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OPERATOR DUALS

BY

JAN H. FOURIE

Abstract. In line with the well known concept of the
conjugate of an operator ideal, this note is devoted to a study
and application of the operator duals of topological vector spaces
of bounded linear operators on Banach spaces. Several examples

of operator duals are discussed.

1. Introduction and notation. X,Y will throughout be Banach
spaces, whereas the continuous dual space of a Banach space X is denoted
by X’. £(X,Y) and F(X,Y) denote the spaces of bounded linear and
finite rank bounded linear operators from X into Y, respectively. As usual,
£(X,X) = £(X),¥(X,X) = §(X) and similarly for other spaces of bounded
linear operators. We recall some standard definitions with reference to the

literature.

Definition 1.1. (Operator ideal; [9], p.419). An ideal (of operators
between Banach spaces) is defined to be an assignment 2 which associates
with every pair (X,Y’) of Banach spaces a subset 2A(X,Y") of £(X,Y) such
that the following conditions are satisfied:

(M) a®y € UX,Y),YVae X'\ Vy €Y,

(12) S;+ S € A(X,Y), VS, 52 € A(X,Y);

(I3) RoSoT € UAX,Y), VR € £(Y,Y), VS € U(Xo,Ys), VI € £(X, Xy)
and for all Banach spaces Xj,Yp.
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Definition 1.2. (Ideal quasi-norms: [9], p. 422). Let 2 be an operator.
ideal and let a be an assignment that associates with every operator S
belonging to some component A(X,Y) a real number «(S). We call « an
ideal quasi—norfn if, for arbitrary Banach spaces X,Y, Xy, Y}, the following
conditions are satisfied:
(IN1) ala®y) = lla| - llyll, Va € X, Vy € Y;
(IN2) 3 a constant k > 1, independent of (X,Y"), such that

Oé(Sl + 52) < k(O{(Sl) + 05(52)), ¥S1,89 € Q((X,Y);
(IN3) For all R € £(Ys,Y), S € U(Xy,Ys) and T € £(X, X,), we have

a(RoSoT) <|R[-oS) [T

The couple (¥, @) is called a quasi-normed ideal of operators. It is
easy to check that each of the components 2A(X,Y ) becomes a metrizable
Hausdorff topological vector space. If each component is complete, then the
quasi-normed ideal is called a complete metrizable operator ideal. Although
one sometimes meets topological ideals which do not admit a reasonable
ideal quasi-norm, we assume throughout that the ideal topologies are defined
by ideal quasi-norms. It is a well known fact that for any pair (X,Y)
of Banach spaces and every T € 2(X,Y), we have ||T]| < o(T). This
shows in particular that a non-trivial 2(X,Y") has non-trivial dual space
A(X,Y). As a consequence of the closed graph theorem we mention that
if (A, 0q) and (YA, ay) are complete metrizable operator ideals such that
A; C 2y, then for every pair (X,Y") of Banach spaces, the canonical injection
of %;(X,Y) into A5(X,Y) is continuous.

If £ =1 in the above definition of an ideal quasi-norm, we speak of an
ideal norm and correspondingly, the couple (2, @) is called a normed ideal
of operators. In this case the components 2[(X ,Y') are normed spaces. The
ideal is called a Banach ideal if each of these is complete.

We use tr(S) to denote the trace (= 3", (x;,a:)) of S := 31" | a;®@z; €

§(X). The concept conjugate ideal A* of a (complete) quasi-normed ideal
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(%, @) has already been studied and significantly applied in the literature
(cf. for instance the papers [14], 8] and [10]). Recall that T € A (Y, X) if
there is a p > 0 such that

|tr(LT)[ < po(L)

for any L € F(X,Y). The ideal A* is normed by the (complete) ideal norm
a® which is defined by

a™(T) :=inf{p > 0: tr(LT)| < pa(L), VL € F(X,Y)}.

In the present paper we call A (Y, X) the operator dual space of (A4(X,Y),a)
and discuss some important (by now classical) examples in section 3, includ-
ing generalisations of two results by Gordon, Lewis and Retherford (in [8]).

Also recall that an operator T' € £(Y, X) belongs to the adjoint ideal
(¥, a*) if there exists p > 0 such that for all finite dimensional Banach
spaces Xo,Yp and for all V' € £(Y,,Y), U € U(X,,Ys) and W € £(X, X,)

we have
[t (WTVD)| < oWV [lalD).
It follows from a result of Pietsch ([14], lemma 3) that
(AX(Y, X),a®) = (A" (Y, X), a")

if both X and Y have the metric approximation property.

In general, if either %A is a topological ideal of operators or else, if a
linear topology on a subspace A(X,Y) of £(X,Y) is given, then A*(Y, X)
will denote the operator dual space (which is formally defined in section 2)
of A(X,Y) with respect to the ideal topology or else, with respect to the

given linear topology.

The operator dual space may be regarded as the “operator version” of
the so called functional dual of a sequence space, which is especially consid-
ered and applied in the context of FK-spaces (cf.[19] for more information).

The results in section 5 in a way demonstrate the last statement, in the sense
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that the operator dual space is applied to consider some inclusion theorems
for F'H-spaces of bounded linear operators, where H is in this case the space
£(Hy, Hy) of bounded linear operators on Hilbert spaces which is endowed
with the uniform operator norm topology. Recall the definition of an F'H

space:

Definition 1.3. (FH space; [18], p. 67). Assume given a fixed vector
space H which has a (not necessarily vector) Hausdorff topology. An FH
space is a vector subspace X of H which is a Fréchet space (hence a complete
metrizable locally convex space) and is continuously embedded in H, that

is the topology of X is larger than the relative topology of H.

The closed graph theorem is again the reason why one may conclude
that the inclusion of one F.H space into another is always continuous, the
topological space H being fixed of course. In particular, the topology of
an F'H space is unique, so that there is at most one way to make a vector
subspace of H into an I'H space.

We follow the standard notation in the references [9] and [15]. For the
definitions of compact-, nuclear-, p-nuclear-, integral- p- absolutely summing
and p-approximable operators, the reader is referred to these references.
For information on operator ideals, the trace tr(7T") of a finite rank bounded
linear operator T and continuous traces on operator ideals we refer to [9], [15]

and [16]. Sequences in Banach spaces are indicated by (z;), (y:), etc. and

(z;)(£ k) and (z;)(> k) will denote the sequences (z1,z2,...,2%,0,0...)
and (0,0...,0, 2k, Tkt1,...) respectively. For a finite set {x1,...,zn} in a
Banach space X and for a finite set {aj,...,an} in the dual space X’ of a

Banach space X (or for denumarable sets in X and X', respectively) and

for 1 < p < o the following quantities-are well known:
@) e((z:)) = sup{(; l(zs,a)P)% : a € X, o]l < 1};
(i) ep((a:) = sup{(X; {z,ai)P)> sz € X, |lzfl <1}
(i) mp((z:)) o= (3, llmllP) 7

(iv) rp((2i)) = sup{| (@, ai)| : ai € X' e4((a3)) <1}, 5 + 5 =1,
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2. Operator dual space. Suppose 2(X,Y) is a fixed component of a
quasi-normed operator ideal (A, 1) on the family of all Banach spaces. We
denote by QIS(Y,X) (where 2* is the conjugate ideal) the operator dual
space of (U(X,Y), u); hence T € Q[ﬁ(Y, X) if and only if the mapping

S(X,Y) = K: S~ tr(TS)

is a p-continuous linear functional. If no confusion can arise, we write
AA(Y; X) for the operator dual space.

Moreover, if 4 is a linear topology on a vector space A(X,Y") of bounded
linear operators which contains F(X,Y), then for each y-neighbourhood U

of the origin we let
Ug :={T € LY, X): [tr(TS)| <1, VS e UNFX,Y)}
and then define the vector space
UMY, X) == U{Ue : U € U},

where U is a zero neighbourhood basis for the linear topology . It is clear
that T € A2 (Y, X) if and only if the mapping F(X,Y) — K : S + tr(TS)
is a p-continuous linear functional. Thus we define the operator dual space
for general topological vector spaces of bounded linear operators between
Banach spaces, when they contain the bounded linear operators of finite

rank.

Remark. If B and 2 are complete metrizable operator ideals such
that B C AU, then the embedding B(X,Y) — A(X,Y) is continuous with
respect to the corresponding ideal topologies. It is thus easily verified that
BA(Y, X) D.A2(Y, X). By the closed graph theorem, if B(Y, X) is closed
in 2(Y, X), then B2(Y, X) = A*(Y, X).

If not otherwise stated, we assume for the rest of this section that
(A(X,Y), ) is either a fixed component of a quasi-normed operator ideal
(A, ) or a topological vector space (with linear topology 1) of bounded

linear operators containing §(X,Y).
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If F(X,Y) is dense in (U(X,Y), 1), then with each T € A*(Y,X) we
associate a bounded linear functional ¢ on A(X,Y) as follows:

First let
¢r(S) = tr(TS)

for all S € F(X,Y); the linear functional ¢r is continuous on F(X,Y") with
respect to the induced p-topology. Then let qﬂST be its unique continuous
linear extension to 2A(X,Y). The mapping T — ¢ defines a linear isomor-
phism from 2% (Y, X) onto a subspace of (X,Y). Thus we have

Proposition 2.1. Suppose F(X,Y) is p-dense in A(X,Y). Then
AA(Y, X) is linear isomorphic to a subspace of U(X,Y ). In case of A being

a normed operator ideal, the embedding is an isometry.

If X is norm one complemented in X"with norm one projection P :
X" — X, then for each ¢ € AU(X,Y) let Ry, : ¥ — X" be the linear
operator defined by (Ry(y),a) = ¢la ®vy), Ya € X'. Put Ty = Po Ry. P’
being an injection, it follows that ¢(S) = tr(TyS) for all S € F(X,Y). Thus
Ty € ALY, X) (and p®(Ty) < ||4|| in case of u being an ideal quasi-norm).
If moreover, in this case §(X,Y) is also dense in A(X,Y), then the linear
isomorphism T +— ¢r in the proof of the previous proposition is surjective.

Thus we have the following

Proposition 2.2. Suppose §(X,Y) is dense i A(X,Y). If X is norm
one complemented in X", then A2 (Y, X) is linearly isomorphic to U(X,Y)".
The linear isomorphism is an isometry in case of ¥ being o normed operator

1deal.
Omitting that §(X,Y) is dense in /(X,Y") in the previous two propo-
sitions, the same arguments show that if X is reflexive, then
AXMY,X) ={S € £V, X) : 3p € U(X,YY,
(Sy,a) = pla®y), Ya€ X', Yy e Y}.
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The mapping A(X,Y) — AX(Y, X) : ¢ — Ry is surjective in this case; if
moreover the p-topology is locally convex, then ¢ — R, defines an isomor-
phism if and only if F(X,Y") is dense in A(X,Y).

Proposition 2.3. Let (UA(X,Y),u) be either a component of a quasi-
normed operator tdeal or a metrizable topological vector space of bounded
linear operators which contains §(X,Y). We have the following inclusions:
(a) If X is reflexive, then mﬂ C AAA(X,Y) = (QLA)f(ﬁ)(X,Y), where

(UAA(Y, X),7(B)) denotes the quotient space of U(X,Y)" (with respect

to the mapping ¢ — Ry) with the strong topology;

(b) If 3(X,Y) is dense in UA(X,Y), then (2.1) applies and A(X,Y) C

AL (XY), where the strong topology of U(X,Y) is restricted to

A(Y, X).

Proof. We prove (b) and omit the (similar) proof of (a): Choose an
arbitrary T € A(X ,Y} and let lim, 7,, = T (with respect to u), for some
sequence (Ty,) C F(X,Y). Consider any net {Ss : § € Z} in F(X,Y)
which converges with respect to the induced S-topology (strong topology)
of A(X,Y) to S € F(Y, X). Let € > 0 be given. Since the polar set B° of the
bounded set B := {T,, : n € N} is a zero-neighbourhood in the 3-topology,
there exists an index g such that

[tr(TnS5) = tr(TuS)| < £
Each S5 and also S are in 2A2(Y, X), so that the mappings R — tr(RSs)
and R +— tr(RS) are continuous on F(X,Y) with respect to the u-topology.

foralln=1,2,... and all 6 > é.

Fix any 6 > §p. There exists ng = ng(6,.5) € N such that
€

\tr(T3,S5) — tr(T'Ss)] <§ and |tr(TnS) — tr(T9)] < 5

for all n > ng. Hence from the triangle inequality we have [tr(TSs) —

tr(TS)| < e. Since this is true for all 6 > &, it follows that the mapping
F(V,X) - K: Rw— tr(TR)

is continuous with respect to the induced B-topolgy. Hence T € UA*2(X,Y).
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That §(X,Y) being dense in A(X,Y), is not a necessary condition for
the inclusion A(X,Y) C A*2(X,Y). This is illustrated by the following
example:

Let (9, v1) and (R, || -]|) be the Banach ideals of nuclear and compact
operators, respectively. The components (9 (Y, X),v1) and (R(X,Y),||- |
are Banach spaces in this case. If, for instance, X and Y are Hilbert spaces,
then it is well known that 91, (Y, X)) = K(X,Y)" (cf. [9], 20.2.6 and 20.2.5).
From (2.2) and the remark, we have 0, (Y, X) = £2(Y, X). Hence

LARX,Y) = MP(X,Y) = M (Y, X) = &(X,Y).

3. The role of the approximation properties. The discussion in
[8] regarding conjugate ideals concentrates on Banach ideals (%, ) of op-
erators on Banach spaces. It is clear from the same paper and others in
literature that the conjugate ideal has important applications; for instance,
although some of the ideas of Gordon, Lewis and Retherford which are used
in [8] go back to the theory of tensor products as developed by Schatten
and Grothendieck, their theory of conjugate ideals allows the authors to
prove many results without the hypothesis of the (metric) approximation
property. Unfortunately some characterisations in [8] of the components of
conjugate duals of several classical operator ideals still rely on the metric
approximation property on the underlying Banach spaces. This is because
the continuity of the trace functional with respect to the nuclear norm v,
is such an important ingredient of the recipies for establishing the charac-
terisations.

In recent papers (cf. for instance [7], [11] and [12]) there was a new
interest in proving results on spaces of operators between Banach spaces and
their duality, from an infinite dimensional point of view. The effect of this
is that some known results of Grothendieck, J. Johnson and others in which
the (metric) approximation property on the underlying Banach spaces is
critical, are generalised to spaces of operators on Banach spaces without the

approximation property. In some instances weaker kinds of approximations
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are needed. The existence of various examples of Banach spaces without the
metric approximation property, in particular the counterexamples by Pisier
to a conjecture of Grothendieck, motivates the study in these references.
In this section we recall some classical examples of conjugate ideals
and prove two propositions ((3.1) and (3.2) below) in which we remove the

metric approximation property from two results in [8].

Example 1. Let Bg denote the closed unit ball in £(X,Y"). By Propo-
sition 2 in [9] (p.387) we know that T € £(X,Y) is integral if and only if
there exists a p > 0 such that

[tr(TS)| < pllS||, VS € F(X,Y).
Hence if J; denotes the ideal of integral operators, then
J.(Y, X) = £2(Y, X) = 82(Y, X), isometrically.

If X is reflexive, then J1(Y, X) (hence £2(Y, X)) and the space M (Y, X) of
nuclear operators are isometrically isomorphic (cf. [9], 17.4.5; 17.6.4; 17.6.5).
If moreover, X has the approximation property then it follows from (2.2)
that 91,(Y, X) = K(X,Y)’, which is a well known result of Persson-Pietsch
and Grothendieck (cf. [9], p.449). It is also well known that J,(Y, X) =
M, (Y, X) if any one of the following properties holds:
1. X is seperable and representable as the dual of some Banach space ([9],
17.6.6);
2. X has the Radon-Nikodym property and is complemented in X" by a
norm one projection ([3], Cor. 10, p.235 and Th. 8, p.175);
3. Y’ has the Radon-Nikodym property and the approximation property
(3], Th. 6, p.248).
Hence in each case £2(Y, X) = 91 (Y, X) holds.

Example 2. Let (2, «) be a (quasi-) Banach ideal of operators which
admits a continuous trace 7 (cf. [16], p.172). (2, o) is called traceable.

In this case, since (F(X,Y),a) — (F(X),a) : S — TS is continuous with
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a(TS) <||T|leS) for each T € £(Y, X), it follows that
(F(X,)Y),a) = K: S 7(TS) =tr(TS)

is continuous. Hence A*(Y,X) = £(Y,X). In fact it is clear from the
definitions that a quasi-normed ideal 2 is traceable if and only if A® = £.
The ideal &; of 1-approximable operators is for instance traceable (cf. [9],
p.442). Therefore G2(Y, X) = £(Y, X). Hence, if X is reflexive (or norm
one complemented in X"'), then &;(X,Y) = £(Y, X). |
Let X have the approximation property. Since in this case the linear
functional §(X) — K: R — tr(R) is continuous with respect to the nuclear
norm on §(X) (cf. [9], p. 406), it follows that ND(Y,X) = £V, X).
Furthermore, if X is also reflexive (or norm one complemented in X"), then
LY, X) =M (X, Y).
In [10] (p. 20) it is mentioned that a Banach space X has
(i) the approximation property if and only if MY (X) = £(X);
(ii) the bounded approximation property if and only if J&(X) = £(X);
(iii) the metric approximation property if and only if J£(X) and £(X) are
isometrically isomorphic.
The reader is now referred to the Introduction (§1) to recall the defini-

tions of the quantities ¢,((z:)), mp((;)) and k,((z;)).

Example 3. Let (9,(X,Y),v,) and (P,(Y, X), m,) denote the Banach
spaces of p-nuclear and g-absolutely summing operators on the underlying
Banach spaces (cf. [9], p.434-and p. 428), respectively. In [8] it is proved
(cf. [8], Theorem 2.5(b)) that NMY,X) = PB,(Y,X) isometrically (for
1 < p,q < o0, with %4—% = 1) if either X or Y has the metric approximation
property, using both the continuity of the trace functional on F(X) with
respect to the nuclear norm and the equality of the nuclear norm and the
integral norm in this case.

We discuss the same example without the restriction (metric approxi-
mation property) on the underlying spaces. The proof (although similar to

the argument in [8], but now avoiding the continuity of the trace functional
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with respect to the nuclear norm) will be given.

Proposition 3.1. Let X and Y be Banach spaces. The normed spaces
‘ﬁ]?(Y,X) and B, (Y, X) are isometrically isomorphic for 1 < p,q < co and

1,1 _
p+q_1'

Proof. Let T € P, (Y, X). For'S € F(X,Y) and each representation
S = Ele a; ® y; we have

|tr(T9)] Z lailiTy:ll < lllas D WL IUNTy: 1)< Rl

Hence

|tr(TS)] < inf{mp((a:)(< k))eg () (< k) = S = Zaz ® yijmg(T

= vp(8)mq (T).

Thus T € N3 (Y, X). It is also clear that v2(T) < 7, (T).
Conversely, let T € ‘RPA(Y,X); then ¢7(S) = tr(T'S) defines a v,-con-

tinuous linear functional on §(X,Y). Fix
(yi) € €L(Y) := {(y:) € Y™ : ((33,0)) €49, Ya € Y'}.

For each n € N and ¢ € {1,...,n} there exists a; € X’ with la;]] = 1
and (Ty;,a;) = [|Tysll. Put A = ||Ty|77" for 1 < i < n and let S :=
Z?zl Aia; @ y;. Then we have

n

Do XlTwll = tr(T8) < llgrlva(S) < lerl (- INIP) P eq((v:))

=1 =1

Hence
Q_ITwl)T < lgrlies ()

for all n € Njie. T € By (Y, X) and 7 (T) < ||grll = uﬁ(T).

If X is norm one complemented in X", then it follows from (2.2) that
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mp(va)l = ng(Y,X)

isometrically. Here the approximation property on X' is not needed in
the proof as is the case in the characterisation 91,(X,Y)" = B (Y, X") in
Theorem 6 of ([9], p. 448).

Example 4. Let £, denote the operator ideal of p-compact operators
(with 1 < p < 00), i.e.

T € £,(X,Y) < T = Qo P with P € &(X,("),Q € &(,Y).

This operator ideal is introduced in [13] and is also extensively studied in

[4] and [5]. It is normed by the ideal norm
¢p(T) == inf Q|| P

where the infimum is taken over all such factorizations. Let (Jg,Jjq) be the

ideal of Cohen g-nuclear operators which is introduced in (2], i.e.
T € 3,(X,Y) <= 3p > 0 such that x,((Tz;)) < peg((2:))

for all finite sets {x1,...,zn} in X. Here j,(T) := inf p. In [8] it is proved
(cf. [8], theorem 2.5 (d)) that &3(Y, X) = J,(V, X) isometrically (for 1 <
p,q < 00, with % + % = 1) if either X or Y has the metric approxima-
tion property, again using among other things the continuity of the trace
functional on §(X) with respect to the nuclear norm.

We discuss the same example without the restriction (metric approxi-
mation property) on the underlying spaces. In doing so we make use of the
characterisation of p-compact operators in ([4], theorem 2.5).

Let 2 (X") := {(a;) € (X)V : ({z,a;)) € £?,Vz € X}. It is proved in
[4] that T € _ﬁp(X,Y) — T =372, a; ®y; where

(a) € 2(X") = {(a:) € £,(X") : ep((as)(> k)) — 0 as k — oo}
and

(y;) € ) == {(y:) € B,(Y) : ep((ys)(= k)) — 0 as k — oo}.
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In this case we have

& (T) = inf €, ((a:))eq ((13)),
where the infimum is taken over all representations of T.

Proposition 3.2. Let X and Y be Banach spaces. Then RI,A(Y,X)
and 34(Y, X) are isometrically isomorphic (for 1 < p,q < oo, and with
s+ =1.

Proof. Let T € J,(Y,X). For S € F(X,Y) and each representation of
S in the form S = Zle a; @ y; we have [tr(TS)| < e,((a;)(< k))e, ()
(< k))j,(T). Hence

[tr(T'S)] < inflep((a:)(< K)o () (< K)) = S :Zai ®yi}je(T)

=cp(8)74(T).
Thus, T € &2(Y, X). It is also clear that S (T) < 5o(T).
Conversely, let T € &2(Y, X); then ¢7(S) = tr(T'S) defines a Ccp-Con-
tinuous linear functional on F(X,Y') with ||¢r|| = 2 (T). Fix (a;) € £2,(X").
For any finite set {y1,vy2,...,yn} C Y, let S = Zfil a; @ y;. We have

N

> ATy, )
i=1 v
Hence, rg((Ty:)(< N)) < c2(T)e((y:)(< N)). This shows that T €
Jq(Y, X) and also that j,(T') < c¢5(T).

=[tr(TS)| < e (T)ep((a:)(S N))eg((w:)(< N)).

4. Quotients of operator ideals. The concept quotient of an op-
erator ideal was introduced by Puhl in [17]. Let 2A; and 2, be operator
ideals on the family of all Banach spaces. An operator S € £(X,Y) belongs
to the lefthand quotient A7 ' o Ay if for all Banach spaces Z and for all
R € Ay (Y, Z) we have RS € y(X, Z). Similarly, an operator S € £(X,Y)
belongs to the righthand quotient 2y o ;! if for all Banach spaces Z and
for all R € 2,(Z, X') we have SR € A3(Z, X). Both the left- and righthand

quotients are operator ideals.
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If (A, a1) and (g, a2) are quasi-normed operator ideals, then the left-
and righthand quotients are also quasi-normed ideals with respect to the

quasi-norms

(a7 0 as)(S) = sup{az(RS) : e (R) < 1}
and

(a2 0 a7 ")(S) = sup{as(SR) : e (R) < 1},

respectively.

Let X be a fixed Banach space. Throughout the section (2ly, ) is a
complete quasi-normed operator ideal. We define linear topologies on an
ideal 2A(X) of bounded linear operators (which contains §(X)) as follows:
(a) The left weak (U, A™* o Ap)- topology (which is denoted by o;) has a

subbase for the neighbourhoods of 0 consisting of the sets Uz := {S €

A(X) : a(ST) < 1}, where T runs through (A~ o %) (X).

(b) The right weak (2,2 o A~1)-topology (which is denoted by o) has a
subbase for the neighbourhoods of 0 consisting of the sets Wy := {S €

A(X) : o(TS) < 1}, where T runs through (2 o A7) (X).

If (A, a) is an operator ideal which admits a continuous trace (hence,
in this case tr : F(X) — K is continuous with respect to the induced a-
topology) then convergence of a net in 2(X) with respect to the o;-topology
(respectively, o.—topology) implies convergence to the same limit with re-
spect to the weak operator topology. For instance, if S5 — S in (A(X), o)
and z € X,a € X' are given, then for ¢ > 0 there is an index 6y such that
a((Ss — S) o (a®x)) < e for all § > &g; hence it follows that

|a(Sz) - a(Ssz)| = [tr((ea®z) 0 5 = (a ® ) © 55))]
=|ir(So(a®x) ~ Ss o (a®z))| — 0.

Also, if tr : F(X) — K is continuous with respect to the a-topology,
then for each T € (U™ o YAp)(X) the linear functional S — tr(ST) is
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bounded on {S € F(X) : a(ST) < 1}, hence T € AL (X); thus showing
that

Proposition 4.1. If (Ao(X), a) is given such that tr : (F(X),a) — K

18 continuous, then
(A" 0 2p)(X) € AL (X).
Svmalarly, it follows in this case that

(2o 0 A1) (X) C AL (X).
It is proved in [10] that if 2/ is an injective (resp, surjective) operator
ideal, then A* = Ao T (resp. A* = F; oA~1). Sometimes the inclusions

in Proposition 4.1 are equalities, as is for instance demonstrated in

Proposition 4.2. Let (o, a) be a complete quasi-normed operator
ideal and (A, p) a quasi-normed operator ideal. Suppose X is a Banach
space such that the following conditions are satisfied:

(a) $(X) is dense in (U(X), u).
(b) The mapping tr : F(X) — K is a-continuous;
(¢c) There exists k > 0 such that

a(S) < ksup{|tr(QS)] : Q € F(X), QI < 1},

for all S € F(X).
Then

(2 0 2)(X) = A2 (X) and (2 0 A1)(X) = 22 (X).
If X 1is reflerive, then
(A(X),00) = (A~ 0 Uo)(X) and (A(X), )" = (o o A1)(X).

Proof. (A1 o Ap)(X) C AL (X) follows from (4.1). Conversely, let
Ty € A2 (X); then Ty € (Ug)s (see §2, the definition of the operator dual
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space) for some R € (A1 o %y)(X). We show that A(X) is contained in the
oy-closure of F(X). Let 8 := p~1oa be the quasi-norm on the operator ideal
A1 o Yy. Consider arbitrary S € A(X). For any 0 # T € (A} o A)(X)

we have
0 # B(T) :=sup{a(PT) : P € U(X),u(P) <1} < o0.

If Q € F(X) such that u(S - Q) < ﬁ (thus using condition (a)), then

a(ST — QT) < u(S — Q)B(T) < 1.

Thus it follows that §(X) = 2A(X). Hence for § € A(X) there is a
net (Ss) € F(X) which converges to S in (A(X),0;). For ¢ > 0 there
exists an index 7p such that (Ss — S,) € eUg for all 7,6 > ~o; hence
a((QSs — QS,)R) < e forall 6,7 > vy and for all Q@ € F(X) with ||Q|] < 1.
Since Ty € (Ug)s, this implies that

(*) ]tT((QS5 - QS"/)TON S € V’776 Z Yo, V”Q“ S 17 Q € g(X)

Thus it follows from (c¢) that a((Ss — S,)To) < ke V7,6 > 5. Because of
the completeness of (Up(X), a), this implies that the net (S57p) converges
with respect to the a-topology in 2p(X). Since the same net converges to

STy in the (weaker) weak operator topology, it follows that STy € Ug(X).

The proof of (Ag o A™L(X) = A2 (X) is similar.

Tr

Remark. If X is a Banach space -with the approximation property,
then the conditions (b) and (c) of Proposition 4.2 are satisfied if we replace
(Yo, ) by the Banach operator ideal (91;,1;) of nuclear operators. We
refer to [9] (18.3.4) and the remark following Lemma 3 in [9] (§17.5) for this
information. See also [15] (§6.8).

Let (61,01) be the quasi-normed ideal of 1-approximable operators
(cf. [9], §19.8), which is often called the trace class. This ideal admits a
continuous trace (cf. [9], 19.8.7); in particular, the mapping t7 : F(X) — K

is o1-continuous. Although in general no complete ideal-norm on &; exists,
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it is true that (6y,01) is a Banach ideal of operators on the family of
Hilbert spaces. Moreover, in this case we have (&;,0;) = (M, 1) (cf. [9],

20.2.5). In [6] the concept a-dual AX(H) of an ideal A(H) of bounded linear

operators on a Hilbert space H is introduced. It is namely defined by
U*(H) :=={T € L(H) : TS € G;(H), VS € A(H)}.
It is proved in ([6], Proposition 6, p.122) that
A*(H) :={T € L(H) : ST € G,(H), VS € U(H)}.
From (4.2) follows that
(A" 0 &1)(H) = (61 0 A™")(H) = AX(H)
for any quasi-normed ideal (2, 1) such that F(H) is dense in (A(H), u).

5. Some inclusion theorems. Throughout this section, if X,Y are
given Banach spaces, then we let H = (£(X,Y),] - ||). The components
(U(X,Y),n) of Banach operator ideals (2, 1) are FH spaces of operators
containing F(X,Y). All FH spaces of operators, hence complete metriz-
able locally convex subspaces 2(X,Y) of £(X,Y) which are continuously
embedded into H, are from now on assumed to contain F(X,Y). As in the
case of F'/{-spaces, it follows from the properties of F'H spaces of operators
(or components of Banach operator ideals) and the closed graph theorem
that

Theorem 5.1. Let (A,(X,Y),p1) and (Us(X,Y), u2) be FH-spaces
of operators. Suppose a subspace U(X,Y) of £(X,Y) satisfies the following
conditions:

(a) A(X,Y) C A (X, Y)NAU(X,Y).

(b) AKX, V)™ = Ap(X,Y).

(c) Vo € A1 (X,Y) there exists 6 € Uo(X,Y) such that /g xy) =
¢/a(x,y)-

Then the inclusion Ao(X,Y) C A1 (X,Y) holds.
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Theorem 5.2. Let (%1(X,Y ), 1) and (U(X,Y), o) be FH-spaces
of operators. If X is reflexive and F(X,Y) is dense in A(X,Y), then

A1 (X,Y) D U(X,Y) <= AS (Y, X) D AP(Y, X).

Proof. If 21(X,Y) D As(X,Y) then ALY, X) D UL (Y, X) by an
earlier remark. To prove the conversé, it follows from the proof of (2.2)
that we need only observe that for each 6 € 2;(X,Y)’, the bounded linear
functional ¢r, on Us(X,Y) satisfies dg,(S) = 6(S) for all S € F(X,Y).
Then it follws from (5.1) that 2;(X,Y) D 2y (X,Y).

Let the Hilbert spaces Hy and Hy be fixed and put H := £(Hy, H). In
the following examples we demonstrate how to apply (5.2) to find necessary
and sufficient conditions for an F H-space A(H;, Hy) of operators on the
given Hilbert spaces to contain some important classes of operators. Recall
the definition of “Schatten class of index p”, for 1 < p < oo. It is the
restriction of the ideal of p-approximable operators to the family of Hilbert
spaces. A bounded linear operator T belongs to &,(Hy, Hy) if and only if
it can be represented in the form Tz = 3 o, a;(z,¢e;)g; for (ag) € €P(cq if
p = 00) and orthonormal sequences (e;) and (g;) in H; and H», respectively.
In this case the norm on &,(Hy, Hy) is given by o,(T) = |[(au)ll,. It is
well known that a bounded linear operator T from H; into Hy belongs
to &,(Hi, Hy) if and only if the scalar sequence ((T'e;,g;)) belongs to (7
(respectively, co if p = co) for all orthonormal sequences (e;) and (g;) in H;
and Hy, respectively (cf. [9], p.453-454). In the following examples we make
use of Theorem 20.2.6 in [9], which states that &,(Hy, Hy) = G,(Hs, Hy)
for 1 < p < o0, % + % =1 and &,(H,, Hs) = £(H,, Hy).

Examples 5.3. We demonstrate the application éf the operator dual to
find necessary and sufficient conditions for F'H spaces of operators on Hilbert
spaces to contain the Schatten classes of index p. In the following examples
A(H1, Hs) denotes an F'H space of operators and for all ¢ € A(Hy, Hy),
R, always refers to the operator defined in section 2 (proof of (2.2)) - from
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-a Hilbert space H, into a Hilbert space H; in this case and where of course
now we use the Riesz Theorem to represent the bounded linear functionals
on Hy. Thus (R4(y),z) = ¢(z @ y) for all y € Hy and z € H;.

(5.3.1) It follows from (2.2) that 82(H,, Hy) = &(Hy, H,)' =
G1(Hs, Hy) (cf. 9], p.456). Hence by (5.2) we have

U(Hy, Hy) 2 R(Hy, Ha) < A% (Hy, Hy) C 82(Hay, Hy) = 6, (Hs, Hy).

This shows that

U(Hy, Hz) D R(Hy, Hy) <= Ry € &1(Hy, Hy), V¢ € A(H,, Hs)'

= (¢le; ® g;)) € £*, V¢ € U(Hy, Hy)' and for all orthonormal sequences
(e;) C Hy,(g;) C Hy.

(5.3.2) Let 1 < p,q < oo, with % + % =1. Asin (5.3.1), we have

G, (Hy, Hy).= G,(Hy, Hy) = G,(Hy, Hy)

and hence that A(Hi,Hy) 2 6,(Hy, Hy) < (¢(e; ® g95)) € 01, Vo €
2U(Hy, Hy)', and for all orthonormal sequences (e;) C Hy and (g;) C Ho.

(5.3.3) The Banach ideal of nuclear operators is the smallest complete
normed ideal of operators. On the family of Hilbert spaces it coincides with
the Shatten class of index 1. Hence A(H;,H,) 2 &1(Hy, Hy) holds for
all Banach ideals 2(. In fact, for every FH space of operators 2A(H;, Hy)
containing F(H1, Hy) (in particular when 2 is a Banach ideal), it follows as
in (5.3.1) thatl

GD(Ho, Hy) = &1 (Hy, Hy) = £(Hy, Hy)
and hence by (5.2) that
m(Hl,Hg) D Sl(Hl,Hg\} << R¢ & S(Hz,Hl), V¢ S QL(Hl,HQ)/.

However, it is easily verified that R, is indeed a bounded linear operator for
each ¢ € AU(Hy, Hy)'; hence the inclusion &,(Hy, Hy) C 2A(H,, H5) holds

for all FH spaces of operators.
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(5.3.4) If {U, : a« € T} is a family of operator ideals, then the intersec-
tion A = N, A, is also an operator ideal. Again &, (now for 0 < p < o0)
will denote the complete quasi-normed ideals of p-apbroximable operators.
The intersection &g := Ny,506,, is an ideal of operators. On the component
Go(X,)Y) := N2

n=1

S (X,Y) we define the projective topology of the pro-
jective system j, : Go(X,Y) — Gﬁ(X,Y), where each j, is the canonical
embedding and where each embedding 611_1(X ,Y)— & L (X,Y) is continu-
ous if n > m. With respect to the projective topology on each component,
the ideal &y becomes a complete metrizable topological ideal, the so called
ideal of strongly nuclear operators (cf. [9], 19.9.3, p. 444). Clearly, since
the ideal of nuclear operators is the smallest Banach ideal of operators, we
have Go(X,Y) C 61(X,Y) C A(X,Y) for all Banach spaces X,Y and all
Banach operator ideals 2. For Hilbert spaces Hj, Hs, it is now also clear
from the discussion in (5.3.3) that So(Hy, He) C &1(Hy, Hy) C U(Hy, He)
for all FH space of operators U{H;, Hs).

We refer to characterisations of barrelledness of dense subspaces of F K
spaces due to Bennett and Kalton (cf. [1], proposition 1 and theorem 1).
Following their arguments (application of the closed graph theorem for bar-
relled spaces) one may prove the following characterisation of barrelledness

in F'H spaces of operators:

Proposition 5.4. For gwen Banach spaces X and Y, let IM(X,Y) be
an FH space. Suppose My(X,Y) is a dense subspace of M(X,Y). The
following are equivalent:

(a) Mo(X,Y) is barreled with respect to the subspace topology;
(b) if A(X,Y) is an FH space such that My(X,Y) C A(X,Y), then

M(X,Y) C UX,Y);

(¢) if A(X,Y) is an F'H space such that My(X,Y) C A(X,Y) C M(X,Y),

then M(X,Y) = A(X,Y).

Remarks.

(1) Our first remark is an application of Proposition (5.4). Let Hy, Ho
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be given Hilbert spaces. We show that Gy(H;, Hs) is barrelled with respect
to the induced norm topology of &;(Hy, Hy): It is clear that

Go(Hy, Hy) is dense in &, (Hy, Hy). Tt follows from (5.3.4) that for each FH
space A(Hy, Hy) D Go(Hy, Hy) we have &,(H1, Hy) C UA(Hy, H,). Hence
from (5.4) we see that Go(Hy, Hs) is a barrelled subspace of G,(Hy, H).

(2) Let Hy, Hs be given Hilbert spaces. Consider an F'H operator space
(A(Hy, Hy), i) containing F(X,Y). From (5.3.3) we know that 61(Hy, Hy)
(_: Q((Hla H?)

Moreover, we have

Proposition. The inclusion &1(Hy, Hs) — U(Hy, Hy) into an FH
space of operators is weakly compact if and only if for all orthonormal se-
quences (e;) C Hy, (g;) C Hj, the sequence (e; ® g;) of rank one operators

in- a weak null sequence in A(Hq, Hs).

Proof. Let ¢ € UA(Hy, Hs)' For each pair of orthonormal sequences
(ei) C Hu, (95) C Hy we have ¢(e; ® g;) — 0. Hence Ry is compact (cf. [9],
Theorem 3, p. 453). For each T € &,(H;, Hy), we have

|$(T)| = ltr(RyT)| = py(T),

where py defines a continuous semi-norm in the o(&1, £)-topology (the weak
topology in the trace duality) on &1(Hy, Hs). Hence it follows that the

embedding
(Gl(Hl,HQ),O'(Gl,ﬁ)) — (Q[(H]_,H2), vveak)

is. continuous. Because of the 0(&;,f)-compactness of the unit ball of
S1(Hy, Hy), it is also weakly compact in 2A(Hy, Hy).

Conversely, let the unit ball of &(H;, Hs) be weakly relatively com-
pact in 2(H,, Hy). For given orthonormal sequences (e;) C Hy, (g;) C Ho,
the sequence (e; ® g;) is clearly, u-bounded and converges to 0 in the weak
(strong) operator topology. Also, (U(Hy, Hy), weak) — L£(H,, H,) is con-

tinuous with respect to the weak (strong) operator topology. Therefore, 0
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is the only weak cluster point of (e; ® g;) in A(Hy, Hs). Thus e; ® g; — 0
weakly in UA(Hy, Hy) follows.
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