MULTIPLIERS ON WEAKLY COMPLETELY CONTINUOUS BANACH ALGEBRAS

BY

B. J. TOMIUK

Abstract. In this paper we are concerned with the study of the algebra $M_{\ell}(A)$ of left multipliers on semisimple weakly completely continuous (w.c.c) Banach algebras A. In particular, we show how $M_{\ell}(A)$ is related to the second conjugate space A^{**} of A for those A which contain a bounded appropriate identity. This group includes all annihilator $B^{\#}$ -algebras in which every minimal left ideal has the approximation property. We also consider the group G of isometric onto left multipliers on an annihilator $B^{\#}$ -algebra A and show how G is related to the groups of isometric onto left multipliers on minimal closed ideals of A.

1. Introduction. Let X be a Banach space and let L(X) be the algebra of all continuous linear operators on X. Let $\mathcal{F}(X)$ be the algebra of all approximable operators on X. In Section 3 we show that there exists an isometric algebra isomorphism Ψ mapping $M_{\ell}(\mathcal{F}(X))$ onto L(X). Let G(K) be the set of all $\mathcal{T} \in M_{\ell}(\mathcal{F}(X))$ ($T \in L(X)$) which are isometric onto. Then G and K are groups and $\Psi(G) = K$. Let $\tau_{\ell}(\tau_w)$ be the weak operator topology on $M_{\ell}(\mathcal{F}(X))(L(X))$. We show that Ψ is a homeomorphism in the topology τ_{ℓ} on $M_{\ell}(\mathcal{F}(X))$ and the topology τ_w on L(X). Thus, in particular, G is τ_{ℓ} -compact if and only if K is τ_w -compact.

In Section 4 we show that if A is a semisimple w.c.c Banach algebra

Received by the editors November 4, 1997 and in revised form April 20, 1998.

AMS 1991 Subject Classification: primary 46H15, 46H35, 47B48; secondary 46H10, 46H20.

Key words and phrases: Second conjugate space, Arens products, annihilator $B^{\#}$ -algebra, left multiplier, weak operator topology, groups of left multipliers.

with a bounded approximate identity then A^{**} has the same radical for both Arens products. If A is also Arens regular and the approximate identity is bounded by 1, then $M_{\ell}(A)$ is isometrically algebra isomorphic to A^{**} . We also show that if X is a reflexive Banach space with the approximation property then $M_{\ell}(\mathcal{F}(X))$ is isometrically algebra isomorphic to $\mathcal{F}(X)^{**}$. Thus, since $M_{\ell}(\mathcal{F}(X))$ is isometrically algebra isomorphic to L(X), it follows in this case that $\mathcal{F}(X)^{**}$ is isometrically algebra isomorphic to L(X).

In Section 5 we give a brief discussion of annihilator $B^\#$ -algebras. $B^\#$ -algebras were introduced by F.F. Bonsall in [2] and present a generalization of B^* -algebras. Thus every B^* -algebra is a $B^\#$ -algebra. He showed that a simple annihilator $B^\#$ -algebra is isometric and algebra isomorphic to $\mathcal{F}(X)$, for some reflexive Banach space X. In fact, this characterizes all such algebras $\mathcal{F}(X)$ [2]. In this section we show that if every minimal left ideal in an annihilator $B^\#$ -algebra A has the approximation property then A is a dual algebra. From this it follows that a B^* -algebra with dense socle is a dual algebra. An annihilator $B^\#$ -algebra is Arens regular.

Section 6 is devoted entirely to multipliers on an annihilator $\mathcal{B}^{\#}$ -algebra A. If every minimal left ideal of A has the approximation property then $M_{\ell}(A)$ is isometrically algebra isomorphic to A^{**} . Thus, in particular, if A is an annihilator B^* -algebra then $M_{\ell}(A)$ is isometrically algebra isomorphic to A^{**} [10]. We also consider the group G of isometric onto left multipliers on A. Let $\{M_{\lambda}:\lambda\in\Lambda\}$ be the family of all distinct minimal closed ideals in A and let G_{λ} be the group of isometric onto left multipliers on M_{λ} , for each $\lambda\in\Lambda$. Give $G(G_{\lambda})$ the relative topology $\omega(\omega_{\lambda})$ induced by the weak operator topology on $M_{\ell}(A)(M_{\ell}(M_{\lambda}))$. We show that (G,ω) is compact if and only if $(G_{\lambda},\omega_{\lambda})$ is compact for each $\lambda\in\Lambda$.

2. Preliminaries. All algebras and vector spaces considered in this paper are over the complex field. By an ideal we will always mean a two-sided ideal, unless specified otherwise. Let X be a Banach space. We recall that a continuous linear mapping $T: X \to X$ is called weakly completely continuous (or weakly compact) if, for each bounded subset S of X, T(S)

is relatively compact in the weak topology $\sigma(X, X^*)$ on X.

Let A be a Banach algebra. For any subset S of A, $\ell_A(S)$ and $r_A(S)$ will denote, respectively, the left and right annihilators of S in A and $cl_A(S)$ will denote the closure of S in A. A linear mapping $T:A\to A$ is called a left (right) multiplier if T(xy)=T(x)y (T(xy)=xT(y)), for all $x,y\in A$. Let $M_\ell(A)$ ($M_r(A)$) be the algebra of all continuous left (right) multipliers on A. $M_\ell(A)$ ($M_r(A)$) is a Banach algebra under the operator bound norm. We will be working mainly with the algebra $M_\ell(A)$.

An element $a \in A$ is called left weakly completely continuous (l.w.c.c) if the mapping L_a defined by $L_a(x) = ax$, $x \in A$, is weakly completely continuous. Likewise we consider R_a , where $R_a(x) = xa$, $x \in A$, and define a to be right weakly completely continuous (r.w.c.c) if R_a is weakly completely continuous. We say that A is l.w.c.c. (r.w.c.c) if each $a \in A$ is l.w.c.c. (r.w.c.c) and call A w.c.c. if it is both l.w.c.c. and r.w.c.c. A semisimple Banach algebra with dense socle is l.w.c.c. (r.w.c.c.) if and only if every minimal right (left) ideal of A is a reflexive Banach space [17, Theorem 6.2, p. 269]. A semisimple right complemented Banach algebra A is r.w.c.c. since it has dense socle [13, Lemma 5, p. 655] and every minimal left ideal of A is a reflexive Banach space [13, Theorem 5, p. 656].

Let A be a Banach algebra, and let A^* and A^{**} be its first and second conjugate spaces. Following [14] we will denote the Arens products in A^{**} by \circ and \circ' . Since we will be using mainly the product \circ' , for the sake of completeness we give its definition. Let $x, y \in A$, $f \in A^*$ and $F, G \in A^{**}$. Define $x \circ' f \in A^*$ by $(x \circ' f)(y) = f(yx)$. Define $f \circ' F \in A^*$ by $(f \circ' F)(x) = F(x \circ' f)$. Define $F \circ' G \in A^{**}$ by $(F \circ' G)(f) = G(f \circ' F)$. A is called Arens regular if $F \circ G = F \circ' G$, for all $F, G \in A^{**}$.

Let π denote the canonical mapping of A into A^{**} . It is an immediate consequence of the definition of Arens products and [6, Theorem 2, p. 482] that A is l.w.c.c. (r.w.c.c.) if and only if $\pi(A)$ is a right (left) ideal of A^{**} for either Arens product. It follows from [4, Lemma 3.3, p. 855] and [8, Proposition 1.6, p. 11] that $(A^{**}, \circ)((A^{**}, \circ'))$ has a right (left) identity

E(E') if and only if A has a bounded right (left) approximate identity. If A has a right (left) approximate identity bounded by 1 then ||E|| = 1(||E'|| = 1).

Let X be a Banach space and X^* its conjugate space. For $x \in X$ and $f \in X^*$, $x \otimes f$ will denote the operator on X defined by $(x \otimes f)(y) = f(y)x$, for all $y \in X$. L(X) will denote the Banach algebra of all bounded linear operators on X with the operator bound norm, and F(X) the subalgebra of L(X) consisting of operators with finite-dimensional range. Let $\mathcal{F}(X)$ be closure of F(X) in L(X). $\mathcal{F}(X)$ is a topologically simple and semisimple Banach algebra which is strictly irreducible on X and therefore strictly dense on X [12, Theorem (2.4.6), p. 62].

Let X and Y be Banach spaces. If S is a subset of X and T is a linear map from X to Y that T|S will denote the restriction of T to S. We will follow [12] for all definitions not formally stated in this paper.

3. Multipliers on $\mathcal{F}(X)$ and the algebra L(X). Throughout this section X will denote a Banach space. On occasion we will write the product ST as $S \cdot T$, for $S, T \in L(X)$.

Theorem 3.1. For each left multiplier \mathcal{T} on $\mathcal{F}(X)$ there is a unique operator $T_{\mathcal{T}} \in L(X)$ such that $\mathcal{T}(S) = T_{\mathcal{T}}S$, for all $S \in \mathcal{F}(X)$. The mapping $\Psi : \mathcal{T} \to T_{\mathcal{T}}$ is an isometric algebra isomorphism of $M_{\ell}(\mathcal{F}(X))$ onto L(X). Moreover, Ψ is also a homeomorphism in the weak operator topology τ_{ℓ} on $M_{\ell}(\mathcal{F}(X))$ and the weak operator topology τ_{w} on L(X).

Proof. For convenience of notation let $A = \mathcal{F}(X)$. For each $T \in L(X)$. Let L_T be the left multiplication by T on A, i.e. $L_T(S) = TS$, for all $S \in A$. Since A is a closed ideal of L(X), $L_T(A) \subseteq A$ and $L_T \in M_\ell(A)$. Let $T \in M_\ell(A)$ and let $E = x_0 \otimes f_0$ be a minimal idempotent in A, where $x_0 \in X$ and $f_0 \in X^*$. (We have $f_0(x_0) = 1$.) Then $J = AE = \{x \otimes f_0 : x \in X\}$ is a minimal left ideal of A and since $T(J) \subseteq J$, for each $x \in X$, there is a unique $y_x \in X$ such that $T(x \otimes f_0) = y_x \otimes f_0$. Let T_T be the mapping on X such that $T_T(x) = y_x$, for all $x \in X$. We have $T(x \otimes f_0) = T_T(x) \otimes f_0$.

Since \mathcal{T} is linear so is $T_{\mathcal{T}}$. Moreover, since $||T_{\mathcal{T}}(x)||||f_0|| = ||T_{\mathcal{T}}(x) \otimes f_0|| = ||T(x \otimes f_0)|| \le ||T||||x||||f_0||$, we get $||T_{\mathcal{T}}|| \le ||T||$. Thus $T_{\mathcal{T}} \in L(X)$.

We show next that $\mathcal{T}(U) = T_{\mathcal{T}}U$, for all $U \in A$. Since A is topologically simple and semisimple, AEA is dense in A. Let $S,Q \in A$. Now since $SE = S \cdot (x_0 \otimes f_0) = S(x_0) \otimes f_0 = x \otimes f_0$, where $x = S(x_0)$, we have $\mathcal{T}(SEQ) = \mathcal{T}(SE)Q = \mathcal{T}(x \otimes f_0)Q = (T_{\mathcal{T}}(x) \otimes f_0)Q = T_{\mathcal{T}} \cdot (x \otimes f_0) \cdot Q = T_{\mathcal{T}} \cdot (S(x_0) \otimes f_0) \cdot Q = T_{\mathcal{T}} \cdot (SEQ)$. Therefore by the linearity of \mathcal{T} we get $\mathcal{T}(V) = T_{\mathcal{T}}V$, for all $V \in AEA$. Since AEA is dense in A and \mathcal{T} is continuous on A, we get $\mathcal{T}(U) = T_{\mathcal{T}}U$, for all $U \in A$, so that, in particular, $\|\mathcal{T}\| \leq \|\mathcal{T}_{\mathcal{T}}\|$. In view of the inequality above we get $\|\mathcal{T}\| = \|\mathcal{T}_{\mathcal{T}}\|$, for all $\mathcal{T} \in M_{\ell}(A)$. Moreover, $\Psi : \mathcal{T} \to T_{\mathcal{T}}$ maps $M_{\ell}(A)$ onto L(X), for if $T \in L(X)$ and $\mathcal{T} = L_T$ then $T = T_T$ since $L_T(x \otimes f_0) = T \cdot (x \otimes f_0) = T(x) \otimes f_0$, for all $x \in X$. Hence $\Psi : \mathcal{T} \to T_{\mathcal{T}}$ is an isometric algebra isomorphism of $M_{\ell}(\mathcal{F}(X))$ onto L(X).

Now let $\{\mathcal{T}_{\alpha}\}$ be a net in $M_{\ell}(A)$ which τ_{ℓ} -converges to $\mathcal{T} \in M_{\ell}(A)$. Let $T_{\alpha} = \Psi(\mathcal{T}_{\alpha})$, for all α , and let $T = \Psi(\mathcal{T})$. We claim that the net $\{T_{\alpha}\}$ τ_{w} -converges to T. Let $x,y \in X$ and $f \in X^{*}$. Since A is strictly irreducible on X, there is $S \in A$ such that S(y) = x. Let $\varphi \in A^{*}$ be given by $\varphi(U) = f(U(y))$, for all $U \in A$. We have $\varphi(\mathcal{T}_{a}(S)) \to \varphi(\mathcal{T}(S))$. Hence $f(T_{a}(x)) = f(T_{\alpha}(S(y))) = f((T_{\alpha}S)(y)) = f((T_{\alpha}(S))(y)) = \varphi(\mathcal{T}_{\alpha}(S)) \to \varphi(\mathcal{T}(S)) = f((T(S))(y)) = f((T(S))(y)) = f(T(S))$. Thus $f(T_{\alpha}(x)) \to f(T(x))$ for all $x \in X$ and $f \in X^{*}$. Hence Ψ is continuous in the τ_{ℓ} topology on $M_{\ell}(A)$ and τ_{w} topology on L(X). It remains to show that Ψ^{-1} is also continuous in these topologies.

Let $\{T_{\alpha}\}$ be a net in L(X) which τ_{w} converges to $T \in L(X)$. Let $\mathcal{T}_{\alpha} = \Psi^{-1}(T_{\alpha})$, for all α , and let $\mathcal{T} = \Psi^{-1}(T)$. We want to show that $\varphi(\mathcal{T}_{\alpha}(U)) \to \varphi(\mathcal{T}(U))$, for all $U \in A$ and $\varphi \in A^{*}$.

We first show that $\varphi(\mathcal{T}_{\alpha}(U)) \to \varphi(\mathcal{T}(U))$, for all $U \in F(X)$ and $\varphi \in A^*$. Let $f \in X^*$, $f \neq 0$ and, for any $\varphi \in A^*$, define $g \in X^*$ by $g(x) = \varphi(x \otimes f)$, for all $x \in X$. Then $\varphi(\mathcal{T}_{\alpha}(x \otimes f)) = \varphi(\mathcal{T}_{\alpha}(x \otimes f)) = \varphi(\mathcal{T}_{\alpha}(x) \otimes f) = g(\mathcal{T}_{\alpha}(x)) \to g(\mathcal{T}(x)) = \varphi(\mathcal{T}(x \otimes f)) = \varphi(\mathcal{T}(x \otimes f))$, i.e. $\varphi(\mathcal{T}_{\alpha}(x \otimes f)) \to \varphi(\mathcal{T}(x \otimes f))$. Since every $U \in F(X)$ is a linear combination of operators of rank 1, we get $\varphi(\mathcal{T}_{\alpha}(U)) \to \varphi(\mathcal{T}(U))$, for all $U \in F(X)$ and $\varphi \in A^*$.

Now let $U \in A$ and let $\{U_n\}$ be a sequence in F(X) such that $U_n \to U$. Given $\varepsilon > 0$, there is a positive intger n_0 such that $||U_n - U|| < \varepsilon/2$, for all $n > n_0$. Let $\varphi \in A^*$ and take U_n with $n > n_0$. Since $\varphi(\mathcal{T}_{\alpha}(U_n)) \to \varphi(\mathcal{T}(U_n))$, there is α_0 such that, for all $\alpha > \alpha_0$, $|\varphi(\mathcal{T}_{\alpha}(U_n)) - \varphi(\mathcal{T}(U_n))| < \varepsilon$. Then, for all $\alpha > \alpha_0$ and $n > n_0$, we have

$$|\varphi(\mathcal{T}_{\alpha}(U)) - \varphi(\mathcal{T}(U))| \leq |\varphi(\mathcal{T}_{\alpha}(U)) - \varphi(\mathcal{T}_{\alpha}(U_n))|$$

$$+ |\varphi(\mathcal{T}_{\alpha}(U_n)) - \varphi(\mathcal{T}(U_n))|$$

$$+ |\varphi(\mathcal{T}(U_n)) - \varphi(\mathcal{T}(U))|$$

$$\leq ||\varphi|| ||\mathcal{T}_{\alpha}|| ||U - U_n|| + \varepsilon + ||\varphi|| ||\mathcal{T}|| ||U_n - U||$$

$$\leq ||\varphi|| \varepsilon/2 + \varepsilon + ||\varphi|| \varepsilon/2 = (1 + ||\varphi||)\varepsilon.$$

Thus $\varphi(\mathcal{T}_{\alpha}(U)) \to \varphi(\mathcal{T}(U))$, for all $U \in A$ and $\varphi \in A^*$. Hence Ψ^{-1} is continuous in the τ_{ℓ} topology on $M_{\ell}(A)$ and τ_{w} topology on L(X). This completes the proof.

For any Banach space W, let $S(W) = \{x \in W : ||x||| \le 1\}$.

Corollary 3.2. $S(M_{\ell}(\mathcal{F}(X)))$ in τ_{ℓ} -compact if and only if S(L(X)) is τ_{w} -compact.

Theorem 3.3. Let G be the set of all $T \in M_{\ell}(\mathcal{F}(X))$ which are isometric onto left multipliers and let K be the set of all $T \in L(X)$ which are isometric onto operators. Then Ψ maps G onto K.

Proof. Assume that $T \in K$ and let $\mathcal{T}_T = \Psi^{-1}(T)$. Since $\|\mathcal{T}_T(S)(x)\| = \|(TS)(x)\| = \|S(x)\| = \|S(x)\|$, it follows that $\|\mathcal{T}_T(S)\| = \|S\|$, for all $S \in \mathcal{F}(X)$ so that, \mathcal{T}_T is isometric. To show that \mathcal{T}_T maps $\mathcal{F}(X)$ onto $\mathcal{F}(X)$ we first show that \mathcal{T}_T maps F(X) onto itself. Let $\sum_{i=1}^k y_i \otimes f_i \in F(X)$, where $y_i \in X$ and $f_i \in X^*$, $i = 1, \ldots, k$. Since T maps X onto X, there are elements $x_1, \ldots, x_k \in X$ such that $T(x_i) = y_i$, $i = 1, \ldots, k$. Hence

$$\mathcal{T}_T\bigg(\sum_{i=1}^k x_i \otimes f_i\bigg) = \sum_{i=1}^k \mathcal{T}_T(x_i \otimes f_i) = \sum_{i=1}^k \mathcal{T}(x_i) \otimes f_i = \sum_{i=1}^k y_i \otimes f_i.$$

Thus \mathcal{T}_T maps F(X) onto F(X). Now let $S \in \mathcal{F}(X)$ and let $\{S_n\}$ be a sequence in F(X) such that $S_n \to S$ in the uniform topology on L(X). Since \mathcal{T}_T map F(X) onto itself, there is $Q_n \in F(X)$ such that $\mathcal{T}_T(Q_n) = S_n$, for all n, and since \mathcal{T}_T is isometric, we have $\|Q_n - Q_m\| = \|S_n - S_m\|$, for all positive integers m, n. This shows that $\{Q_n\}$ is a Cauchy sequence and therefore $Q_n \to Q$ for some $Q \in \mathcal{F}(X)$. We have $\mathcal{T}_T(Q) = S$ by the continuity of \mathcal{T}_T . Thus \mathcal{T}_T maps $\mathcal{F}(X)$ onto itself and so $\mathcal{T}_T \in G$.

Suppose conversely that $T \in G$ and let $x \in X$. Then for any $f \in X^*$ we have

$$||x|| ||f|| = ||x \otimes f|| = ||T(x \otimes f)|| = ||T_T(x) \otimes f|| = ||T_T(x)|| ||f||$$

which shows that $||T_{\mathcal{T}}(x)|| = ||x||$. Hence $T_{\mathcal{T}}$ is isometric. Moreover, since \mathcal{T} maps $\mathcal{F}(X)$ onto itself there is $S \in \mathcal{F}(X)$ such that $\mathcal{T}(S) = x \otimes f = T_{\mathcal{T}}S$. Let $z \in X$ be such that f(z) = 1. Then $x = (x \otimes f)(z) = (T_{\mathcal{T}}S)(z) = T_{\mathcal{T}}(S(z))$. This shows that $T_{\mathcal{T}}$ maps X onto X, for if we let w = S(z) then $T_{\mathcal{T}}(w) = x$.

Corollary 3.4. Let H be a Hilbert space. Then $\mathcal{T} \in M_{\ell}(\mathcal{F}(H))$ is isometric onto if and only if $T_{\mathcal{T}} \in L(H)$ is a unitary operator on H.

Proof. An operator U on H is unitary if and only if U is isometric onto. The sets G and K of Theorem 3.3 are groups under the operation of operator multiplication and Ψ (restricted to G) is a group isomorphism of G onto K.

Corollary 3.5. The group K is τ_w -compact if and only if the group G is τ_ℓ -compact.

4. Multipliers and the second conjugate space. In this section we look at the relationship between $M_{\ell}(A)$ and A^{**} , where A is a semisimple r.w.c.c. (l.w.c.c.) Banach algebra.

Lemma 4.1. Let A be a semisimple Banach algebra with a bounded left approximate identity $\{u_{\alpha}\}$. Let E' be a left identity of (A^{**}, \circ') and, for each $S \in M_{\ell}(A)$, let $F^S = S^{**}(E')$. Then the following statements are true:

- (i) $(f \circ' F^S)(x) = f(S(x))$, for all $x \in A$, $f \in A^*$ and $S \in M_{\ell}(A)$.
- (ii) $S^{**}(\pi(x)) = F^S \circ' \pi(x)$, for all $x \in A$ and $S \in M_{\ell}(A)$.
- (iii) $F^S \circ' \pi(x) \in \pi(A)$, for all $x \in A$ and $S \in M_{\ell}(A)$.
- (iv) The mapping $\rho: S \to F^S$ is a bicontinuous algebra isomorphism of $M_{\ell}(A)$ into (A^{**}, \circ') . Moreover, if $\{u_{\alpha}\}$ is bounded by 1, then ρ is an isometry.

Proof. Let $x \in A$, $f \in A^*$ and $S \in M_{\ell}(A)$. We first observe that

$$(1) S^*(x \circ' f) = x \circ' S^*(f)$$

since, for all $y \in A$,

$$(S^*(x \circ' f))(y) = (x \circ' f)(S(y)) = f(S(y)x) = f(S(yx))$$

and

$$(x \circ' S^*(f))(y) = (S^*(f))(yx) = f(S(yx)).$$

(i) Now

$$f(S(x)) = (S^*(f))(x) = \pi(x)(S^*(f)) = (E' \circ' \pi(x))(S^*(f))$$
$$= \pi(x)(S^*(f) \circ' E') = (S^*(f) \circ' E')(x) = E'(x \circ' S^*(f))$$

and

$$(f \circ' F^S)(x) = (f \circ' S^{**}(E'))(x) = S^{**}(E')(x \circ' f) = E'(S^*(x \circ' f)).$$

Therefore in view of (1), (i) is true.

(ii) By (i), we have

$$(S^{**}(\pi(x))(f) = \pi(x)(S^{*}(f)) = f(S(x)) = (f \circ' F^{S})(x)$$
$$= \pi(x)(f \circ' F^{S}) = (F^{S} \circ' \pi(x))(f),$$

which gives (ii).

- (iii) By (ii), $F^S \circ' \pi(x) = S^{**}(\pi(x)) = \pi(S(x))$, and $S(x) \in A$. This proves (iii).
- (iv) That $\rho: S \in F^S$ is an algebra isomorphism is shown in [15, Lemma 3.1, p. 294]. To see that ρ is bicontinuous we observe that $||F^S|| = ||S^{**}(E')|| \le$

 $||S^{**}|| ||E'|| = ||S|| ||E'||$. On the other hand, from (i), $||S^*(f)|| = ||f \circ' F^S|| \le ||F^S|| ||f||$ so that $||F^S|| \ge ||S||$. Thus $||S|| \le ||F^S|| \le ||S|| ||E'||$ which shows that ρ is bicontinuous. Now if $||u_{\alpha}|| \le 1$ for all α , then ||E'|| = 1 and we get $||F^S|| = ||S||$, for all $S \in M_{\ell}(A)$, so that ρ is also an isometry.

Theorem 4.2. Let A be a semisimple Banach algebra with a bounded left approximate identity. Let $N'_A = \{G \in A^{**} : G \circ' \pi(x) = 0, \text{ for all } x \in A\}$ and $M'_A = \{S^{**}(E) : S \in M_{\ell}(A)\}$, where E' is a left identity of (A^{**}, \circ') . Then the following statements are equivalent:

- (i) A is r.w.c.c.
- (ii) $A^{**} = M'_A + N'_A$, i.e, every $F \in A^{**}$ is of the form $F = S^{**}(E') + G$, for some $S \in M_{\ell}(A)$ and $G \in N'_A$.

Proof. (i) \Longrightarrow (ii) This is contained in [15, Theorem 3.2, p. 295].

(ii) \Longrightarrow (i). Suppose (ii) holds, and let $F \in A^{**}$. Then $F = S^{**}(E') + G$, for some $S \in M_{\ell}(A)$ and $G \in N'_A$. Since $G \circ '\pi(x) = 0$, for all $x \in A$,

$$F \circ' \pi(x) = (F^S + G) \circ' \pi(x) = F^S \circ' \pi(x),$$

for all $x \in A$, and so, by Lemma 4.1 (iii), $F \circ' \pi(x) \in \pi(A)$, for all $x \in A$. Hence $\pi(A)$ is a left ideal of (A^{**}, \circ') so that A is r.w.c.c.

We observe that if $A^{**}=M'_A+N'_A$ then this sum is direct. In fact suppose that $F\in M'_A\cap N'_A$. Then $F=S^{**}(E')$, for some $S\in M_\ell(A)$ and $\pi(S(x))=F\circ'\pi(x)=0$, for all $x\in A$. Therefore S=0 and so F=0. Hence $M'_A\cap N'_A=(0)$. We note that M'_A is a closed left ideal of (A^{**},\circ') and N'_A is a closed ideal of (A^{**},\circ') and $N'_A=\{G\in A^{**}:G\circ'E'=0\}$ [15, Theorem 3.2, p. 295].

Similarly if A is a semisimple Banach algebra with a bounded right approximate identity and E is a right identity of (A^{**}, \circ) then A is l.w.c.c. if and only if $A^{**} = M_A \oplus N_A$, where $M_A = \{T^{**}(E) : T \in M_r(A)\}$ and $N_A = \{G \in A^{**} : \pi(x) \circ G = 0, \text{ for all } x \in A\}$. We have $N_A = \{G \in A^{**} : E \circ G = 0\}$ [15, Theorem 3.2', p. 296].

Theorem 4.3. Let A be a semisimple w.c.c. Banach algebra with a

bounded approximate identity. Then the Arens products agree on N_A and N_A' and $N_A = N_A'$.

Proof. Let E be an element of A^{**} which is simultaneously a right identity for (A^{**}, \circ) and a left identity for (A^{**}, \circ') [7, Proposition 1.3, p. 93]. If $F, G \in N_A$ then $F \circ G = (F \circ E) \circ G = F \circ (E \circ G) = F \circ 0 = 0$. Similarly if $F, G \in N'_A$ then $F \circ 'G = F \circ '(E \circ 'G) = (F \circ 'E) \circ 'G = 0$. Hence to show that the Arens products coincide on $N_A(N'_A)$ we need only to show that $N_A = N'_A$ as sets. Let $F \in N'_A$. Then, for any $x \in A$, $\pi(x) \circ 'F \in N'_A$ and so $(\pi(x) \circ 'F) \circ 'E = 0$. But $\pi(x) \circ 'F \in \pi(A)$ since A is w.c.c. and $\pi(x) \circ 'F = \pi(x) \circ F$. Hence

$$(\pi(x)\circ'F)\circ'E = (\pi(x)\circ F)\circ E = \pi(x)\circ (F\circ E) = \pi(x)\circ F.$$

Hence $\pi(x) \circ F = 0$, for all $x \in A$, and so $F \in N_A$. Therefore $N'_A \subset N_A$. Similarly we can show that $N_A \subset N'_A$. Hence $N_A = N'_A$ and this completes the proof.

Let A be as in Theorem 4.3. Let $R_1^{**}(R_2^{**})$ be the radical of (A^{**}, \circ) $((A^{**}, \circ'))$. By [15, Theorem 3.2, p. 295], $R_1^{**} = N_A$ and, by [15, Theorem 3.2', p. 296], $R_2^{**} = N_A'$. Thus $R_1^{**} = R_2^{**}$ and the Arens products coincide on $R_1^{**} = R_2^{**}$. We have $F \circ G = 0 = F \circ' G$ for all $F, G \in R_1^{**} = R_2^{**}$. These observations fill the gap in the proof of [15, Theorem 4.2, p. 297].

Corollary 4.4. Let A be an Arens regular semisimple w.c.c. Banach algebra with an approximate identity bounded by 1. Let E be the identity element of A^{**} . Then the mapping $S \to S^{**}(E)$ is an isometric algebra isomorphism of $M_{\ell}(A)$ onto A^{**} .

Proof. Since A is Arens regular, A^{**} is semisimple by [15, Corollary 4.3, p. 298]. Hence $N'_A = (0)$ and therefore $\rho: S \to S^{**}(E)$ maps $M_{\ell}(A)$ onto A^{**} . Since ||E|| = 1, ρ is an isometry.

A Banach space X is said to have the approximation property if, for every compact subset U of X and every $\varepsilon > 0$, there is $T \in F(X)$ such that $||T(x) - x|| < \varepsilon$, for all $x \in U$. Every Hilbert space has the approximation

property.

Let X be a reflexive Banach space with the approximation property. Then, by [16, Theorem 4.1, p. 404], $\mathcal{F}(X)$ is an Arens regular semisimple w.c.c. Banach algebra with an approximate identity bounded by 1. Thus $\mathcal{F}(X)^{**}$ has an identity element E with ||E|| = 1.

Corollary 4.5. Let X be a reflexive Banach space with the approximation property, and let E be the identity element of $\mathcal{F}(X)^{**}$. Then the mapping $\mathcal{T} \to \mathcal{T}^{**}(E)$ is an isometric algebra isomorphism of $M_{\ell}(\mathcal{F}(X))$ onto $\mathcal{F}(X)^{**}$.

Proof. This is Corollary 4.4 with $A = \mathcal{F}(X)$.

Corollary 4.6. Let X be a reflexive Banach space with the approximation property. Then $\mathcal{F}(X)^{**}$ is isometrically algebra isomorphic to L(X).

Proof. This is an immediate consequence of Theorem 3.1 and corollary 4.5.

Theorem 4.7. Let X be a reflexive Banach space with the approximation property. Then S(L(X)) is τ_w -compact.

Proof. Since $\mathcal{F}(X)$ is w.c.c. with a bounded approximate identity, by [14, Theorem 6.1, p. 274], $\mathcal{S}(M_{\ell}(\mathcal{F}(X)))$ is τ_{ℓ} -compact. Therefore, by Corollary 3.2, $\mathcal{S}(L(X))$ is τ_{w} -compact.

Remark. There is another way to obtain Corollary 4.6. In fact, if X is a Banach space with the approximation property then $\mathcal{F}(X)$ is isometrically isomorphic to the injective tensor product $X^*\tilde{\otimes}_{\epsilon}X$. If X is also reflexive than X has the Radon-Nikodym property, and thus the Banach space dual of $X^*\tilde{\otimes}_{\epsilon}X$ is the projective tensor product $X^{**}\otimes_{\pi}X^*=X\tilde{\otimes}_{\pi}X^*$. Finally, $(X\tilde{\otimes}_{\pi}X^*)^*=L(X,X^{**})=L(X,X)=L(X)$. Note that $X\tilde{\otimes}_{\pi}X^*$ is isometrically isomorphic to the ideal $\mathcal{N}(X^*)$ of nuclear operators of X^* in this case. The dualities between $\mathcal{F}(X), \mathcal{N}(X^*)$ and L(X) are induced in a way similar to that of Hilbert space operators. Moreover, the embedding from $\mathcal{F}(X)$ into $\mathcal{F}(X)^{**}=L(X)$ is $T\to T^{**}$. (See [9].)

5. Annihilator $B^{\#}$ -algebras. We recall from [2] that a Banach algebra A is a $B^{\#}$ -algebra if, for every $a \in A$, there exists an element $a^{\#} \in A$ such that $a^{\#} \neq 0$ and, for every positive integer n,

$$||a^{\#}a)^{n}||^{1/n} = ||a^{\#}|| ||a||.$$

A B^* -algebra is a $B^\#$ -algebra with a^* taken for $a^\#$ [2, p. 158]. A $B^\#$ -algebra is semisimple [2, Theorem 5, p. 159].

Theorem 5.1. Let A be a $B^{\#}$ -algebra. Then A is an annihilator algebra if and only if the following conditions hold:

- (a) A is r.w.c.c. and
- (b) A has dense socle.

Proof. Although the theorem follows readily from [11, Corollary and Theorem 3.5, p. 908], for completeness we will sketch a proof of it based in part on [17, Theorem 6.5, p. 270]. Suppose that A has properties (a) and (b). Since A is a $B^{\#}$ -algebra with dense socle, A has the minimal norm property [11, Lemma 3.2, p. 906], i.e., if $|\cdot|$ in any other normed algebra norm on A such that $|a| \leq ||a||$, for all $a \in A$, then $|\cdot| = ||\cdot||$. By [17, Theorem 6.5, p. 270], properties (a) and (b) imply that there is a normed algebra norm $||\cdot||_1$ on A such that $||a||_1 \leq ||a||$, for all $a \in A$, and the completion \mathcal{B} of A in this norm is a semisimple annihilator Banach algebra. Since A has the minimal norm property, $||a||_1 = ||a||$, for all $a \in A$. Hence $A = \mathcal{B}$ and so A is an annihilator algebra. Now let $\{M_{\lambda} : \lambda \in \Lambda\}$ be the family of all distinct minimal close ideals in A and, for each $\lambda \in \Lambda$, let I_{λ} be a minimal left ideal in M_{λ} . Then $A = \mathcal{B}$ is isometrically algebra isomorphic to the $\mathcal{B}(\infty)$ -sum of the algebras $\mathcal{F}(I_{\lambda})$. (See the proof of [17, Theorem 6.5, p. 270].)

Conversely if A is an annihilator algebra then [12, pp. 100-104] A has dense socle and every minimal left ideal of A is a reflexive Banach space so that, by [17, Theorem 6.2, p. 269], A is r.w.c.c.

For later use we reiterate some of the points above in the following corollary.

Corollary 5.2. Let A be an annihilator $B^{\#}$ -algebra. Let $\{M_{\lambda} : \lambda \in \Lambda\}$ be the family of all distinct minimal closed ideals in A and, for each $\lambda \in \Lambda$, let I_{λ} be a minimal left ideal of A contained in M_{λ} . Then each M_{λ} is isometrically algebra isomorphic to $\mathcal{F}(I_{\lambda})$ and A is isometrically algebra isomorphic to the $B(\infty)$ -sum of the algebras $\mathcal{F}(I_{\lambda})$. Thus A is Arens regular and A^{**} is isometrically algebra isomorphic to the normed full direct sum of the algebras $\mathcal{F}(I_{\lambda})^{**}$.

Proof. For the proof of the last statement see [16, Theorem 5.1, p. 405].

If a Banach algebra A is not a $B^{\#}$ -algebra then properties (a) and (b) alone do not imply that A is an annihilator algebra. See [1, Example 4, p. 739] and [18, Theorem 2.5, p. 28].

Theorem 5.3. Let A be an annihilator $B^{\#}$ -algebra in which every minimal left ideal has the approximation property. Then A is a dual algebra.

Proof. By [16, Theorem 5.1, p. 405], A^{**} has an identity element E with ||E|| = 1 so that A has an approximate identity bounded by 1. Thus $a \in c\ell_A(aA) \cap c\ell_A(Aa)$, for each $a \in A$. Moreover, for each minimal left ideal I of A, $\mathcal{F}(I)$ is a dual algebra [3, Corollary 30, p. 172] which shows that every minimal closed ideal M of A is a dual $B^{\#}$ -algebra. Since A is isometrically algebra isomorphic to the $B(\infty)$ -sum of its minimal closed ideals, it follows from [12, Theorem (2.8.29), p. 106] that A is a dual algebra.

Every minimal left ideal in a B^* -algebra or a semi-simple right complemented Banach algebra is a Hilbert space under an equivalent inner product norm ([12, Theorem (4.10.6), p. 263] and [13, Theorem 5, p. 656]). Thus if A is a B^* -algebra with dense socle or a right complemented $B^\#$ -algebra then A is r.w.c.c. with dense socle in which every minimal left ideal has the approximation property. Therefore, by Theorems 5.1 and 5.3, A is a dual algebra. We state these results formally in the following corollaries.

Corollary 5.4. A right complemented $B^{\#}$ -algebra is a dual algebra.

Corollary 5.5. A B*-algebra with dense socle is a dual algebra.

6. Multipliers on annihilator $B^\#$ -algebras. In this section, unless otherwise specified, A will denote an annihilator $B^\#$ -algebra, $\{M_\lambda:\lambda\in\Lambda\}$ the family of all distinct minimal closed ideals in A and $\mathfrak A$ the $B(\infty)$ -sum of the algebras M_λ . By Corollary 5.2, A is isometrically algebra isomorphic to $\mathfrak A$ so that every $x\in A$ corresponds under this isomorphism to a unique function $x(\cdot)$ on Λ such that $x(\lambda)\in M_\lambda$, for each $\lambda\in\Lambda$. For convenience we will let $x(\lambda)=x_\lambda$ and denote $x(\cdot)$ by $\{x_\lambda\}$. We have $\|x\|=\sup_\lambda \|x_\lambda\|=\|x(\cdot)\|$. For $f\in A^*$ and each $\lambda\in\Lambda$, let $f_\lambda=f|M_\lambda$. Then $\sum_\lambda \|f_\lambda\|<\infty$ and the linear functional φ_f on $\mathfrak A$ defined by $\varphi_f(x(\cdot))=\sum_\lambda f_\lambda(x_\lambda)$ belongs to $\mathfrak A^*$. The mapping $f\to\varphi_f$ is an isometric vector space isomorphism of A^* onto $\mathfrak A^*$. We have $f(x)=\sum_\lambda f_\lambda(x_\lambda)$ and $\|f\|=\sum_\lambda \|f_\lambda\|=\|\varphi_f\|$. (See [16].) Since A is isometrically algebra isomorphic to $\mathfrak A$, for every $x\in A$, $x=x_{\lambda_i}+\ldots+x_{\lambda_n}, x_{\lambda_i}\in M_{\lambda_i}, i=1,\ldots,n$, we have $\|x\|=\sup_i \|x_{\lambda_i}\|$.

Theorem 6.1. Let $G(G_{\lambda})$ be the group of all isometric onto left multipliers on $A(M_{\lambda})$ and, for each $T \in M_{\ell}(A)$ and $\lambda \in \Lambda$, let $T_{\lambda} = T|M_{\lambda}$. Then the following statements are true:

- (i) $T(M_{\lambda}) \subseteq M_{\lambda}$ and $||T|| = \sup_{\lambda} ||T_{\lambda}||$, for each $T \in M_{\ell}(A)$.
- (ii) $M_{\ell}(M_{\lambda}) = \{T_{\lambda} : T \in M_{\ell}(A)\}, \text{ for each } \lambda \in \Lambda.$
- (iii) $T \in G$ if and only if $T_{\lambda} \in G_{\lambda}$, for each $\lambda \in \Lambda$.
- (iv) For $T \in M_{\ell}(A)$ let ζ_T be the function on Λ such that $\zeta_T(\lambda) = T_{\lambda}$, for all $\lambda \in \Lambda$. Then the mapping $T \to \zeta_T$ is an isometric algebra isomorphism of $M_{\ell}(A)$ onto the normed full direct sum of the algebras $M_{\ell}(M_{\lambda})$.
- (v) Let $\Pi_{\lambda}G_{\lambda}$ be the direct product of the groups G_{λ} . Then the mapping $T \to \zeta_T$ (restricted to G) is an isomorphism of the group G onto the group $\Pi_{\lambda}G_{\lambda}$.

Proof. (i) Let e_{λ} be a minimal idempotent of A contained in M_{λ} . Then $M_{\lambda} = c\ell_{A}(Ae_{\lambda}A)$. Let $T \in M_{\ell}(A)$. Since $T(xe_{\lambda}y) = T(x)e_{\lambda}y \in Ae_{\lambda}A \subset M_{\lambda}$, for all $x,y \in A$, applying linearity and continuity of T we get $T(M_{\lambda}) \subset M_{\lambda}$. Clearly $||T_{\lambda}|| \leq ||T||$, for all $\lambda \in \Lambda$. Let $D = \sum_{\lambda} M_{\lambda}$, the sum of M_{λ} , then D is dense in A and $||T|| = \sup\{||T(x)|| : x \in D \text{ and } ||x|| \leq 1\}$. Given $\varepsilon > 0$, let $x \in D$, $||x|| \leq 1$, such that $||T|| - \varepsilon \leq 1$

 $||T(x)||. \text{ We have } x = x_{\lambda_1} + \ldots + x_{\lambda_n}, \text{ where } x_{\lambda_i} \in M_{\lambda_i}, i = 1, \ldots, n.$ Since $||x|| = \sup_i ||x_{\lambda_i}|| \text{ and } ||T(x)|| = \sup_i ||T(x_{\lambda_i})|| = \sup_i ||T_{\lambda_i}(x_{\lambda_i})|| = ||T_{\lambda_{i_0}}(x_{\lambda_{i_0}})|| \le ||T_{\lambda_{i_0}}|| ||x_{\lambda_{i_0}}|| \le ||T_{\lambda_{i_0}}||, \text{ for some } i_0, 1 \le i_0 \le n, \text{ we see that } ||T|| - \varepsilon \le ||T_{\lambda_{i_0}}||. \text{ Thus } ||T|| \le \sup_{\lambda_i} ||T_{\lambda_i}||. \text{ As } ||T_{\lambda_i}|| \le ||T||, \text{ for all } \lambda \in \Lambda,$ we obtain $||T|| = \sup_{\lambda_i} ||T_{\lambda_i}||.$

- (ii) By [5, Proposition 3, p. 99], $A = M_{\lambda} \oplus \ell_A(M_{\lambda})$ so that the projection $P_{\lambda}: A \to M_{\lambda}$ is continuous. Thus $\|P_{\lambda}(x)\| \leq k_{\lambda}\|x\|$, for all $x \in A$ and some constant $k_{\lambda} > 0$. By (i), $\{T_{\lambda}: T \in M_{\ell}(A)\} \subset M_{\ell}(M_{\lambda})$, for all $\lambda \in \Lambda$. Now let $T' \in M_{\ell}(M_{\lambda})$ and define a mapping T on A as follows: For $y \in A$, $y = y_1 + y_2$ with $y_1 \in M_{\lambda}$ and $y_2 \in \ell_A(M_{\lambda})$, let $T(y) = T'(y_1)$. Clearly T is linear and, for any $z \in A$, $z = z_1 + z_2$ with $z_1 \in M_{\lambda}$ and $z_2 \in \ell_A(M_{\lambda})$, $T(yz) = T'(y_1z_1) = T'(y_1)z_1 = T'(y_1)z = T(y)z$. (We have $\ell_A(M_{\lambda}) = r_A(M_{\lambda})$.) Moreover, $\|T(y)\| = \|T'(y_1)\| \leq \|T'\| \|y_1\| \leq \|T'\| k_{\lambda}\|(y)\|$. Hence $T \in M_{\ell}(A)$ and $T' = T|M_{\lambda} = T_{\lambda}$. This proves (ii).
- (iii) Suppose that $T \in G$. Then T_{λ} is isometric on M_{λ} since $||T_{\lambda}(x)|| = ||T(x)|| = ||x||$, for all $x \in M_{\lambda}$. Now let $y \in M_{\lambda}$. Since T is onto A, there is $x \in A$ such that T(x) = y. Write $x = x_1 + x_2$ with $x_1 \in M_{\lambda}$ and $x_2 \in \ell_A(M_{\lambda})$. Then $y = T(x_1) + T(x_2)$ so that $T(x_2) = y T(x_1) \in M_{\lambda}$ (by (i)). But, for any $z \in M_{\lambda}$, $T(x_2)z = T(x_2z) = T(0) = 0$ so that $T(x_2) \in \ell_A(M_{\lambda})$. Hence $T(x_2) \in M_{\lambda} \cap \ell_A(M_{\lambda}) = (0)$ which shows that $T(x_2) = 0$. Applying the isometry of T, we get $x_2 = 0$. Thus T_{λ} maps M_{λ} onto M_{λ} and so $T_{\lambda} \in G_{\lambda}$, for each $\lambda \in \Lambda$.

Suppose conversely that $T \in M_{\ell}(A)$ such that $T_{\lambda} = T | M_{\lambda} \in G_{\lambda}$, for all $\lambda \in \Lambda$. Let $x \in D$, $x = x_{\lambda_1} + \ldots + x_{\lambda_n}$, where $x_{\lambda_i} \in M_{\lambda_i}$, $i = 1, \ldots, n$. Then

$$T(x) = T(x_1) + \ldots + T(x_{\lambda_n}) = T_{\lambda_1}(x_{\lambda_1}) + \ldots + T_{\lambda_n}(x_{\lambda_n})$$

and

$$||T(x)|| = \sup_{i} ||T_{\lambda_i}(x_{\lambda_i})|| = \sup_{i} ||x_{\lambda_i}|| = ||x||.$$

Thus T is isometric on D, and since D is dense in A, it is also isometric on A. Now let $y \in A$ and let $\{y_n\}$ be a sequence in D such that $y_n \to y$. Since T maps M_{λ} onto itselft, for all $\lambda \in \Lambda$, there exists $z_n \in D$ such that $T(z_n) = y_n$, for all n. By the isometry of T, $||y_n - y_m|| = ||T(z_n - z_m)|| = ||z_n - z_m||$, for all positive integers m, n, and as $y_n \to y$, we see that $\{z_n\}$ is a Cauchy sequence in A and therefore converges to some $z \in A$. Since $T(z_n) \to T(z)$ and $T(z_n) = y_n \to y$, we get T(z) = y. Thus T maps A onto itself and so $T \in G$.

(iv) Let \mathfrak{N} denote the normed full direct sum of the algebras $M_{\ell}(M_{\lambda})$. For each $T \in M_{\ell}(A)$, $\zeta_T \in \mathfrak{N}$ since $\sup_{\lambda} \|\zeta_T(\lambda)\| = \sup_{\lambda} \|T_{\lambda}\| = \|T\|$ (by (i)). Thus the mapping $T \to \zeta_T$ is isometric. Now let $\mathcal{T} = \{\mathcal{T}_{\lambda}\} \in \mathfrak{N}$ and define a linear map T on $D = \sum_i M_{\lambda}$ as follows: For $x \in D$, $x = x_{\lambda_1} + \ldots + x_{\lambda_n}$, where $x_{\lambda_i} \in M_{\lambda_i}$, $i = 1, \ldots, n$, let $T(x) = \mathcal{T}_{\lambda_1}(x_{\lambda_1}) + \ldots \mathcal{T}_{\lambda_n}(x_{\lambda_n})$. Then

$$||T(x)|| = \sup_{i} ||T_{\lambda_i}(x_{\lambda_i})|| \le \sup_{i} ||T_{\lambda_i}|| ||x_{\lambda_i}|| \le ||T|| ||x||$$

which shows that $||T|| \leq ||T||$. Thus T is continuous on D and therefore can be extended to all of A with the same norm. Let us denote this extension by the same letter T. Since T is a left multiplier on D, it is also a left multiplier on A. We have $T|M_{\lambda} = T_{\lambda} = T_{\lambda}$, for all $\lambda \in \Lambda$. Hence $T \to \zeta_T$ maps $M_{\ell}(A)$ onto \mathfrak{N} and it clearly preserves all algebraic operations. Hence $T \to \zeta_T$ is an isometric algebra isomorphism of $M_{\ell}(A)$ onto \mathfrak{N} .

(v) We recall that $\Pi_{\lambda}G_{\lambda}$ is the set of all functions ρ on Λ such that $\rho(\lambda) \in G_{\lambda}$, for all $\lambda \in \Lambda$. Since $\|\rho(\lambda)\| = 1$ for all $\lambda \in \Lambda$, we see that $\rho \in \mathfrak{N}$. Thus $\Pi_{\lambda}G_{\lambda} \subset \mathfrak{N}$ and $\Pi_{\lambda}G_{\lambda}$ is a group under pointwise multiplication for functions. It follows easily from (iii) and (iv) that $T \to \zeta_T$ maps G onto $\Pi_{\lambda}G_{\lambda}$. Thus the restriction of the map $T \to \zeta_T$ to G is an isomorphism of the group G onto the group $\Pi_{\lambda}G_{\lambda}$.

Corollary 6.2. For each $\lambda \in \Lambda$, let I_{λ} be a minimal left ideal of A contained in M_{λ} . Then $M_{\ell}(A)$ is isometrically algebra isomorphic to the normed full direct sum of the algebras $L(I_{\lambda})$.

Proof. This follows easily from Corollary 5.2 and Theorems 3.1 and 6.1.

Corollary 6.3. If every minimal left ideal of A has the approximation property, then $M_{\ell}(A)$ is isometrically algebra isomorphic to A^{**} .

Proof. By Corollary 5.2, A^{**} is isometrically algebra isomorphic to the normed full direct sum of the algebras $\mathcal{F}(I_{\lambda})^{**}$. Since each I_{λ} is a reflexive Banach space with the approximation property, by Corollary 4.6, $\mathcal{F}(I_{\lambda})^{**}$ is isometrically algebra isomorphic to $L(I_{\lambda})$, for each $\lambda \in \Lambda$. Therefore, by Corollary 6.2, $M_{\ell}(A)$ is isometrically algebra isomorphic to A^{**} .

Corollary 6.4. Let A be a right complemented $B^{\#}$ -algebra. Then $M_{\ell}(A)$ is isometrically algebra isomorphic to A^{**} .

Corollary 6.5. Let A be an annihilator B^* -algebra. Then $M_{\ell}(A)$ is isometrically algebra isomorphic to A^{**} .

Theorem 6.6. Give $G(G_{\lambda})$ the relative topology $\omega(\omega_{\lambda})$ induced by the weak operator topology on $M_{\ell}(A)(M_{\ell}(M_{\lambda}))$. Then the mapping $T \to \zeta_T$ (restricted to G) is a homeomorphism from (G,ω) onto the direct product $\Pi_{\lambda}(G_{\lambda},\omega_{\lambda})$ with the product topology ω_P .

Proof. Let $G' = \Pi_{\lambda}G_{\lambda}$ and denote the mapping $T \to \zeta_T$ by ζ , i.e., $\zeta_T = \zeta(T)$. We now show that ζ is continuous. Let $T \in G$ and let $\lambda_1, \ldots, \lambda_n$ be distinct elements of Λ . Let $\varepsilon > 0$ and let $x_1^{(i)}, \ldots, x_{k_i}^{(i)} \in M_{\lambda_i}$, and $g_1^{(i)}, \ldots, g_{\ell_i}^{(i)} \in M_{\lambda_i}^*$ for $i = 1, \ldots, n$. Let

$$U_i = \left\{ \left\{ S_{\lambda} \right\} \in G' : |g_q^{(i)}((S_{\lambda_i} - T_{\lambda_i})(x_p^{(i)}))| < \varepsilon, \right\}$$
for $1 \le p \le k_i$ and $1 \le q \le \ell_i$,

for i = 1, ..., n. Then $U = \bigcap_{i=1}^n U_i$ is an ω_P -open neighbourhood of the point $\zeta(T) = \{T_\lambda\}$ in G'. Every ω_P -neighborhood of $\zeta(T)$ contains a neighborhood of type U.

Now since, for each $\lambda \in \Lambda$, $A = M_{\lambda} \oplus \ell_{A}(M_{\lambda})$ [5, Proposition 3, p. 99] we can extend each $g_{q}^{(i)}$ to all of A as follows: Let $\bar{g}_{q}^{(i)} \in A^{*}$ be such that, for all $y \in A$, $\bar{g}_{q}^{(i)}(y) = g_{q}^{(i)}(y_{1})$, where $y = y_{1} + y_{2}$ with $y_{1} \in M_{\lambda_{i}}$ and $y_{2} \in \ell_{A}(M_{\lambda_{i}})$. Let

$$V_{i} = \left\{ S \in G : |\bar{g}_{q}^{(i)}((S - T)(x_{p}^{(i)}))| < \varepsilon, \text{ for } 1 \le p \le k_{i} \text{ and } 1 \le q \le \ell_{i} \right\}$$

$$= \left\{ S \in G : |g_{q}^{(i)}((S_{\lambda_{i}} - T_{\lambda_{i}})(x_{p}^{(i)}))| < \varepsilon, \text{ for } 1 \le p \le k_{i} \text{ and } 1 \le q \le \ell_{i} \right\}$$

for i = 1, ..., n. Then $V = \bigcap_{i=1}^{n} V_i$ is an ω -open neighbourhood of T in G and $\zeta(V) \subseteq U$. This shows that ζ is continuous at T and as T is an arbitrary point of G, it follows that ζ is continuous on G.

We show next that ζ^{-1} is continuous. Let $x\in A,\,x\neq 0,\,f\in A^*$ and $\varepsilon>0.$ Then the set

$$O = \left\{ S \in G : |f((S - T)(x))| < \varepsilon \right\}$$

is an ω -open neighbourhood of T in G. Since $\sum_{\lambda} ||f_{\lambda}|| < \infty$ (where $f_{\lambda} = f|M_{\lambda}$), we see that $f_{\lambda} = 0$ except for a countable number of λ , say $\lambda_1, \lambda_2, \ldots$, i.e, $f_{\lambda_i} \neq 0$ for $i = 1, 2, \ldots$ Thus there is an integer N > 0 such that

$$\sum_{i=N+1}^{\infty} \|f_{\lambda_i}\| < \varepsilon/4 \|x\|.$$

Identifying x with the function $x(\cdot)$ in \mathfrak{A} , let $x_{\lambda_i} = x(\lambda_i)$ and let

$$Q_i = \{\{S_\lambda\} \in G' : |f_{\lambda_i}((S_{\lambda_i} - T_{\lambda_i})(x_{\lambda_i}))| < \varepsilon/2N\},\$$

for $i=1,\ldots,N$. Then $Q=\bigcap_{i=1}^N Q_i$ is an ω_P -open neighbourhood of $\zeta(T)=\{T_\lambda\}$ in G'. Since $f(S(x))=\sum_\lambda f_\lambda(S_\lambda(x_\lambda))$, for any $S\in M_\ell(A)$, it is easy to see that $\zeta^{-1}(Q)\subseteq O$. Observing that the sets of type O form a subbase of the neighbourhood system at T for the topology ω , we see that ζ^{-1} is continuous at $\zeta(T)$. As T is an arbitrary point of G and $\zeta(G)=G'$, it follows that ζ^{-1} is continuous on G'. Hence ζ (restricted to G) is a homeomorphism of (G,ω) onto (G',ω_P) .

Corollary 6.7. (G, ω) is compact if and only if $(G_{\lambda}, \omega_{\lambda})$ is compact for every $\lambda \in \Lambda$.

Corollary 6.8. For each $\lambda \in \Lambda$, let I_{λ} be a minimal left ideal of A contained in M_{λ} , and let K_{λ} be the group of isometric onto operators in $L(I_{\lambda})$. Give each K_{λ} the relative topology σ_{λ} induced by the weak operator topology on $L(I_{\lambda})$. Then (G, ω) is compact if and only if each $(K_{\lambda}, \sigma_{\lambda})$ is compact.

Proof. By Corollary 5.2, we may identify $M_{\ell}(M_{\lambda})$ with $M_{\ell}(\mathcal{F}(I_{\lambda}))$. Hence, by Theorem 3.3, G_{λ} is isomorphic to K_{λ} . By Corollary 3.5, K_{λ} is compact in the weak operator topology on $L(I_{\lambda})$ if and only if G_{λ} is compact in the weak operator topology on $M_{\ell}(M_{\lambda})$.

I would like to thank the referee for the many comments and suggestions which contributed very much to the presentation in this paper.

References

- 1. F. E. Alexander, Some counter-examples on annihilator, dual and complemented A*-algebras, J. London Math. Soc. (2) 8 (1974), 735-740.
- 2. F. F. Bonsall, A minimal property of the norm in some Banach algebras, J. London Math. Soc. 29 (1954), 156-164.
- 3. F. F. Bonsall and J. Duncan, *Complete normed rings*, Ergebrisse der Math. und ihrer Grenzgebiete, vol., 80, Springer-Verlag, 1973.
- 4. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870
- 5. J. Duncan, B# modular annihilator algebras, Proc. Edinburgh Math. Soc. (2) 15 (1966), 89-102.
- 6. N. Dunford and J. T. Schwartz, Linear operators, Part I: Genearl theory, Pure and Applied Math. vol 7, Interscience, New York and London, 1958.
- 7. J. Hennefeld, Finding a maximal subalgebra in which the two Arens products agree, Pacific J. Math. (59) (1975), 93-98.
- 8. B. E. Johnson, Cohomology in Banach algebras, Memoirs Amer. Math Soc. No. 127, Providence, R.I, 1972.
 - 9. G. Köthe, Topology vector spaces, Vol. П. Springer-Verlage, New York, 1979.
- 10. B. D. Malviya and B. J. Tomiuk, Multiplier operators on B*-algebras, Proc. Amer. Math. Soc. 31 (1972), 505-510.
- 11. A. Olubumo, Weakly compact $B^{\#}$ algebras, Proc. Amer. Math. Soc. 14 (1963), 905-908.
 - 12. C. Rickart, General theory of Banach algebras. Van Nostrand, New York, 1960.
- 13. B. J. Tomiuk, Structure theory of complemented Banach algebras, Can. J. Math. 14 (1962), 651-659.
 - 14. B. J. Tomiuk, Multipliers on Banach algebras, Studia Math. 54 (1976), 267-283.
- 15. B. J. Tomiuk, Arens regularity and the algebra of double multipliers, Proc. Amer. Math. Soc. 91 (1984), 293-298.
- 16. B. J. Tomiuk, Biduals of Banach algebras which are dense subalgebras of Arens regular Banach algebras, Acta Sci. Math (szeged) 61 (1995), 399-411.
- 17. B. J. Tomiuk and B. Yood, Topological algebras with dense socle, J. Functional Analysis 28 (1978), 254-277.
- 18. B. Yood, One-sided ideals in Banach algebras, J. Nigerian Math. Soc. 1 (1982), 25-30.

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario KIN 6N5, CANADA