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STRONG LAW OF LARGE NUMBERS
FOR WEIGHTED SUMS OF PAIRWISE
INDEPENDENT RANDOM VARIABLES

BY

SO0 HAK SUNG

Abstract. Let {X,,n > 1} be a sequence of pairwise
independent', but not necessarily identically distributed, ran-
dom variables. Let {an,n > 1} and {b,,n > 1} be sequences
of constants such that 0 < b, 1 oo,zrzl lai] = O(bn), and
lan|/bn = O(1/n/?) for some 1 < p < 2. A strong law of large
numbers of the form Zi":l a;(X; — EX;)/bn, — 0 almost surely
is obtained.

1. Introduction. Let {X,,n > 1} be a sequence of random variables,
and let {a,,n > 1} and {b,,n > 1} be sequences of constants satisfying
0 <bn T oo. Then {a,X,,n > 1} is said to obey the general strong law
of large numbers(SLLN) with norming constants {b,,n > 1} if the normed
weighted sums ", a;(X; — EX;)/b, converges to zero almost surely.

Under independence assumption, i.e., {X,,n > 1} ié a sequence of inde-
pendent random variables, many SLLNs for the weighted sums are obtained;
see Adler and Rosalsky [1], Chow and Teicher [3], Fernholz and Teicher 4]
Jamison, Orey, and Pruitt [5], and Teicher [8]. For example, Adler and

y

Rosalsky [1] proved a SLLN when {X,,,n > 1} is a sequence of independent

and identically distributed random variables with E|X;|? < co for some
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1 <p<2 and {an,n > 1} and {b,,n > 1} are sequences of constants
satisfying 0 < b, 1 00, S5y ai] = O(bn), and lan|/b, = O(1/n}/?). Note
that this is an extension of the classical Kolmogorov’s SLLN.

Under pairwise independence assumption, a few results are known. Ros-
alsky [7] obtained some SLLNs for weighted sums of pairwise independent
and identically distributed random variables. Chandra and Goswami [2]

proved

%zai(){i — EX;) — 0 almost surely
i=1
if {X,,n > 1} is a sequence of pairwise independent random variables sat-
isfying [ sup,>; P(|Xn| > z)dz < o0, and {a,,n > 1} is a bounded
sequence.

In this paper, we extend Adler and Rosalsky’s SLLN to the pairwise
independent, but not necessarily identically distributed, random variables.
As a special case of this result, Chandra and Goswami’s SLLN follows. The
proof of our theorem is based on truncation and the orthogonal structure of
a truncated sequence.

Throughout this paper, the symbol C' denotes a general positive con-

stant which is-not necessarily the same one in each appearance.

2. Main result. To prove the main theorem we will need the following

lemmas. Lemma 1 is well known (see, Loeve [6], P. 124).

Lemma 1. Let {X,,n > 1} be sequence of orthogonal random vari-

ables. If 3°°°  log” nEX? < oo, then Y ooy Xy converges almost surely.

Lemma 2. Let {X,,n > 1} be a sequence of random variables and put
G(z) = sup,>; P(|Xn| > z) for z > 0. Assume that fooo 2P 1G(z)dx < oo
for some 1 < p < 2. Then

(1) Eoly P(Xal > nt/P) < oo.
(i) 3200, EX2I(|X,| < nlfP)/n?/P < co.

(i) 3520, log? nEX2I(|X,| < n'/?/(logn)77)/n*P < co.
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(iv) EB|XalI(|Xn| > ¢u) — 0 for any sequence {c,,n > 1} satisfying ¢, —

0.

Proof. Since G(x) is a non-increasing function, the expression in (i) is
dominated by
Z G(n'/?) < Z/ G(z'/?)dz = p/ 2P G(z)dr < co.
n=1 n=1Yn—1 0
n2/?
Noting that EX2I(|X,| < n!/P) = [ Pt < X2 < n??)dt <
n2/? . . ey . .
fo i G(V/t)dt, the expression in (i) is dominated by

To prove (iii), let ¢(x) = z/?/(logz)7% on (1,00). Since &' (z) is
positive for large x we can choose an increasing sequence {a,,,n > 1} such
that o, > 0 and o, = ¢(n) for n > N. Then the expression in (iii) is
dominated by

czlog REX2I(|1Xa] < o)
n=1

= CZ/ xG(z)dz Z IO%/: (g =0)-

< CZ/ 2P G(z)dz < co.

xi—1
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From the fact aG(a) < 2f/2 z)de <2 [ I LG(z)dx for a > 2,
the expression in (iv) is dominated by
enG(cn) —l—/ G(z)dz < 3/ P 71G(z)dz,
Cn cn/2

which goes to zero as n — oo.

Now we state and prove our main result. It reduces to Theorem 2 of
Adler and Rosalsky [1] when {X,,,n > 1} is a sequence of independent and
identically distributed random variables with E|X;[? < co.

Theorem 3. Let {X,,n > 1} be a sequence of pairwise independent
random variables and put G(z) = sup,>; P(|Xn| > z) for x > 0. Let
{an,n > 1} and {b,,n > 1} be sequences of constants satisfying 0 < b, T oo,

(1) Zlai\ZO b

and

n 1
(2) LJ:OQEE)ﬁ””melgp<2

If [77 aP " G(z)dz < oo, then 357 ) a;i(Xi — EX;)/b, — 0 almost surely.

Proof. Put Y, = X,I(|X,| < nY?/(logn)?7), Z, = X,I(n*/?/
(log n)ig—z’ < |X,] < nl/P) for n > 1. In view of Lemma 2(i) and Borel-
Cantelli lernma,
2z (X —Yi— Z))

G -

— 0 almost surely.

On account of (2) and Lemma 2(iii), we get

Zlog nE{ n(¥n = EY)}

n=1

= 2logn 9 logn 9
<Y % Tpy: <Zn2/ EY,} < o0,

77,

n=1

which entails by Lemma 1 and Kronecker lemma that
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> iy ai(Y; — BY))

(4) o

— 0 almost surely.

On the other hand, (1) and Lemma 2(iv) imply by Toeplitz lemma that

1 n
(5) P ; aE(X; —Y;) =0
and
1 n
(6) b—Z]azlElle — 0.
n ’Lzl

From (3), (4), and (5), it is enough to show that
1 n
(7) ™ Z a;Z; — 0 almost surely.

To prove (7), we define my, = inf{n : b, > 2*}. Note that for m; < n <

Mey1

Izz 182,

8
O S wal - emz) L 2 Bz

1= =

brnk bvnk
The second term on the right-hand side of (8) is o(1) by (6). Now we
estimate the first term. Since {|a,Z,| — |an|E|Z,|,n > 1} is a sequence of

orthogonal random variables, it follows by (2) and Lemma 2(i1) that

Z:P(‘Z Mo Zil ~ JoilB1Z:)) ~)

b?nk

1 & | 1
S EE ) g

i=1 {kimpypq—1>4) "k
2
ar-
<C b-;EZ}
i=1 ¢

=1 .
<cy WEXEI(!XA < itP) < 0.
i=1 ,
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The second inequality follows from the following fact:

1 =1 =1 16 16
Y m =X <) m<p S g
{kimpp1—12i} ™k k=ko ™k k=ko Mkg+1 1 g

where ky = min{k : mp41 — 1 > i}. By the Borel-Cantelli lemma, the first
term on the right-hand side of (8) converges to zero almost surely. Thus (7)

is proved.

Remark. Conditions (1) and (2) are satisfied when p = 1,b, = n

?
and {a,,n > 1} is a bounded sequence, and so theorem 3 is an extension of

Theorem 2 of Chandra and Goswami [2].
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