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Abstract. We consider a particular class of I, random
elements with either EV = 0 or E||V|| = o and we show how
to construct sequences {a,,n > 1} and {b,,n > 1} so that
Sr_,a1Vi /b, converges to a nonzero constant either in prob-
ability or almost surely. As in the real line case only a small
class of distributions have this property. We first establish our
Strong Laws of Large of Numbers, when possible, and if not we
present the corresponding Weak Law.

1. Introduction. We will examine Strong and Weak Laws of Large
Numbers for weighted sums of random elements. These normalized partial
sums are of the form Y ,_; axVi/b,, where {an,n > 1} and {b,,n > 1} are
constants and {V,V,,,n > 1} are our independent and identically distributed
(i.i.d.) random elements. Our goal is to obtain a finite nonzero limit for
these normalized partial sums even though either EV = 0 or E|V]| = oc.
Prior to investigating the random element situation a brief review of the
real line case should be conducted.

Rogoiin [20] called {b,,n > 1} an exact upper sequence for the sum
Sr—1 X if with probabﬂity one

T X .
lim sup ————————Zk:l ko1,

n—r00 bn

Received by the editors April 29, 1996 and in revised form June 19, 1997.

AMS Subject Classifications(1990): Primary 60F15.

Key Words and Phrases:Almost sure convergence, strong law of large numbers, weak
law of large numbers, “fair” games problem, exact sequences, slow variation.

Partially supported by the National Academy of Sciences.

163



164 ANDRE ADLER [September

A natural extension of this definition is that of an exact sequence. We say
that {bn,mn > 1} is an exact sequence for the sum ) ,_, Xp if
> rey Xk/b, — 1 almost surely (a.s.). Chow and Robbins [10] examined
this phenomenon for i.i.d. non-L; random variables while [16] observed the
pairwise i.i.d. situation.

There are three possible situations. If 0 < |[EX| < oo, then it follows
that

—Z—k—ﬂ—)&g — EX a.s.
n

hence nEX is an exact sequence for Y ;_, Xz. So we turn our attention to
the other two cases, i.e., when either EX = 0 or E|X| = oco. It has been
shown that if either EX = 0 or E|X| = oo, then there is never an exact
sequence for the partial sum ) ,_; Xi (see [18] and [10], respectively). This
is why we examine weighted sums of i.i.d. random variables.

The next step was to examine random elements in a real separable
Banach space. An extension to the Chow-Robbins result was obtained in
[5]. In that paper it was shown that there does not exist an almost sure
exact sequence for weighted sums of i.i.d. non-L; random variables as long

as the coefficients, also known as weights, {a,,n > 1} are such that
. k13
(1) nlan.| T and ) lax| = O(nlanl).
k=1 .

This is why in our unusual Strong Laws the weights are usually of the
form 1/n times a slowly varying function, which shows the optimality of
(1). Later this was extended to pairwise i.i.d. random elements in a real
separable Banach space in [6]. There is evidence that the results from the
real line can be extended to particular Banach spaces. Our task here is to
examine ii.d. [, random elements, {V,V,,,n > 1} where either EV = 0 or
E||V}] = co. We will exhibit Strong Laws when possible and if not we will
present the corresponding Weak Law. Our goal is not just to show when
these limit theorems exist, but how to explicitly select the proper weights,

{an,n > 1}, and norms, {bn,n > 1} so that Y ;_, axVi/b, — 1 in some
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sense. Moreover, in Section Five it will be shown how easy it is to obtain
our weights and norms. These results certainly depend on the distribution
of our random elements {V,V,,n > 1} and can be found in conditions (2)
and (3) for our Strong Laws and (8) in our Weak Laws.
We say that {b,,n>1} is a strong exact sequence for the sum >} _ axVi
if
——-—ZZZI AL — Yy a.s.
bn
for some nonzero element vg. Similarly, {b,,n > 1} will be a weak exact
sequence for the sum > ,_; axV; if
>e=1 a6 Vi P, Yo.
br
We will examine a simple class of [, random elements. Even though
they are not very complicated they do allow our normalized partial sums
to converge to any point in ;. First we select a sequence of i.i.d. random
variables {X, X,,,n > 1} with either EX = 0 or E|X| = co. Next, let
{K,K,,n > 1} be i.i.d. integer-valued random variables, independent of
{Xn,n > 1}. Then we set V,, = {X,I(K, =k),k > 1}. Observe that

) 1/p et i/p
Wall = | X106, = )| = 1l 100 = 0] =l
k=1 k=1

We will show how to explicitly construct {a,,> 1} and {b,,n > 1} so
that > ¢ _; axVi/bn — vp in some sense, where vy = (P{K = 1}, P{K =
2}, P{K = 3},...). So, if you want to converge to a particular point in I;
you need to select the random variable K appropriately, then either multiply
an, by the norm of that point or similarily divide b,, by that norm.

In Section Three we will examine the Strong Law of Large Numbers and
in Section Four, the Weak Law of Large Numbers. Remémber, we will never
let 0 < ||[EV]|| < 00, due to its triviality. In view of [3], which generalized [15],
we need only consider random variables, X, such that P{|X| > z} = L(z),
where L(z) is a slowly varying function. Hence, X must either barely have

a finite first moment (E|X| < oo and E|X|P = oo for all p > 1) or X must
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barely miss having a finite first moment (E|X| = oo and E|X|? < oo for all
g < 1). A good reference on slowly varying functions is [19].

Even though we are not interested in symmetrical random variables,
they are included in these results. What happens in those cases (¢ = 1 or
¢ = 1, see Section Two) is that the limits of our normalized partial sums
do exist, but they are zero. In those cases, as one would expect, we cannot
find an exact sequence, but all the theorems in Sections Three and Four do
hold. Furthermore, we will suppose that X is unbounded, which is obvious
when E|X| = oo, but not always true when EX = 0.

From (1) we see that a, = 1 is not a viable candidate for our Strong
Laws. So we must exhibit both {a,,n > 1} and {b,,n > 1}. Our proce-
dure in every case will be to define an auxillary sequence {c,,n > 1}, then
{@n,n > 1} and {b,,n > 1} will be obtained via {c,,n > 1}. It is important
to note that the sequence {c,,n > 1} is not the same for both our Strong
and Weak Laws.

2. Preliminaries. We first define two functions that will aid us in

determining the proper constants that will achieve our goals. They are:
- .
Az) = / P{X| > t}dt, =30
xz

it EX =0 and
w(zx) =/ P{X >t}dt, >0
0

when E|X| = c0.
Also, as in [17], we compare the rates of growth of the two tails. We

set

g XTI >a)
Tl EXFI(XT > o)

it EX =0 and

oy BXTIX” <o)
= Il
s—sc0 EXTI(XT < 7)

when F|X| = 0.
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We will adopt the usual convention of é.llowing C to denote a generic

finite constant which is not necessarily the same in each appearance.

3. Strong Laws. We will start by exploring the nonintegrable case
first. The first and probably the most important difference between our
Strong and Weak Laws is in how we define the sequence {c,,n > 1}. In
search of the proper weights and norms in our Strong Laws we use the
formula ¢2P{|X| > c.} = nu®(c,). Since we are only concerned with an
asymptotic representative of ¢, , we can and do modify ¢, for finitely many
n so that u(c,) < ¢y, for all n.

Next we define the norming sequence {b,,n > 1}. Let by = 1 and
by = bn_1/(1 = plcn)/cn),n > 2. Since p(c,) < ¢, it follows that b,
increases. Lastly, we define a,, = b,,/c,,,n > 1. In most situations ¢, /n and
b, are slowly varying. This in turn implies that na,, is slowly varying, which
agrees with the results that can be found in [1]. Hence a, is 1/n times a
slowly varying function. We are now ready to present our first Strong Law

of Large Numbers.

Theorem 1. Let {X,X,,n > 1} be i.i.d. non-L; random wvariables
with zP{|X| > z} =~ L(z), where L(z) is slowly varying at infinity. Let
{an,n > 1} and {b,,n > 1} be those constants previously defined. If

@) S len)en = o0
and =
) S (en) /e < oo
then "

EZ=1 ar Vi . (1 —-C
bn 14c¢

)vo a.s.

Proof. Since P{|X| > cn} = nu?(c,)/c2 it follows that > oo, P{|X| >
¢n} < oo. Recalling that b, — bp—1 = p(cn)bn/cn and b, > 1 for all n, we

have
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b= (bp—bpo1)+1=Y “(C’“)bk +1
k=2

k=2 Ck
whence
= p(cx) = plcx)
k k
b, > b, >

which implies

4)
We partition our partial sum into the following three components:

b’ Zn:“ka =b," iak[Vkl(lle[[ <) - EVI(|V| < )]

k=1 k=1

+ b;l Z akaI(HVkH > Ck)
k=1

+ 0.1 aBVI(|V < ).
k=1

We will use Theorem 1 of [8] to show that the first term converges to
zero almost surely. In that theorem we set W,, = a,V,I(||V,.|| £ ¢,.) and we

let p be any number in (1,2]. We need to show that

o ElWall?P _ <~ R EIVIPIIV] < cn)
D =ow.
n=1 n=1

Using the fact that L(x) is slowly varying we have from [13], page 281
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ST GPEIVIPIAVI < ea) = S P EIXPI(IX] < )
n=1

n=1
0
<Cy c;f’/ P2 L(t)dt
n=1 0

<C i e L(cn)

n=1

SCiPﬂX[ > cn}

n=1

=0(1).

= Zc,;”/ " PdP{X| < 1)
n=1

Therefore the first term vanishes almost surely.

169

The second term is o(1) a.s. since b, — 00, Y oo P{||IV]| > cn} < o0

and the Borel-Cantelli lemma.

We now examine the last term. First note that since .., P{|X| >
cn} < ocoand Y oo nt = oo it follows that nP{|X| > ¢,} = o(1), which

in turn implies that

lcnP{IX'I > cnt

2
len) ] ~nP{IX] > en} = o1)

Utilizing integration by parts, the tail behavior of P{|X| > z}, and the

definition of ¢ we have

Thus

and

plen) = cn P{X| > e} + EIX|I(|X] < cn)
~ E|X|I(|X] < ca)
=EXTI(Xt <c,)+EX I(X™ <cp)
~ A+ )EXTI(XT <cp).

BEXFIOCT S ) ~ () len)

EX I(X~ <cp) ~cEXTI(XT<cn)~ (

).U'(Cn)-

1+¢

Using (4) the third term
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1Y aEVI([V] < )
k=1

=b-t Z ar EXI(| X} < ck)vg
k=1

=1 ax[EXTI(X* < ) —~ EX™I(X™ < c)lwo

k=1
~bt i ax( L _ ¢ Y p(ex)vo
" = T ldce 14

1-c\,, - l-c
"'<1_|_C>bn ;akﬂ(ck)vo - <1+c>vo

which completes the proof.

Next, we turn our attention to the mean zero case. The main difference
is that u(z) is replaced with fi(z). Also our auxillary sequence ¢, is now
defined via &% P{|X| > ¢,} = ni*(¢,). Then {a,,n > 1} and {b,,n > 1} are
defined similarily with the natural exception that we now use ﬁ(a:) instead

of u(z) and ¢, instead of c,.

Theorem 2. Let {X, X,,,n > 1} be i.i.d. unbounded mean zero random
variables with tP{|X| > z} ~ L(x), where L(z) is slowly varying at infinity.
Let by = bp_1/(1 = [i(Ca) /) and ap = b [Sn. If 50 1i(€,)/Cn = 00 and
S, nii?(E) /& < oo, then

Zk:blnaka . (C— 1

Proof. Since P{|X| > €.} = nu?(¢,)/c it follows that 3°°°  P{|X]| >

o~ g

Cn} < 00. Using the fact that b, — by—1 = i(C, )bn /G, it follows that

Y re1 @k (Cr)
(5) -k—lb—n—— —

As in the last proof, the first two terms of the following partition vanish

almost surely
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b eV = b7 aw[ViI(|[Vll < &) — EVI(|V] < &)]
k=1 k=1

+0.1 > arViI([Vill > &)

k=1
+b,1 Y aBVI([VI < &)l
k=1
As for the third term, using the definition of ¢ and the fact that
nP{|X| > ¢€,} = o(1), which implies that

~ ~ 2
{fﬂ%} ~nP{|X] > .} = o(1)
we see that
i(Cn) = —cP{|X| > ¢} + E|X|I(|X]| > ¢a)
~ E|X|I(|X] > ¢,)
~ (1 +DEXHI(XF > E).
Thus
EXTI(X* > ) ~ (g) @)
and
EX-I(X~ > ) ~CEXTI(X' >E) ~ (E%)ﬁ(&).

Using the fact that our random variables have mean zero
EVI(|V] £ &) = EXI(|X]| < Cn)vo
= —EXI(|X| > ¢y)vo
=[EXTI(X™ >¢,) - EXTI(Xt > &)
c—1\_ .
~ (E+ 1)“(0”)00'

Applying (5) allows us to conclude that

b)Y aBVI(|V] < C) ~ (TJ;'I)bnl > arfi(@r)vo
k=1 ¢ k=1

c—1

c+1

—

Jvo

which completes the mean zero case.
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4. Weak Laws. Next we examine our unusual Weak Laws of Large
Numbers. It should be mentioned that these results not only hold in many
cases where the Strong Laws fail, but they are also quite interesting on their
ow1.

As was noted in [17] both z/i(x) and z/u(x) are increasing, therefore
their respective inverse funcéions are also increasing. This in turn allows us
to define ¢, as the increasing solution to ¢, = np(¢,) and similarly ¢, as
the increasing solution to ¢, = nu(c,).

In this case we have a bit more freedom than with our Strong Laws.
We may choose as our weights {a,,n > 1} to be any positive sequence of

constants so that

(6) Zai = O(naf) for some p € (1,2]
k=1
and
(7) Z ag ~ Anag,
k=1

hold, for some positive finite constant A. Note that this includes the entire
class of sequences a,, = S(n)n* for any o where ap > —1 and slowly varying
functions S(z). Naturally, this includes the nonweighted situation. But,
since we can select any p in (1,2] we can always make p as close to 1 as
possible. Thus, we can set a, = S(n)n® for all o > —1. This agrees with
[2]. »
~ Furthermore, from [6], if (7) holds, then an strong exact sequence cannot
exist for any distribution as long as E[|V|| = oo, since (7) coincides with
the main condition in (1). It is also conjectured that a similar result holds
whenever EV = 0. Again this is why we need to examine weighted Strong
and Weak Laws of Large Numbers. Finally, we select our norming sequence
via the simple formula b, = a,c, or in the mean zero case b,, = a,,,.
The constraint on the distribution of our random variables in this sec-
tion is (8) in the mean zero case and (9) in the non-L; case. This is a natural
extension of the classical Weak Law of Large Numbers credited to Feller (see

[11], page 128). One should compare (8) with (3) . It is clear that (8) is
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a stronger condition, but one should remember that there are two different
sequences {c,,n > 1} in these different Laws of Large Numbers.

Our first theorem investigates the Weak Law for mean zero random
elements. Note that we need the additional asumption that z(z) is slowly
varying at infinity. However, before we state and prove our first theorem we

need to recall a previous result, which can be found in [4].

Lemma. If i(z) is slowly varying at infinity and p > 1, then
E|XPI(|X]| < z) = o(z? " fi(2))-

We can now state and prove our Weak Laws.

Theorem 3. Let {X,X,,,n > 1} bei.i.d. unbounded mean zero random

variables with i(z) slowly varying at infinity. If 1 < p < 2, (6), (7) hold

and
(8) nP{|X|>7¢,} = o(1)
then
D=1 %V P, )\(E~ 1)1)0'
bn c+1
Proof. From ¢, = nj(c,) and (8) it follows that
e P X Cn »
SPUXI > &) o prx) > 6} = o(1)
1i(cn)
whence
and
BVIVI <) ~ [ 2 i)
(“ “_Cn ~ i1 M\ Cn )Vg.
So
Y1 e EVI(||V| <€) nap\ [c—1\. NGRS
b b, ) \T51 e =M 57 v

In this case we will use the proof of the Theorem in [7]. This means
that we need to verify that > »_; af P{||V|| > .} = o(a}). This follows
from the fact that a;?> o, ah P{||[V]| > €.} < CnP{||[V] > ¢} = o(1).



174 ANDRE ADLER [September

Also we need to show that > ,_, A E||V|PI{||V] < €.} = o(b%). Using
EIXPPI(|X]| £¢,) = o(E1fi(¢,)) from our Lemma and Y ;_; af = O(na?)

we have
b2 > G E|VIPI([V] < &) < Crb Pa2 B|VIPI(IV]| < &)
k=1

= CnePBIXPI(X| <)

= o(nZ; P& (E))

= o(n&; " i(&))

= o(1).
Hence
Y= Ve — EVI(IVI <E)] P, 0
bn

But

S aBVI(|V]] < &) -1
k=1 %k o ———)A( )UO

which allow us to conclude that

Zk:bl aVe P )\(c— 1)1)0

completing this proof.

Theorem 4. Let {X,X,,n > 1} be i.i.d non-L; random wvariables. If
1<p<2,(6),(7) hold and

9 ' nP{|X| > c.} = o(1)
then

> r=1 Vi L)\<1_C)Uo.

bn 1+C

Proof. Since p(cn) = —co  P{|X| > cn} + E|X|I(|X]| < ¢,) we see that
(9) is equivalent to ¢, P{|X| > ¢,} = o(u(cn)). Hence

plen) ~ L+ ) EXT(XF < cp)

whence
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l1-c¢
EVI < ~ :
(V1< )~ (155 lenio
Therefore
Yorc1@k BEVI([VII<cn) [ Anan\ [1—c l1-c
10 = ~ =)\
(10) b b, ) e Moo =2 5 +c>”°‘

In this case we will use the Theorem from [7] directly. Clearly p > 1,
cn/n increases, > p_, ap = O(nak) and nP{|X| > c,} = o(1). So we can
conclude that

Yone1 6k[Ve — EVI(|V| < c,)] P

() -

0.

Combining (10) and (11) we see that the conclusion obtains.

5. Discussion. We conclude this paper with a very current problem.
All distributions that allow our unusual limit results are those in which the
mean either barely exists or barely fails to exist. The three hundred year-
old St. Petersburg game (see [12]) gives rise to such a distribution. This
has been cited in the literature so often, that for a change I will introduce a
different type of game that also permits these peculiar limit theorems. From
[9], page 172, we have the following situation: “An urn contains a amber
beads and b black beads with a and b both greater than zero. A bead is
selected at random. If it is black, sampling stops; otherwise, it is replaced,
an additional amber bead is added, and the process is repeated. Let N be
the number of steps until the process stops.”

The first thing to prove is that EN < co if and only if 4 > 1. The next
question is, what happens when b = 1 7 This is where the fun begins. As
mentioned earlier, one of the most important facets of these Laws of Large
Numbers is the ease in which we obtain the proper weights and norms.
Similarly it is quite easy to determine which distributions support exact

sequences and which distributions do not (see [3]).

Example. Let Ny, No, N3, ... be i.i.d. random variables with the dis-

tribution function defined via our stopping scheme. We want to show that
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S (kln* )"V

(12) Inn

— a(P{K =1}, P{K=2},P{K=3},---) as.

where Int 1 > 0 and

S oneq k*S(E)Vs P _a
netlS(n)lnn a+1

(13) (P{K =1},P{K = 2},P{K =3},---) .

where S(z) is any slowly varying function, o > —1,K, Ky, K9, K3, ... are

ii.d. integer-valued random variables, also independent of the Ni’s with

Vi = Ne(I(Kx = 1), [(Ky, =2), I(Ki = 3),- ).

Proof. Since

a . a a
a+k—-1)(a+k) a+k—-1 a+k

PN =k} = ¢

it follows that

> 1 1 a
PN >s}=a ) <a+k—1—a+k)’v;
k:[a:]+l

whence
p(z) = / P{N > t}dt ~alnz.
0
Our next step is to solve for ¢,. In the Strong Law setting we need to find

a solution to
2 P{N > c,} = nu*(c,)

which is equivalent to ¢, = nln? Cn- S0 we let ¢, = nln®n. Next we
solve for b,. Instead of using b, = b,—1/(1 — p(cn)/cn), we use (4), ie.,
Zzzl aku(c;;) ~ by, where b,/a, = ¢, = nln®n. So we need to find a,
such that a3 7_ axlnk ~ a,nln’n. By setting a, = (nlnn)~!, which
implies that b, = Inn, we actually have >, _; axp(ck) ~ ab,, which works
just as well as (4). Since pu(c,) ~ alnn it follows that (2) and (3) hold.
Finally, by noting that ¢ = 0, (12) follows from Theorem 1.

As for the Weak Law we first obtain ¢, via ¢, = nu(c,). Since p(z) ~

alnz, we let ¢, = anlnn. Since a, = n*S(n) it follows that b, = an>*!
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S(n)Inn. It should be noted that A, from (7), is (@ + 1)~ and that we can
pick a number p close to one such that (6) holds. Clearly (9) holds since

nP{N>cn}~n<ci)=n( a ) LI

n anlnn Inn

Again, using the fact that ¢ = 0, (13) follows from Theorem 4.

From the Pringsheim-Jensen inequality (see [14], page 28) we see that
(13) is stronger the smaller we select p. Hence (13) holds for all 1 < p < co.
Returning to (12) and (13) we note that our normalized partial sums can
converge to any point in I; that we wish. All one has to do is define the
random variable K appropriately and then either multiply a, or divide b,

a constant in order to achieve that goal.
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