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Abstract. Consider the nonlinear difference equation
(E) Alypo1 + g flyn) =0, n=1,23,. ..

under the condition that limn, ..o Ti_,qs exists and is finite.
Necessary and/or sufficient conditions are given for the equation
(E) to have solutions which behave asymptotically like linear

functions.

1. Introduction. Consider the second order nonlinear difference equa-

tion
(1) AZyn_l—i—qnf(yn) =0, n=12,3,...

where A is defined by Ay, = Yn+1 — Yn, and the following conditions hold
throughout the remainder of the paper:
(i) {gn} is a real sequence;
(i) f € C(R,R) and uf(u) > 0 for all u # 0;
Gil) f(u) — flv) = g(u,v){u — v) for all u # v, where g is a nonnegative

continuous functions.
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By a solution of equation (1) we mean a nontrivial sequence {y,}, n =
1,2,... satisfying equation (1). Clearly, a solution of equation (1) is uniquely
determined if any two successive values yx, yr+1 are given. A solution {y,}
of equation (1) is said to be nonoscillatory if it is either eventually positive
or eventually negative, and it is oscillatory otherwise.

A special case of equation (1) is the equation
(2) Ay 1+ qulyn|*sgny, =0, n=1,2,3,...

where « is a positive constant.

The purpose of this paper is to obtain sufficient and/or necessary con-
ditions for equation (1) to have solutions which behave like the nontrivial
linear function c1+cam asn — 00, It is known that if im,, oo Z?:o g = o0,
then all solutions of equation (1) are oscillatory (see Thandapani, Gyori, and
Lalli [26]), so in this case, equation (1) does not have solutions which behave
like ¢; + can as n — oo. Hence, our interest here is to consider the case

where {¢,} satisfies the condition

n
(3) lim Z qs exists and is finite.

s=1

If (3) is satisfied, then we may introduce the sequence A, defined by

(4) An= > @ n=12..

s=n+1

Without further mention, throughout the remainder of this paper we assume
that condition (3) holds and {A,} is always defined by (4).

~ Other authors have examined equations of the type (1) under assump-
tion (3) for the purposes of obtaining conditions for the existence of nonoscil-
latory solutions or for obtaining asymptotic formula for the behavior of the
solutions for large n. For example, see the papers of Benzaid and Lutz [2],
Coffman [6], Driver, Ladas and Vlahos [7], Li [12], and Medina and Pinto
[16] for the linear case, and Chen and Liu [4], He [9], Medina [14], Medina
and Pinto [15], Popenda and Schmeidel [19], Szmanda [21, 22|, and Trench
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[28] for the nonlinear case. Here, we show that for a wide class of equa-
tions, not only can the existence of a nonoscillatory solution be obtained,
‘but also an explicit asymptotic form for the nonoscillatory solutions can be
determined. Moreover, if {4, } does not change signs, then we can establish
necessary and sufficient conditions for equations (1) or (2) to have solutions
with specified asymptotic behavior as n — co. (See Theorems 2.4, 2.5, 3.5,
and 3.7 below.) The form of some of the results in this paper are motivated
by recent results of Naito [17-18] for second order differential equations.
~ Results related to those in this paper can also be found in the mono-
graph by Agarwal [1], as well as the papers by Drozdowicz and Popenda
8], Hooker and Patula [10], Kulenovic and Budincevic [11], Popenda and
Werbowski [20], Thandapani, Graef and Spikes [25], Thandapani, Manuel
and Agarwal [27], and Thandapani and Arul [23, 24].
Before stating and proving our main results, we give a lemma concerning

the nonoscillatory solutions of equation (1).

Lemma 1.1. Assume that {y,} is a nonoscillatory solution of equation

(1) for n > N. Then the equation

Ay, —  9(Yss1,75)(Ay,)?
— = A, :
(5> f(yn—l-l) IB * i s;,_]_ f(ys)f(ys+1)

is satisfied for n > N, where 8 is a nonnegative constant. Moreover, if

lim f(u) = +o0,

u—toco

then 8 = 0.

This lemma was proved in [26] and [29]; it will be used several times.in
the following sections. We will use the usual notation that z, = O(p,,) as
n — oo if limsup,,_, |;—:| < 00, and z, = o(p,) as n — oo if im0 22 =
0.

2. Bounded asymptotically linear solutions. In this section we

obtain necessary and/or sufficient conditions for equation (1) to have solu-
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tions which behave asymptotically like nonzero constants. In some of these

results, we also describe the behavior of the first differences of the solutions.

Theorem 2.1. Assume that

(6) Z |4,] < o0,
n=N

and

(7) Z nAZ < oco.
n=N

Then, fdr any constant ¢ # 0, equation (1) has a solution {y,} satisfying

(8) yn = c+ O _{|A.| + B.})
and
9) Ay, = O({|An+ B}

as n — oo, where B, =Y o2 . AL

Proof. From condition (7), we note that B, is nonincreasing and summ-

able. We may also assume that ¢ > 0. Let

m = max{f(u):c¢/2 <u < 3¢c/2},

- m' = max{g(u,v) : ¢/2 < u,v < 3¢/2},

and choose a constant b and an integer N > 0 such that

(10) mm/ +bm' > |Aa| < b
’ n=N

and

(11)  m > |Aul+b > Bn<c/2
n=N n=N
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Let By be the Banach space of all real sequences ¥ = {y,}, n > N, with
norm [[Y]| = sup,> y {[ya| + [Ayn|}. Let

S={Y € Bn :|lyn — ¢| < ¢/2 and |Ay,| < m|A,|+bB, forn > N}

and define T : § — By by

(TY)n =c— ZAsf(ys—H) - Z ( Z Aig(yi+layi)Ayi>, n > N.

s=n s=n “i=s+1
Clearly, § is a bounded, closed, and convex subset of By.
First, we show that 7" maps § into itself. For any Y € S, we have
]
< Y Ailm! (m]As] + bBy)

i=s+1

3 .
Z Aig(Yiv1,Yi)Ay;

t=s5+1

J J
< mm' Z A? + m'bB, Z | 4;].

1=s+1 i=s+1 .

for j > s > N. Therefore, letting j — oo and using (10), we see that

> Aig(yis1,v:)Ayi| < bB,

1=s+1

for s > N. This implies

(o)
Z Asg(ys—l—l ’ ys)Ays
s=n+1

IATY )n| < [Anllf (Yns1)| + < m|A,|+bB,

for n > N, and in view of (11), we have

(TY ) — | < Z |An|[f (yn+1)] + Z Z Asg(Yst+1,¥s)Ays| < ¢f2
. n=N n=N's=n+1

forn > N. Thus, TS CS.

Next, we let X = {z,} € S and for each i = 1,2,... let Y = {¢°} be
a sequence in S such that lim;_ . ||[Y? — X|| = 0. Then, a straight forward
argument using the continuity of f and g shows that lim; .o [Ty, — TZs| =
0, and so T is continuous.

Finally, in order to apply Schauder’s fixed point theorem, we need to

show that T'S is relatively compact. In view of a recent result of Cheng and
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Patula [5; Theorem 3.3], it suffices to show that T'S is umniformly Cauchy. .
To this end, let X = {z,} € S and observe that for any £k > n > N, we

have

!T.Tk - T:I?nl S mz |As\ + Z < Z IAZIm’(m|Az| + bBJ) .

s=k i=s+1
It is now clear that for a given ¢ > 0 we can choose N7 > N such that
k > n > Nj implies |Tzy —Tz,| < €. Thus T'S is uniformly Cauchy, and so
TS is relatively compact.
Therefore, by Schauder’s fixed point theorem, T has a fixed point Y €
S. Tt is clear that Y = {y,} is a nonoscillatory solution of equation (1)
for n > N and has properties (8) and (9). This completes the proof of the

theorem.
Example. Consider the equation
(12) A%y, 1 + kn* sin ZLg]ynr" sgny, =0, n>1,

where k, A < 0, and « are constants. - Applying Theorem 2.1 to the case
f(u) = |ul|* sgn v,

oo

> 4

s=n+1

= < 2lkjn*.

> ST
ks sin =—
S kstsin

s=n+1

|An] =

We see that if A < —1, then for any ¢ # 0, equation (12) has a solution {y, }

such that y, = ¢+ O(n**1) and Ay, = O(n*) as n — co.
As corollaries of Theorem 2.1, we have the following results.

Corollary 2.2. If (6) and (7) are satisfied, then for any c # 0, equation

(1) has a nonoscillatory solution {y,} such that

(13) Yn = ¢+ 0(1) as n — co.

Corollary 2.3. Suppose (6) and

(14) nA, — 0asn —
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are satisfied. Then for any ¢ # 0, equation (1) has a nonoscillatory solution
{yn} such that

(15) Yn = c+o(1) and Ay, = o(1/n) as n — .

Corollary 2.2 is a direct consequence of Theorem 2.1. For the proof of

Corollary 2.3, we have only to note that (6) and (14) imply (7), and
nz:A]2 ngAJZ-ﬁOasnﬁoo.
i=n j=n

In the following theorems, we show that the converse of Corollaries 2.2

and 2.3 can be obtained when {A,} does not change sign.’

Theorem 2.4. Suppose A,, > 0 for all large n and g(u,v) > 0 for all
u # v. Then the following statements are equivalent:
a) for any ¢ # 0, there ezists a solution {y,} of equation (1) satisfying
(13);
b) for some c # 0, there exists a solution {y,} of equation (1) satisfying
(13);
c) conditions (6) and (7) are satisfied.

Proof. (a) implies (b) trivially, and (c) implies (a) by Corollary 2.2. We
claim that (b) implies (c). Let {y,} be a solution of equation (1) for which
(13) holds for some ¢ # 0. We may assume that ¢ > 0. Then there is an
integer N > 0 such that ¢/2 <y, < 2cforn > N. It is easy to verify that

under the condition 4,, >0
Ayn = 2
——— > A, +my A
f(yn-i-l) . s:;-i—l
for n > N, where m; = min{g(u,v) : ¢/2 < u,v < 2c} > 0. Summing the
above inequality from N to n and applying Lemma 1 of Li and Cheng [13]

to the left hand side, we obtain

n n

Yn41 —d.S_ Ays o 2)
/yN f(s) > 2 Flora) = > (As +my A2

s=N s=N J=s+1
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for n > N. Since the left hand side is bounded as n — oo, we conclude that

(6) and (7) are satisfied. Thus, the proof is complete.

Theorem 2.5. Suppose either A, > 0 or A,, <0 for all large n. Then
the following statements are equivalent:
a) for any ¢ # 0, there exists a solution {y,} of equation (1) satisfying
(15);
b) for some c # 0, there exists a solution {yn} of equation (1) satisfying
(15);
c) the conditions (6) and (14) are satisfied.

Proof. (a) implies (b) trivially and (c) implies (a) by Corollary 2.3; it
suffices to show that (b) implies (c). Let {y,} be a solution of equation (1)
such that (15) holds for some ¢ # 0. From Lemma 1.1, (5) is satisfied for all

large n. Since f = lim, o fAy”

——¥n - =0, we have
(yn+1)

Ayn —-An'*}' Z gys+11ys)(Ay5)2

f(Yn+1) s—mtl Js)f(ys+1)
or

A, = nAyn g(ys+17ys (Ays)
. b f(y”‘H) ;H F(ys) f(Yst1)

for all large n. The first term of the right hand side of (16) tends to zero as

n — oo since {y,} satisfies (15). Using Stolz’s theorem [3] and (15), we find
that

i Z g( ys+1,ys)(Ays) < lim 9(Yn+2, Yni1)(n + 1)*(Ayny1)?
noeo =2 1 ys ys-l—l) T on—oo f(yn+1)f(yn+2)

Thus, (14) holds.
To prove that (6) holds, observe that equation (1) implies
A(Yyn — nAYp—_1) = nan(y_n) =~ A(nAn_1f(yn)) + Anf(¥Yn)
+ (1 + 1) Ang(Yn+1, Yn) AYn.

Summing, we obtain
(17)
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n—1

Yo = 1AYno1 = C1 =0l 1 f(yn) + > AAF W) + (s + Dg(yasr, ys)Ays )
s=N

where C1 = yy — NAyy_1+NAn_1f(yn). Since nd,, — 0 as n — oo and
{yn} satisfies (15), we have that y, — nAy,_; — ¢, nAn_lf(yn) — 0, and
Fn) + (0 4+ 1)g(Ynt1,Yn)AYn — f(c) # 0 as n — co. In view of this and
(17), we can easily verify that (6) holds. This completes the proof of the

theorem.

Remark. From Theorems 2.4 and 2.5, we see that even for solutions
which have the same limits as n — oo, there is an essential difference between
restricting and not restricting the asymptotic behavior of the first differences

of the solutions.

3. Unbounded asymptotically linear solutions. In this section
our aim is to obtain necessary and/or sufficient conditions for equation (1) to
have solutions which behave asymptotically like cn (c # 0). In the proceed-
ing section, no growth condition on g was required in proving the existence
of solution asymptotic to a nonzero constant as n — co. Now we require

one of the following growth conditions on g, namely, either

g(u,v) is nondecreasing (nonincreasing)

(18)
in each argument for u,v > 0 (u,v < 0),
or
g(u,v) is nonincreasing (nondecreasing)
(19)

in each argument for u,v > 0 (u,v < 0),

Theorem 3.1. Suppose that either (18) or (19) is satisfied,

k£3

(200 = 37 [F((s + D)l As] = 0 a5 1 — 00 for every k # 0,
" s=Np
(21) Z g(k(n +1),kn)|A,| < oo for every k # 0,

n:No
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and
(22) > |f(ka(n+1))|g(ka(n + 1), kan)A; < oo for every ki, ky # 0.
n=Ng :

Then for any ¢ # 0, equation (1) has a solution {y,} such that

(23) g = cn + 0( S (A Ges + D)4l + Bs}>,
and
(24) Ay =+ O(Lf(&(n + 1)1 An] + Bu),

as n — 00, where

Bn:supmax{ Zg (i+1),¢0)]Ail, Z]f (i+1)lg(ez + 1), Ei)A?},

jzn
with

¢ = 3c¢/2 if (18) holds, and ¢ = ¢/2 if (19) holds.

Proof. Let c be a given nonzero constant; without loss of generality, we
* may assume that ¢ > 0. By (20), (21), and the fact that B,, — 0 as n — oo,
there is a sufficiently large integer N > 0 such that for n > N, we have

7 FEs + DA < en/4,

s=N

[e o]

(c+2) > gles,a(s+1)4] <1,
s=n-+1

and

n

(c+2) Z B, <cn/4.

s=N
Let By be the Banach space defined in the proof of Theorem 2.1, and let
S C By be defined by '
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S={Y € By :|yn —cn| < cn/2, |Ay,| <c
+ f(e(n + 1)) Anl + (c+2)B,, n > N}

Clearly, S is a nonempty, closed, convex subset of By. Consider the mapping
T:8 — By defined by

(TY)n=cn+ Y Af(ys1) +
s=N

s=N “j=s+1

Similar to the argument used in the proof of Theorem 2.1, we can show
that TS C &, T is continuous, and T'S is relatively compact. By Schauder’s
fixed point theorem, the operator T has a fixed point ¥ € §. This fixed
point provides a solution of equation (1) satisfying (23) and (24).

Example. Again consider equation (12). Applying Theorem 3.1 to
the case f(yn) = |Ynl|® 58D Yn, |An] < 2]k|n*, we see that if A < —q, then

equation (12) has a solution {y,} such that y,, = cn + o(n”) where
oc=max{A\+a+1,0}if A+a+1#£0.
We have the following results as corollaries of Theorem 3.1.

Corollary 3.2. Assume that either (18) or (19) holds and (20) — (22)
are satisfied. Then for any ¢ # 0, equation (1) has a solution {y,} such that

In — 0.
(25) | = [c+0(1)] asn

Corollary 3.3. Assume (18) or (19) holds,

(26) flk(n+1))A, — 0 asn — oo for any k # 0,

and

(27) Z g(kv(n + 1), kn)|An| < oo for any k # 0.
n=Ng

Then, for any ¢ # 0 equation (1) has a solution {y,} such that

(28) L [c+0(1)] and Ay, = ¢+ o(1) as n — co.
n
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Next we prove the converse of Corollaries 3.2 and 3.3 when {4, } does

not change sign.

Theorem -3.4. Let A, > 0 for all large n. In addition to either (18)
or (19), suppose that g{u,v) > 0 for u #v and

(29) hmsup ! Z |f(k1(s+1))|/g9(ka(s+1),kas) < oo for all ki, ky # 0.

n—00
s=Np

If equation (1) has a solution of the type (25) for some c # 0, then

(30) —Zlf (s +1))|As — 0 as n — oo for some k # 0,
§= No
(31) Z g(k(n+1),kn)A, < oo for some k # 0,
n=Ng
and
(32) Z |f(ky(n 4+ 1)|g(ka(n + 1), kan) A% < oo for some ki, ko # 0.
n=Ng

Proof. Let {y,} be a solution of equation (1) satisfying (25); we may

assume ¢ > 0. There is an integer N > 0 such that
en/2 <y, < 2cn forn > N.

From Lemma 1.1, it follows that

(33)  Ayn = Bf(Wa+1) + Anf(Yn+1) + f(Ynt1) 9(Yst1, s ) (Ays)?
s=n-1 f(ys)f(ys+1)

for n > N, where § > 0. Also, from equation (1), we have

(34) Ay, = Cy + Anf(yn+1) - Z Asg(ys+17 ys)Ays
s=N .

where Cy = Ayny-1 — An-1f(yn). Combining (33) and (34), we have
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: = (Ts a'ls) 92
;Bf(yn+1) + f(yn—l-l) _Z }%%(Ays)
(35) s=n+1

n

=Ch = > Asg(Yor1,ys) Ay,
s=N

Since Ay, > 0 by (33), (35) implies

(36} Z Ang(yn—i—hyn)Ayn < 0.
n=N

Using the inequality Ay, > A,f(yn41), n > N, which is obtained from
(33), we see that (36) yields

Z f(yn+1)g(yn+layn)A7?:L < 0.
n=N

If either (18) or (19) holds, then (32) follows. By (36), we see that the left

hand side of (35) has a finite limit as n — co, say,

ys;l-layS) 2
(37) Y= hm {ﬂf(yn-i-l) + f(Jn+1) —Zn;_l (ys)f(ys—}-l) (Ays) }

Summing (33) from N7 to n —1 > Ny > N and dividing by n, we obtain

n—1 n—1

U — 1
J nJNl :ﬁ Z S(s41) +— Z As f(Yst1)
s= s=N
(38) o ) : ( \Bp)?
g yz—l—layz Yi
EPNLERI G )

Since {y.} satisfies (25), from (37) and (38) it follows that

n—1

1
(39) Jim =Y Af () = e -
s=N,y

It is easy to see that

':_l‘ Z ys—i—l

e n—1
R P

=N; s=N;

@

(40)

b
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for n. > Ny, where ¢ = £ if (18) holds, and ¢’ = 2c if (19) holds. Now (29)

implies there exists a positive constant M independent of Ny such that

20(3+1)) 5
E < M~
n2 d(s+1),cs)

for n > Nj. Letting n — oo in (40) and applying (39), we have

2

(@) 0 <oy < (3 fomen)slomsnin)43)

n=N1

Now letting N; — oo, we see that ¢ = . Therefore, (37) yields

1 g - 9(3/s+17ys)(Ays)2 N
(42) nh_{%o{/gf(yn—}-l) + f(yn+1) S;}ﬂ f(ys)f(ysH) = C,
and
(43) lim — Z Aof(Yss1)

n—oon,

In view of (43), we see that (30) is satisfied. From (33) and (42) we obtain
Ay, > £ for all large n. Combining this with (36) we see that (31) is

satisfied. This completes the proof of the theorem.

When applied to the special case of the Emden-Fowler difference equa-

tion (2), Corollary 3.2 and Theorem 3.4 yield the following result.

Theorem 3.5. In equation (2), assume that A, > 0 for all large n.

Then the following statements are equivalent.

a) For any ¢ # 0, there exists a solution {y,} of equation (2) satisfying
(25).

b) For some ¢ # 0, there exists a solution {y,} of equation (2) satisfying
(25). '

c) the two conditions

(44) Z On A < 00

n=Nyp
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and
(45) ‘ > Oa(n+1)7A% < o0
' 'I‘L:NQ
are satisfied with
ynY~1 0<y<l1
0, =<1 y=1

Yn+1)771 4> 1.

For the proof, we only have to notice that the condition %Z:ﬁ’__N
(s+1)"A, — 0 as n — oo, which corresponds to (20), is implied by (44).
Our next result gives a necessary condition for equation (1) to have a

solution satisfying (28) in the case where A,, does not change sign.

Theorem 3.6. Supposé that either A, > 0 or A, < 0 for all large n
and either (18) or (19) holds. If equation (1) has a solution {y,} satisfying
(28) for some c # 0, then

(46) f(k(n+1))A,, — 0 as n — oo for some k # 0,

and

(47) Z g(k(n +1),kn)|A,| < oo for some k # 0.
n=>Ng

Proof. First, we prove (46) holds. If f(u) is bounded as u — oo, then
(46) is trivially satisfied since A, — 0 as n — oo. Thus, we may assume
that lim, .14, f(u) = Foo. Let {y,} be a solution of equation (1) satisfying
(28). By Lemma 1.1, we have

_ B S 9(Ys1,Ys) (Ays)?
e Anf o) = o f(ynﬂ)szzn;l F)f(yss1)

for n > N. By Stolz’s theorem [3], we have
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{ Z g yﬁl,?;fs(ysﬁi/)s) ]/A[f( 1 ] = Ayp41 — € a8 0 — 00O,

1
s=n+1 ys Jn—i—l)

so it follows from (48) and (28) that A, f(yn+1) — 0 as n — oo. Hence, (46)
is satisfied. Summing equation (1) by parts, we have (34). Since Ay, — ¢

and A, f(yn+1) — 0 as n — oo, we see that

Z |An|9(yn+1ayn) < 0,

n=N

and so (47) follows. This completes the proof of the theorem.
Combining Corollary 3.3 with Theorem 3.6 we have the following result.

Theorem 3.7. For equation (2) assume that either A, >0 or A,, <0
for all large n. Then the following statements are equivalent.
a) For any ¢ # 0, there exists a solution {y,} of equation (2) satisfying
(28).
b) For some ¢ # 0, there exists a solution {y,} of equation (2) satisfying
(28).

c) The two conditions
(n+1)74,, - 0asn— oo

and
oo
Z 8, A, <oo
n=Ng
are satisfied.

Our final theorem in this section shows that (3) is a necessary condition

for equation (1) to have a solution satisfying (15) or (28).

Theorem 3.8. If equation (1) has a solution {y,} satisfying either
(15) or (28) for some c # 0, then (3) holds.

Proof. Suppose that equation (1) has a solution {y,} satisfying either
(15) or (28) for some ¢ # 0. There is an integer N > Ny > 0 such that
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yn 7 0 for n > N. Dividing equation (1) by f(y.) and summing from N to

7, we have

Ay, Ayzv 1 9(Yst1 ys (Ay,)?
(49) ’ + gs =0
f(yn-i-l) ZN ys ys+1 Z

for n > N. To complete the proof, it is sufficient to show that

A
(50) lim ——2"_ exists and is finite
n—o0 f(ynt1)
and
Ays
(51) . 9(95+1,9:)(Ay:)" converges.

e W) f(ysar)

First, consider the case where {y,} satisfies (15) with ¢ # 0. Then

Ayn 1
f(yi/ﬂ) N 0(5)

and

9(Yn+1,Yn)(Dyn)® _ 0( 1 )
f(Yn) f(Ynt1)
as n — 00, and so (50) and (51) hold.
Next, consider the case where {y,} satisfies (28) with ¢ # 0 We have
Y, — +00 0r —00 as n — 00, so that from the hypothesis on f, we see that
limy, 00 f (yn) exists in the extended real line R. Thus, we see that condition

(50) is clearly satisfied. From the equality

+

9(Wss1,¥s)AYs _ 1 1
Z f(ys ys+1) f(yn—l-l) f(yN)7

we see that the right hand side has a finite limit as n — co and hence so
does the left hand side. Therefore, in view of the fact that Ay, — ¢ # 0 as
n — oo, we conclude that (51) is satisfied, and this completes the proof of

the theorem.

4. General asymptotic behavior of solutions of equation (2).

It is knows that if ¢, > 0 for all n > N, then a nonoscillatory solution
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{yn} of equation (2) satisfies exactly one of the following three asymptotic

behaviors:

(52) yn = ¢+ o(1) as n — oo where ¢ # 0;
(53) Yn = o(n) and lim gy, = +o0;
(54) Yn = cn + o(n) as n — oo where ¢ # 0.

In this section, we prove that this fact remains valid even for the more

general case of just requiring A,, > 0 for n > N.

Theorem 4.1. In equation (2), suppose that A, > 0 for n > N and

ug(u,v) > u® for w # v. Then, for each nonoscillatory solution {y.} of

equation (2), exactly one of the three asymptotic properties (49)-(51) holds.

Proof. Let {y,} be a nonoscillatory solution of equation (2). Without
loss of generality, we may assume that y, > 0 for n > N. From Lemma 1.1

and equation (2), we have

+1 ys)(A?}s)z
YY1

o0

o o 9(y

Ayn = Anyn—f-l t Yns1 Z -
s=n+1

for n > N. Therefore, we have
(55) . Ayn > An:l/::_,_l, n > N.

From the nonnegativity of A,, we have Ay, > 0 for n > N. A summation

of equation (2) gives

J
(56) ij - Ajy;'x+1 + Z Asg(ys—i-lays)Ays = Ayn - A'n.?]ﬁ.pl
s=n+1

for j > n > N. Let n be fixed. Since. Ang(¥n,¥Yn+1)Ayn > 0, the sum in
(56) either has a finite limit or diverges to infinity as j — oco. If the latter
occurs, then Ay; — Ay, — —oco as j — oo, which contradicts (55). Thus,

we have
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(57) Z Ang(Ynt1,Yn)Ayn < co.
n=N

In view of (57), we can define a function K; by

=)
»K—l(n) = Z Asg(ys+17ys)AySa n Z N.
s=n+1

It follows that Ay; — Ajyy 1 converges to a finite limit as j — oo, say

o= lim [Ay; — Ajyi,]-
Then (56) yields

(58) Ayn =0+ Anyz+1 + Iy (TL)

for n > N. Now (55) implies o > 0, and (55) and (57) imply that

Z A'rzzg(yn—kl;yn-)yz_;_l < 0.
n=N

Therefore, we can define a function K by
(59) Ks(n) = Z Agg(ys+1a95)y?+1r n>N.
s=n-+1

Summing (58) from N to n — 1, we obtain

n-1 n—1

(60) yo=yn+oln—N)+ ) Agl+ ) Ki(s)
s=N s=N

19

for n > N. By Schwarz’s inequality, the condition ug(u,v) > u®, and the

fact that Ay, > 0 for n > N, we have

1

(61) s=N s=N
<KZ(N —1)(n - N)¥yt,

for n > N. The expression (60) then yields

1 1 .
yo < yn +o(n = N) + KF (N = 1)(n - N)y} + Ky (N)(n - N)

n—1 n—1 5 sy n—1 ya
1
Z Asydyy S( Z Aig(ysﬂ,ys)y?“) ( Z e

55 9Wet1,9s)

)

[T
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for n > N. From the last inequality, we obtain

(&1 B

y2 < [KZ(N —1)(n - N)} + D}(n)}/v2

for n > N, where D(n) = Ko(N){(n — N) +4{yy + o(n — N) + K1(N — 1)
(n — N)]. It is clear that D(n) = O(n) as n — oo, and consequently, there

exists a positive constant M such that
(62) Yn < Mn forn > N.

Let Ny > N be an integer; then

- Nl 1 n—1
1 (o4

(63) <= Z W= O Agta s Y Al
s=N s=N s=Ny

for n > N;. Arguing as in (61), we have
n—1 1 -
> A2y SEF(Np = 1)(n ~ N3yl
S:Nl

for n > Ny, which combined with (62), yields

nol 1 1 1 1

(64) D AySy S MPKE(Ny —Dn2(n— Np)¥, n> N
s=N;

Hence, from (63), we see that

n—1

1 1
(65) 0< hrlrisup - Y A < MEKF (N - 1).

SN1

Since Nj is arbitrary and K, (Nl) — 0 as N; — o0, letting N1 — oo in (65),

we see that
1 n—1
(66) lim sup — Z Agye, = 0.
‘ n—00 =N

In view of (60), (66), and the fact that K;(n) — 0 as n — oo, we have

li In
imsup =— = o.
n

n—oo

Since {y,} is nondecreasing for n > N, we have three possibilities:
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i) 0 =0 and {y,} is bounded above;
ii) 0 =0 and {y,} is unbounded;
ili) o > 0 and hence {y,,} is unbounded.
Case (i) implies (52) with ¢ = lim,—o¥yn > 0, Case (ii) implies (53),
and Case (iil) implies (54) with ¢ = o > 0. This completes the proof of the

theorem.
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