebra with a* taken for a¥ [2, p. 158]. A B¥*-algebra

is semisimple [2, Theorem 5, p. 159].

Theorem 5.1. Let A be a B¥-algebra. Then A is an annihilator
algebra if and only if the following conditions hold:

(a) A is rw.c.c. and
(b) A has dense socle.

Proof. Although the theorem follows readily from [11, Corollary and
Theorem 3.5, p. 908], for completeness we will sketch a proof of it based
in part on [17, Theorem 6.5, p. 270]. Suppose that A has properties (a)
and (b). Since A is a B#-algebra with dense socle, A has the minimal norm
property [11, Lemma 3.2, p. 906], i.e., if | - | in any other normed algebra
norm on A such that |a] < |laf|, for all @ € A, then |-| =] - ||. By [17,
Theorem 6.5, p. 270], properties (a) and (b) imply that there is a normed
algebra norm || - ||; on A such that ||all; < |la||, for all @ € A, and the
completion B of A in this norm is a semisimple annihilator Banach algebra.
Since A has the minimal norm property, ||la|l;1 = ||a||, for all a € A. Hence
A = B and so A is an annihilator algebra. Now let {M) : A € A} be the
family of all distinct minimal close ideals in A and, for each A € A, let I, be
a minimal left ideal in M. Then A = B is isometrically algebra isomorphic
to the B(co)-sum of the algebras F(I). (See the proof of {17, Theorem 6.5,
p. 270].)

Conversely if A is an annihilator algebra then [12, pp. 100-104] A has
dense socle and every minimal left ideal of A is a reflexive Banach space so
that, by [17, Theorem 6.2, p. 269], A is r.w.c.c.

For later use we reiterate some of the points above in the following

corollary.
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Corollary 5.2. Let A be an annihilator B¥-algebra. Let {My:XeA}
be the family of all distinct minimal closed ideals in A and, for each X\ € A,
let I be a minimal left ideal of A contained in My. Then each My is
isometrically algebra isomorphic to F(I) and A is isometrically algebra
isomorphic to the B(oo)-sum of the algebras F(I)). Thus A is Arens reqular
and A™ is isometrically algebra isomorphic to the normed full direct sum of
the algebras F(I,)**.

Proof. For the proof of the last statement see [16, Theorem 5.1, p. 405].

If a Banach algebra A is not a B#-algebra then properties (a) and (b)
alone do not imply that A is an annihilator algebra. See [1, Example 4, p.
739] and [18, Theorem 2.5, p. 28].

Theorem 5.3. Let A be an annihilator B#-algebra in which every

minimal left ideal has the approzimation property. Then A is a dual algebra.

Proof. By [16, Theorem 5.1, p. 405], A** has an identity element E
with |[E|| = 1 so that A has an approximate identity bounded by 1. Thus
a € cla(aA) Ncly(Aa), for each a € A. Moreover, for each minimal left
ideal I of A, F(I) is a dual algebra [3, Corollary 30, p. 172] which shows
that every minimal closed ideal M of A is a dual B#-algebra. Since A
1s isometrically algebra isomorphic to the B(co)-sum of its minimal closed
ideals, it follows from [12, Theorem (2.8.29), p. 106] that A is a dual algebra.

Every minimal left ideal in a B*-algebra or a semi-simple right comple-
mented Banach algebra is a Hilbert space under an equivalent inner product
norm ([12, Theorem (4.10.6), p. 263] and [13, Theorem 5, p. 656]). Thus
if- A is a B*-algebra with dense socle or a right complemented B#-algebra
then A is r.w.c.c. with dense socle in which every minimal left ideal has the
approximation property. Therefore, by Theorems 5.1 and 5.3, A is a dual

algebra. We state these results formally in the following corollaries.
Corollary 5.4. A right complemented B#-algebra is a dual algebra.

Corollary 5.5. A B*-algebra with dense socle is a dual algebra.
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6. Multipliers on annihilator B#_algebras. In this section, unless
otherwise specified, A will denote an annihilator B#-algebra, {My : A € A}
the family of all distinct minimal closed ideals in A and 2 the B(co)-sum
of the algebras My. By Corollary 5.2, A is isometrically algebra isomorphic
to A so that every x € A corresponds under this isomorphism to a unique
function z(-) on A such that z(\) € M), for each A € A. For convenience
we will let (\) = z» and denote z(-) by {z)}. We have ||z]| = sup, [|lzall =
lz(-)|. For f € A* and each A € A, let f = f|[Mx. Then 3, Ifa]] < oo
and the linear functional ¢ on 2 defined by ¢ (z(-)) = >_ fa(z) belongs
to A*. The mapping f — ¢, is an isometric vector space isomorphism of
A* onto A*. We have f(z) =, falza) and [[f]l = 20, Il = llosll. (See
[16].) Since A is isometrically algebra isomorphic to @, for every a € A,

x=ay, +...+an,, By €My, i=1,...,n, we have |[z|| = sup, |2, ||

Theorem 6.1. Let G(G,) be the group of all isometric onto left multi-
pliers on A(M)) and, for each T € M,(A) and X € A, let T\ = T|My. Then
the following statements are true:

(1) T(My) C M, and ||T|| = sup, || Th ], for each T € M,(A).
(i) Mo(M)y) = {T\:T € Mi(A)}, for each X € A.
(iii) T € G if and only if Ty € G, for each A € A.
(iv) For T' € M,(A) let (r be the function on A such that {7(A) = T}, for all

A € A. Then the mapping T — (7 is an isometric algebra isomorphism

of M;(A) onto the normed full direct sum of the algebras M,(M}).

(v) Let LGy be the direct product of the groups Gx. Then the mapping

T — (r (restricted to G) is an isomorphism of the group G onto the

group II,G.

Proof. (i) Let ey be a minimal idempotent of A contained in M.
Then M) = cla(AeyA). Let T € My(A). Since T(xery) = T(x)ery €
AerA C My, for all z,y € A, applying linearity and continuity of 7' we
get T(M,) C M,. Clearly |Tn|| < ||T||, for all A € A. Let D = >, My,
the sum of M), then D is dense in A and |T"|| = sup{||T(z)|| : € D
and ||z]| < 1}. Given ¢ > 0, let x € D, ||z|] < 1, such that ||T]| —¢ <
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IT(z)]. We have z = T, + ...+, where 2, € My, i = 1,...,n.
Since [|z|| = sup; [|lzx, || and |T(z)]| = sup; |T(zx,)]| = sup; || Ty, (z»,)
[T, (2a )l < 1T, Mz, Il < T, |l; for some 49, 1 < ig < n, we see that
1T — e < T, II- Thus [IT|| < supy ITa]l]. As [Ta]l < ||T)), for all A € A,

we obtain ||T|| = sup, ||Tx]|.

(ii) By [5, Proposition 3, p. 99}, A = M@ 4(M,) so that the projection
Py : A — M, is continuous. Thus ||Py(z)|| < kxl|z|, for all z € 4 and some
constant kx > 0. By (i), {T\ : T € My(A)} C M,(M,), for all A € A.
Now let T" € My(M)) and define a mapping T on A as follows: For yE A,
Yy =y1+y2 with y1 € My and yp € £4(M>), let T(y) = T'(y1). Clearly T
is linear and, for any z € A, z = z; + 2z with 2, € M, and zy € L4(M)),
T(yz) = T'(nz1) = T'(y1)z1 = T'(y1)z = T(y)z. (We have La(My) =
74(M).) Moreover, [T(y)|| = 17" (y)ll < IT|ly2ll < IT"|IEx]I(y)]]. Hence
T.€ Me(A) and T' = T|M, = T,. This proves (ii).

(ili) Suppose that T € G. Then T} is isometric on My since | Ty (z)|| =
IT()]| = ||lz|l, for all z € M. Now let y € My. Since T is onto A, there
is x € A such that T(z) = y. Write z = z; + 2, with z; € My and
zy € £4(My). Then y = T(z1) + T(x2) so that T(z2) = y — T(z1) € M,
(by (i)). But, for any z € My, T(z9)z = T(z32) = T(0) = 0 so that
T(x9) € La(My). Hence T(z2) € My NLy(My) = (0) whiéh shows that
T(x3) = 0. Applying the isometry of T, we get =5 = 0. Thus T maps My
onto M) and so T € Gy, for each A € A.

Suppose conversely that T € My(A) such that T\ = T|My € G,, for all
AeA Letx € D,x=ux5 +...4+z5,, wherexy, € My,,i=1,...,n. Then

T(z)=T(x1)+... 4+ T(zx,) =T (xx,) + ...+ Tn, (z2,)

and

IT ()|l = sup [T (2] = sup [lex. || = ||z].

Thus T is isometric on D, and since D is dense in A4, it is also isometric on A.
Now let y € A and let {y,} be a sequence in D such that y, — y. Since T
maps M onto itselft, for all A € A, there exists z, € D such that T(z,) = y,,
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for all n. By the isometry of T, [t — Ymll = [|T(zn — zm)l| = ll2n — zmll,
for all positive integers m,n, and as y, — y, we see that {z,} is a Cauchy
sequence in A and therefore converges to some z € A. Since T'(z;) — T(z)
and T(2,) = yn — v, we get T(z) = y. Thus T" maps A onto itself and so
Ted.

(iv) Let 91 denote the normed full direct sum of the algebras Mo(My).
For each T € My(A), ¢r €N since sup, ||Cr(A)|| = supy [Tall = 1T} (by (1))-
Thus the mapping T' — (7 is isometric. Now let 7 = {7 x} €91 and define
a linear map T on D = ) . M) as follows: For x € D, . =z, + ... + Zx,,
where zy, € My,,i=1,...,n, let T(2) = Ty, (zr,) +... Tx,(2r,) Then

IT (@)1 = sup [T (x| < sup T fllloall < leailiegl

which shows that ||T|| < ||7||. Thus T is continuous on D and therefore can
be extended to all of A with the same norm. Let us denote this extension by
the same letter 7. Since T is a left multiplier on D, it is also a left multiplier
on A. We have T|M, =T\ =7, for all A € A. Hence T" — (7 maps M,(A)
onto M and it clearly preserves all algebraic operations. Hence T' — (7 is
an isometric algebra isomorphism of M:(A) onto N.

(v) We recall that IInG) is the set of all functions p on A such that
p(A) € Gy, for all A € A. Since ||[p(N)|| = 1 for all A € A, we see that p €.
Thus II,Gyx 9 and II,G)y is a group under pointwise multiplication for
functions. It follows easily from (iii) and (iv) that T — (7 maps G onto
I1,Gy. Thus the restriction of the map T — {7 to G is an isomorphism of

the group G onto the group II,G,.

Corollary 6.2. For each A € A, let I, be a minimal left ideal of A
contained in My. Then My(A) is isometrically algebra isomorphic to the

normed full direct sum of the algebras L(I)).
Proof. This follows easily from Corollary 5.2 and Theorems 3.1 and 6.1.

Corollary 6.3. If every minimal left ideal of A has the approzimation

property, then My(A) is isometrically algebra isomorphic to A*™.
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Proof. By Corollary 5.2, A** is isometrically algebra isomorphic to the
normed full dirct sum of the algebras F(I,)**. Since each I, is a reflexive
Banach space with the approximation property, by Corollary 4.6, F (I)**
is isometrically algebra isomorphic to L([y), for each A € A. Therefore, by

Corollary 6.2, M,(A) is isometrically algebra isomorphic to A**.

Corollary 6.4. Let A be a right complemented B#-algebra. Then

M(A) 1s isometrically algebra isomorphic to A**.

Corollary 6.5. Let A be an annihilator B*-algebra. Then My(A) is

wsometrically algebra isomorphic to A*.

Theorem 6.6. Give G(Gy) the relative topology w(wy) induced by the
weak operator topology on M(A)(M,(My)). Then the mapping T — Cp
(restricted to G) is a homeomorphism from (G,w) onto the direct product

I (G, wy) with the product topology wp.

Proof. Let G' = II,Gy and denote the mapping T — (7 by (, ie.,
Cr = ¢(T'). We now show that ¢ is continuous. Let T € G and let A\1,..., A,
be distinct elements of A. Let & > 0 and let asgi),...,xﬁ) € M,,, and

ggl)’,gg) c ]M/’\"z fori=1,...,n. Let

Ui = {{S3} € G": [g{7((Sx; — Ta)(&{))] <e,
for1 <p <k andlgqgﬁi},

fori =1,...,n. ThenU =nN?_,U; is an wp-open neighbourhood of the point
¢(T) = {T»} in G’". Every wp-neighborhood of {(T') contains a neighborhood
of type U.

Now since, for each A € A, A = M, & {4(M,) [5, Proposition 3, p.
99] we can extend each g((,i) to all of A as follows: Let ﬁ((,i) € A" be such
that, for all y € A, g((,i)(y) = g((,i)(yl), where y = y1 + yo with y; € M), and
ya € £4(M,y,). Let

V,={SeaG: Iggi)((S —~T)(3;1(f)))| <e for1<p<kiand1<qg<{}
={S€G: g ((Sx, —Tr) @)l <e, for 1<p <k and1<q<)
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fori=1,...,n. Then V =N ,V; is an w-open neighbourhood of T in G
and (V) C U. This shows that  is continuous at T and as T is an arbitrary
point of G, it follows that ¢ is continuous on G.

We show next that ¢! is continuous. Let z € 4, = #*0, f e A" and
€ > 0. Then the set

0={Sea:|f((s-T)))| <e}

is an w-open neighbourhood of T in G. Since ), ||fA|| < oo (where f) =
fIMy), we see that fy = 0 except for a countable number of A, say A1, s, ..

*3

ie, fo, #0for 2 =1,2,.... Thus there is an integer N > 0 such that

o0

> Il < e/4lll.

i=N+1

Identifying = with the function z(-) in &, let =), = z(};) and let

Qi = {{Sx} € G": [fn.((Sx, = Ta) ()] < e/2N},

fori =1,...,N. Then Q = N, Q; is an wp-open neighbourhood.of ¢(T) =
{T\} in G'. Since f(S(z)) = >, Fr(Sr(zy)), for any S € M,(A), it is easy
to see that C_l(Q) C 0. Observing that the sets of type O form a subbase
of the neighbourhood system at T for the topology w, we see that ¢! is
continuous at ¢(T"). As T is an arbitrary point of G and ¢(G) = G’, it follows
that ¢! is continuous on &'. Hence ¢ (restricted to G) is a homeomorphism
of (G,w) onto (G',wp).

Corollary 6.7. (G,w) is compact if and only if (Gx,wy) is compact
for every A € A. '

Corollary 6.8." For each A € A, let I be a minimal left ideal of A
contained i My, and let Ky be the group of isometric onto operators in
L(I.). Give each K the relative topology oy induced by the weak operator
topology on L(Iy). Then (G,w) is compact if and only if each (K, o) is

compact.
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Proof. By Corollary 5.2, we may identify M,(M)) with M,(F(I,)).
Hence, by Theorem 3.3, G is isomorphic to K. By Corollary 3.5, K is
compact in the weak operator topology on L(I) if and only if G is compact
in the weak operator topology on M.(M,).

I would like to thank the referee for the many comments and suggestions

which contributed very much to the presentation in this paper.
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