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NONLINEAR FIRST ORDER DIFFERENTIAL
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SPACES INVOLVING DISCONTINUITIES
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Abstract. In this paper the existence of extremal solu-
tions of first order discontinuous differential equations in lattice
normed linear spaces is proved by using the Tarski fixed point
principle under the generalized measurability and monotonicity
conditions. Two differential inequalities are obtained which are
further applied for proving the boundedness and uniqueness of
the solution of related differential problems.

1. Introduction. The nonlinear differential equations are discussed
extensively in the literature for uniqueness and existence theorems under
the hypothesis that the nonlinearity involved in the problems is continuous
on its domain of definition. Recently the continuity hypothesis is replaced
by Caratheodory condition, see for example, Frigon and Regan [4] and the
references given therein.” Most recently, the study of discontinuous differen-
tial equations is initiated for the existence theorem under the measurability
and generalized isotonicity conditions blending with the existence of the
lower and upper solutions of the related differential problem, see for ex-
ample, Amann [1] and Heilkila and Lakshmikantham [6] and the references
given therein. Sometimes it is possible that the nonlinearity involved in the

equation is not measurable as well as monotone, but some perturbation of
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it satisfies the measurability and monotonicity conditions. In the present
paper we deal with the problems of this type and prove the existence of the
extremal solutions and differential inequalities for the initial value problems
of first order nonlinear differential equations in the lattice-normed linear
spaces. The nonlinearity involved in the equation is not assumed to be con-
tinuous in any of its argument and the existence theorem is proved without
using the hypothesis of the existence of the lower and upper solution, for
the related differential problem. In the following we give some preliminaries

and prerequisites needed for the subsequent discussion of the paper.

2. Preliminaries. An ordered set (E, <) is called a lattice if for any
z,y € E,sup{z,y} and inf{z,y} exist and it is said to be complete if every
subset of E has supremum and infimum (see Birkhoff [2]).

Throughout this paper, let E denote a vector lattice w.r. to the order
relation < induced by the solid and closed cone P in F. Let 0<e b+#e

be a fixed element in P and define a function || - || : £ — [0, 00) by
(2.1) |z|le = inf{a > 0| — ae < z < ae}

for x € E. Clearly || - ||e is @ norm on E called the lattice-norm on E.
The vector lattice E together with the lattice-norm || - ||. is called a lattice-
normed linear space. The details of the lattice-norm || - || is given in Guo

and Lakshmikantham [5]. Then we have the following lemma.

Lemma 2.1. A closed and bounded subset of the lattice-normed linear

space (B, || - lle) is a complete lattice.

Proof. Let S be a closed and bounded subset of the lattice-normed linear
space (E, || - ||le). Then there exists a constant k > 0 such that ||z]|. < k for
all x € S. Thus we have

Sc{z e Ellzll. <k}
={z € E| — ke < z < ke}.

Therefore inf S and sup S exist and since S is closed, they belong to S.

Thus for any set A in S the infimum and supremum for A in S and hence
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(5, <) becomes a complete lattice. The proof is complete.

Definition 2.1. A mapping f : F — E is called isotone increasing if
z,y € B, r <y implies fz < fy.
Now we state a key theorem of Tarski [7] which will be used in the

sequel.

Theorem 2.1. Let L be a non-empty set and Let T : L — L be a
mapping such that
(1) (L, S) is a complete lattice,
(2) T is isotone increasing, and
(3) F={ué€ Lju=Tu}
Then F # 0 and (F,<) is a complete lattice.

3. Inmitial value problem. Let R denote the real line and J =
[0,T] C R, a closed and bounded interval. Let M(J,E) and BM(J,E)
denote respectively the spaces of measurable and boundedly measurable,
i.e., measurable and bounded E-valued functions on J. Define an order

relation < and the norm | - ||p in BM(J, E) by
(3.1) z<yifz(t) <yt), forallt e J

and

Izl =inf{a > 0| — ae < z(t) < ae, forl all t € J}

(3:2) — sup [lz(®)..
teJ

Since-the cone Pg in BM (J, E) defined by
(3.3) Py = {z € BM(J,E)|x(t) € P for all t € J}

is solid, {BM(J,E),|| - ||g} is a lattice-normed linear space.

Now consider the IVP of first order differential equation

(3.4) z = f(t, ) aa. teJ
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(3.5) z(0) =zp € E

where f : J X E — E is a function.

By the solution of the IVP (3.4)-(3.5), we mean an absolutely continu-
ous and almost differentiable function p : J — F that satisfies the equations
(3.4)-(3.5) on J.

We consider the following set of assumptions:

(f1) There exists a function k € L*(J, Ry) such that

If(t2)lle < k(t) aa.teJforallz € E

(f2) The function f(.,z(-)} is strongly measurable for all x € M(J, E).

(£3) There exists a function h € L*(J, Ry) such that z — f(t,z) + h(t)z is
nondecreasing in z € E for a.a. t € J. ‘

Now consider the IVP

(3.6) z' 4+ h(t)r =g(t,x) aa te,

(3.7) z(0) = 20 € E,
where g : J X E — E is a function defined by

(3.8) g(t,z) = f(t,z) + h(t)z

Remark 3.1. We note that the function g(t,z) is strongly measurable
in ¢ for all z € F and is bounded by a function in L! for ||z|j. < r, for some
r > 0. Therefore g(t,z) is Bochner integrable. Further the solution of the
IVP (3.6)-(3.7) implies the solution of the IVP (3.4)-(3.5) and vice-versa.
Also ¢(t,z) is nondecreasing in z for almost all £ € J.

Let us denote
i ¢ '
a(t) :/ h(s) ds and K (%) =/ k (s) ds

for t € J. Then we have a(t) > 0,k(t) > 0 or all t € J. It also follows that
a(T) = ||k||rr and K(T) = ||kl|L:-
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Lemma 3.1. A function z € AC(J, E) is a solution of the IVP (3.6)-

(3.7) if and only if it is a solution of the integral equation

4
(3.9) z(t) = zoe~ %) 4 7o) / e*Cg(s,z(s)) ds, te J

Proof. Suppose that z € AC(J, R) is a solution of IVP (3.6)-(3.7) then
(e ®z(t)) = e*Wyg(t,z(t)) aa.teJ
Integrating this, from 0 to ¢ yields that
ez (t) = 2@z (0) + /Ot e g(s,z(s)) ds.
Conversely if z € AC(J, R) satisfies (3.9), then since

/t e*®)g(s,z(s))ds € AC(J, R),
0
we have
2 (t) = — mod/ (t)e™® + eV [e*Cg(t, 2(2))]
— a(t)e"e® /t e g(s,z(s)) ds.
0
=f(¢t,z(t)) + h(t)z(t)
— h(t)[xge_“(t) +eme®) /t e“(s)g(s,m(s)) ds]
0
=f(t,z(t)) aa. tedJ

Also from (3.9), it follows that z(0) = zo, and hence the proof of lemma is

complete.

Theorem 3.1. Assume that (f1)—(f3) hold. Then the IVP (3.4)-(3.5)

has mazimal and minimal solutions on J whenever a(T)e®™) < 1.

Proof. Define a subset S of the lattice-normed space BM (J, E) by

(3.10) S = {z € BM(J, E)|z(0) = =0, llzllz < K}

where K* = "“‘01"12(3;()2{;(“, o(T)eT) < 1. Clearly S is the closed, convex

and bounded subset of the lattice-normed linear space BM (J, E) and hence
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by Lemma 2.1, (5,<) is a complete lattice. Consider a mapping @ : S —
BM(J, E) defined by

t
(3.12) Qx(t) = zge™*® + e"“(t)/ eXgls,z(s)} ds, te J
0

Then the problem of the solution of the IVP (3.4)-(3.5) is just reduced to
finding the fixed points of the operator @ in S. Obviously Qz € M(J, E),

for each x € S. Further for any = € S, one has

t
1Qz(®)lle <llzolle + /0 e*Mlg{s, o(s)} o ds
| <ol + DK (T) + *Da(T)|le]5
<K* (since a(T)e*?) < 1)

This shows that Q maps S intb itself. Also @ is isotone increasing on S in
view of Remark 3.1. Now an application of Theorem 2.1 yields that @) has a
fixed point and the set of all fixed points is a complete lattice. Consequently
the IVP (3.4)-(3.5) has maximal and minimal solutions on J. By definition
of Q) it follows that these extremal solutions are in AC(J, E). This completes
the proof.

4. Differential inequalities and applications. The main problem
of the theory of differential inequalities is to obtain the bounds for the
solution of related differential inequality. In the following we shall show
that the extremal solutions of the IVP (3.4)-(3.5) serve as the bounds for

the solution of the related differential inequalities.

Theorem 4.1. Assume all the hypotheses of Theorem 3.1 hold. If there
exists a function w € S, where S is defined as in the proof of Theorem 3.1

such that
u <f(t,u) aa. tedJ
(4.1)
u(0) <zg.

Then there is a maximal solution pps of the IVP (3.4)-(3.5) satisfying

(4.3) u(t) < pp(t) aa.ted
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whenever a(T)e*T) < 1.

Theorem 4.2. Assume all the hypotheses of Theorem 3.1 hold. If there
exists a function v € S, where S is defined as in the proof of Theorem 3.1,

such that

(4.4) v' > f(t,v) aa.teJ

(4.5) v(0) > xo,

then there is a minimal solution p,, of the IVP (3.4) — (3.5)) such that
(4.6) P (t) < v(t) tedJ

whenever a(T)eXT) < 1.

The proof of Theorems 4.1 and 4.2 is standard (see Dhage[?)]) and hence
we omit the details. Finally we give two applications of the differential
inequality established in Theorem 4.1, since the proof of these results are

routine, we omit them.
Consider the scalar IVP

(4.7) ' =g(t,T) aa.teJ

(4.8)  1(0)=ro € R (ro >0)

where g : J x Ry — R, is a function and R, denotes the set of nonnegative

real numbers.

Theorem 4.3. Assume that all the hypotheses of Theorem 4.1 hold
with f replaced by g. Further suppose that the functions f and g satisfy

(4.9) If @ z)lle < g(tllzlle)  aa ted

for all (t,z) € J x E. Then for any solution z to IVP (3.4)-(3.5), there is
a mazimal solution Ty fo the IVP (4.7)-(4.8) satisfying
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(4.10) le@®lle <ram(t) teJ
whenever a(T)e*T) < 1.

Theorem 4.4. Assume that oll the hypotheses of Theorem 4.1 hold with
f replaced by g. Suppose that the functions f and g satisfy the condition

(4.11) 1f@2) = fFEulle <g@bllz —olle) aateld

for (t,z), (t,y) € J x E. Further if the identically zero function is the only
solution of the IVP (4.7)-(4.8) with ro = 0, then the IVP (3.4)-(3.5) has at

most one solution on J provided a(T)e*T) < 1.

The author is thankful to the referee for his useful comments on the

earlier version for the improvement of this paper.
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