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ON BI-SYMMETRIC ALGEBRAS
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Abstract. In this paper, we discuss some properties of
bi-symmetric algebras. In particular, we give some facts of tran-
sitive bi-symmetric algebras and bi-symmetric derivation alge-
bras, and for the former, we also obtain their classification in
dimension from 1 to 4.

0. Introduction. A left-symmetric algebra is a new kind of algebra
system obtained from the studying of Lie algebra, Lie group and differential
geometry. It is very useful for many topics in geometry and algebra ([1],
[2], [13], etc.). For example, it is important to understand the structures of
the Lie groups which admit complete, locally fiat, left invariant connections
([14]). We have already discussed some basic properties in [3]-[6] from the
point of view of algebra.

In [6], we gave the definition of “bi-symmetric algebra”. It is a special
kind of left-symmetric algebra which admits the “right symmetry” under the
same product. In this paper, we continue discussing this interesting algebra
system.

In section 1, we recall some basic facts of left-symmetric algebras and
“certain symmetry” in some sense, including some definitions and basic

properties. And we omit some proofs. More details can been found in

[31-[6]-
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In section 2, we give some basic properties of bi-symmetric algebras.
We obtain that the bi-symmetry “corresponds” to the anti-isomorphism.

In section 3, we discuss some special kinds of bi-symmetric algebras cor-
responding to the left-symmetric algebras which are very meaningful in ge-
ometry. They are transitive bi-symmetric algebras and bi-symmetric deriva-
tion algebras.

In section 4, we introduce the definition of characteristic matrix for a
left-symmetric algebra, and give some conditions for a left-symmetric alge-
bra to become a bi-symmetric algebra. As an example, we give the classifi-
cation of transitive bi-symmetric algebras in dimension from 1 to 4 through
some results in [9] and [10] at the end of this paper.

In this paper, we let K denote the field. And without special saying, it
is an algebraically closed field of characteristic 0. Also the algebras which

we discuss are of finite dimension.
1. Preliminaries.

Definition 1.1. Let A be a vector space. We define a bilinear product
in A by denoting (z,y) — z - y. If it satisfies

(1L.1) z-(y-2)—(z-y)-z2=y-(x-2)—(y-2) 2 Vz,9,2€4,
A is called a left-symmetric algebra.

Definition 1.2. Let B be a vector space. We define a bilinear product
in B by denoting (a,b) — a o b. If it satisfies

(1.2) ao(boc)—(aob)oc=ao(cob)—(aoc)ob, Va,bc€ B,
B is called a right-symmetric algebra.

Remark. In a vector space A, we define a bilinear product by denoting

(z,y) — zy. If we set

(1.3) (2,9,2) = (29)z — 2(y2), V3,9,2 € A
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(called associator), then A is a left-symmetric algebra (right-symmetric al-
gebra) if and only if A satisfies (z,y, z) = (y,z,2)((z,¥, 2) = (z, 2,7)). This
is just the “left-symmetry” (“right—syﬁlmetry”).

The relation between left-symmetric algebra and right-symmetric alge-

bra is given by the following theorem:

Theorem 1.1. Let A be a left-symmetric algebra with the product (-).
If we define a product in A by (a,b) — a o b, such that

(1.4) aob=b-a,

then A is a might-symmetric algebra with the product (o). We let A’ denote
this algebra.

Thus, corresponding to the theory of left-symmetric algebras, we have
the parallel theory on right-symmetric algebras. Therefore in general we

only discuss the left-symmetric algebras.

Theorem 1.2. Let A be a left-symmetric algebra. If we define a bracket
product in A by

(1.5)  myl=zy-yz, VzyeA

then A is a Lie algebra with the bracket product. The Lie algebra is called
to be sub-adjacent to the left-symmetric algebra, and on the other side, the

left-symmetric algebra is called to be compatiable with the Lie algebra.

A natural question is whether any Lie algebra has the compatible left-
symmetric algebra structure. In order to solve this problem, we should study

the ne_xt structure at ﬁrsf.

Lemma 1.3.. Let V be a vector space in dimension n,gl(V) is the

general linear Lie algebra. In the vector space
HV)=Vxgl(V)=Vog(V)={ut+AlueV,Aecgl(V)}

we define the bracket product by
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(1.6) [u+ A, v+ B]=Av - Bu+[A,B] VYu,v€V,A B ecgl(V),
then H(V) =V x gi(V) is a Lie algebra.

Definition 1.3. Let £ be a Lie algebra, V a vector space. The homo-
morphism of Lie algebras from £ to H(V) =V x gl(V):

(L.7) p(z) = q(z) + f=

is called the affine representation of £. If there exists v € V, such that ¢,
defined by

(1.8) oy (z) = ¢(z) + f2(v)

is a linear isomorphism from £ to V, then p is called an etale affine repre-
sentation of A. And v is called a regular point.

In the next, for a left-symmetric algebra A, we let L,, R.(z € A)
denote the left multiplication and the right multiplication respectively, i.e.
L:(y) = zy, R:(y) = yz, Vy € A.

Example 1.1. Let A be a Lie algebra. If A has a compatible left-

symmetric algebra structure, then
(1.9) pl)y=z+ L,

is an etale affine representation of the Lie algebra A, and 0 is a regular point.

It is called the typical affine representation of the Lie algebra A.

Theorem 1.4. Let L be a Lie algebra. Then there can be defined a
product in L such that L is the compatible left-symmetric algebra of the Lie
algebra if and only if £ has an etale affine representation. In the sense of
(1.7) and (1.8); the ieft—symmetric product is defined by

(1.10) zy = Loy = ;' fopu(y), Vz,yeL

Theorem 1.5. Let L be a Lie algebra.
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(1) If there exists a compatible left-symmetric structure in L, then (£, L] #
L.

(2) Especially, if L is a semisimple Lie algebra, then there doesn’t exist the

compatible left-symmetric structure in L.
2. Basic properties of bi-symmetric algebras.

Definition 2.1. Let B be a vector space. We define a bilinear product
in B by denoting (z,y) — zy. If it satisfies: Vz,y,2 € B,

(2.1) z(yz) — (zy)z = y(zz) — (yx)z,
(2.2) z(yz) — (zy)z = z(2y) — (z2)y,

B is called a bi-symmetric algebra. That is, B is not only a left-symmetric

algebra, but also a right-symmetric algebra.

Proposition 2.1. Let B be a vector space, we define a bilinear product
in B by denoting (x,y) — zy. Then B is a bi-symmetric algebra if and
only if Vz,y,z € B, the associator (z,y, z) defined in (1.3) is equal for any

displacement on x,y, z.

Proof. This conclusion follows from the definition of bi-symmetric al-

gebra.

Example 2.1. Obviously all associative algebras are bi-symmetric

algebras.

There are non-associative bi-symmetric algebras:

Example 2.2. Let e;,es be a basis of a linear space A. We define

products in A by
(2.3) ere; =0, ereg = ey, ese; =0, egey = e1 + e9.

Then it is easy to imply A is a bi-symmetric algebra and A is non-associative.

By Theorem 1.1, we have
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Lemma 2.2. Let A be a left-symmetric algebra with the product (-).
Then A is a bi-symmetric algebra if and only if A" is still a left-symmetric

algebra with the product (o), where A’ is defined in Theorem 1.1.

Example 2.3. Let A be the bi-symmetric algebra in Example 2.2.

Then A’ which is defined in Theorem 1.1 is isomorphic to
(2.4) A" = (e1,eslere; = 0,e1e9 = 0, €061 = —e1,e2e3 = €1 — €2).

Then A’ is a non-associative bi-symmetric algebra since (A') = A. More-
over, by [3], we can easily obtain that these two (non-isomorphic) algebras
are exactly the non-associative bi-symmetric algebras in dimension 2 in the
sense of isomorphism. Therefore they are exactly the non-associative bi-

symmetric algebras with the minimal dimension.

Definition 2.2. Let A, B be two left-symmetric algebras (or right-
symmetric algebras, or bi-symmetric algebras). A linear map ¢ : A — B

is called an anti-homomorphism if

(2.5) P(zy) = ¢(y)p(z), Vz,y € A.

If, in addition, ¢ is a linear isomorphism, then ¢ is called an anti-

isomorphism.

Theorem 2.3. Let A be a left-symmetric algebra with the product (-),
and A’ be the algebra with the product (o) which is defined in Theorem 1.1
Then the following conditions are equivalent: ,

(1) A is a bi-symmetric algebra with the product (-).
(2) A’ is a bi-symmetric algebra with the product (o), and A' is anti-

isomorphic to A.

(3) There exzists an anti-isomorphism of A, that is, there exmists a lefi-

symmetric algebra B and a linear map ¢ : B — A such that ¢ s

an anti-isomorphism from B onto A.

Proof. (1)==>(2) By Lemma 2.2, A’ is not only a left-symmetric algebra,
but also a right-symmetric algebra with the product (o). Therefore A’ is



1998] ON BI-SYMMETRIC ALGEBRAS 133

a bi-symmetric algebra. Let ¢ be the (linear) identity. Then ¢ is an anti-

isomorphism.
(2)=(3) It follows from (1).
(3)==-(1) We let () denote the product of B. Then Vz,y,z € B,
L @) (B) - 6(2)) - ((2) - $(v)) - $(2)

=¢(z) - p(z xy) — $(y * z) - $(2)
=¢((z xy) * z) — ¢z * (y x 7))
=¢((y * 2) xx) — Py * (2 * 2))
=¢(z) - (6(2) - d(y)) — (¢(z) - $(2)) - $(y)

Hence A is also a right-symmetric algebra. Therefore A is bi-symmetric.

Remark. We have known that many algebra systems such as rings,
groups, etc., have the natural anti-isomorphisms ([12]). However, for a left-

symmetric algebra, the anti-isomorphism corresponds to the bi-symmetry.

Corollary 2.4. In the setting of Theorem 2.3, if A is commutative,
then A’ is isomorphic to A. If A’ is isomorphic and anti-isomorphic to A
under the same map, then A is commutative, and at the moment, A is

assoctative.

Proof. The former is obvious. For the latter, let ¢’ be the isomori)hism
from A’ onto A. Then ¢'(z) - ¢'(y) = ¢'(y) - ¢'(z), Vz,y € A’. Hence A is

commutative.

There exists a bi-symmetric algebra A which is non-commutative such

that A is isomorphic to A’. There are a lot of such examples:

Example 2.4. Let e;,es,e3 be a basis of a linear space A. We define

products in A by
(2.6) erea=ejes=eje3=ege; =ege; =ezea=eze3=0, esez3=e€;, e3e9=—e€;.

Then A is a non-commutative associative algebra, and A is isomorphic to A’.
Furthermore, by Corollary 4.4, the left-symmetric algebra A which satisfies

Vz,y € A, xy = —yx must be bi-symmetric and A is isomorphic to A'.
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Definition 2.3. Let A be a bi-symmetric algebra, A’ be the algebra
which is defined in Theorem 1.1. If A is isomorphic to A’, then A is called
of type I, otherwise, A is called of type 1L

Corollary 2.5. The bi-symmetric algebras of type II appear in (non-

isomorphic) pairs. We let ~ denote the pasr.

Example 2.5. There are associative algebras of type IL. Let e;,es be

a ‘basis of a linear space A. We define products in A by

(2.7) eie1 =0, eres =0, eze; = e, ezeg = ea.

Then A is associative. And

(2.8) A" = (e1,eslere; =0, ejes = e1, ezer =0, ezep = e).

However A is not isomorphic to A’ by [3].
Moreover, by the classfication of left-symmetric algebras in dimension

2 given in [3], we have

Theorem 2.6. (Classification Theorem) The classification of bi-
symmetric algebras in dimension 2 is given as follows:
(1) Commutative algebras (hence they are associative and of type 1), i.e.
(A A = (e, eale;ej = b;j€i,1,5 = 1,2);
(AIN)A = (e1,e2]lerer = e1,e1e2 = eze; = eg,e0e9 = 0);
(AIINA = {e1,ea]erer = e1,e1e2 = eze; = ezeg = 0);
(AIV)A = (e1,ealerer = e1e2 = eze; = egey = 0);
(AV)A = (e1,ezlerer = ez, e1e3 = eze; = ezep = 0);

(2) There are just two pairs of bi-symmetric algebras of type 11, i.e. (2.3)~
(2.4), (2.7)~(2.8).

Similarly, for a bi-symmetric algebra, we also can define its sub-adjacent

Lie algebra. Moreover, we have
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Theorem 2.7 Let L be a Lie algebra. Then there can be defined a
product in L such that L is the compatible bi-symmetric algebra of the Lie
algebra if and only if L has an etale affine representation p = (g, f) such
that (in the sense of (1.7) and (1.8))

(29) fz(p'u([x7 y}) = f¢;1fz(pv(y)(pv (x) - fsa;lfmgpu(z)(pv(y) V.’E, y) z e [':‘
The product is defined in (1.10)
Proof. (2.9) corresponds to (2.2).

In fact, the definition of a bi-symmetric algebra is equivalent to the

following:

Proposition 2.8. Let A be a vector space with a product. Then A is
a 5i-symmetric algebra if and only if Vz,y € A,

(2.10) [Le, Ry] = Ryy — RyRy;
(2.11) [Lz’Ly] = L[w,y]5
(2.12) [R:, Ry] = Riz 4.

Proof. (2.10) and (2.11) are equivalent to (2.1), and (2.12) is equivalent
to (2.2).

Corollary 2.9. Let A be a bi-symmetric algebra. Then L : x — L,
and R : x — R, are the (Lie algebra) homomorphisms of its sub-adjacent
Lie algebra respectively. Conversely, if a left-symmetric algebra satisfies

(2.12), then A is bi-symmetric.

At the end of this section, we give some properties of bi-symmetric alge-
bras involving subalgebras and ideals which are different from lef-symmetric

algebras.

Theorem 2.10. Let A be a bi-symmetric algebra.



136 CHENG-MING BAI AND DAO-JI MENG [June

(1) Set
(2.13) N(A) = {z € A|L, =0},
(2.14) R(A) = {z € A|R, = 0}.

Then both of them are the ideals of A. The former is called the kernel
ideal.

(2) Let I be an ideal of A. Then
(2.15) Ca(l) ={z € Alzy=yz =0, Vx € I}

is an tdeal of A. Cx(I) is called the centralizer of I in A.
(3) Let J be a subalgebra. Then

(2.16) Nao(J)={z € Alzy € J,yz € J, Vy € J}

is a subalgebra of A. Na(J) is called the normalizer of J in A.
(4) If I'is an ideal of A, then A-I and I- A are also the ideals of A, where
B-C =<bclb € B,c€ C >, Band C are arbitrary two subalgebras.

Proof. (1) N(A) is an ideal from a lemma in [14] or by direct compu-
tation. R(A) is an ideal from the symmetry.
(2) Vz € Ca(I),y € A,z € I, we have
(zy)z = z(yz) + z(zy) — (z2)y =0
2(xzy) = (zz)y + z(zy) — (x2)y =0

Therefore zy € C4(I). Similarly yz € Ca(I). Hence C4(I) is an ideal
of A. ’

(3) Vz,y € Na(J),z € J, we have
(zy)z = 2(yz) + z(zy) — (z2)y € J
2(zy) = (22)y + 2(zy) — (z2)y € J

Therefore zy € Na(J). Similarly yr € N4(J). Hence N4(J) is a
subalgebra of A.

(4) Obviously, A- (A-I)CA-I. Vz,ycA,z€l,
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(z2)y = 2(zy) + (zy)z — z(yz) € A I.
Hence A - I is an ideal of A. Similarly, I - A is also an ideal.

3. Transitive bi-symmetric algebras and bi-symmetric deriva-
tion algebras. The concepts of transitive left-symmetric algebra and left-
symmetric derivation algebra are very important in geometry (cf. [6], [9],
[14], etc.). In this section, we discuss the properties of the bi-symmetric

algebras with these special structures.

Definition 3.1. Let A be a left-symmetric algebra. If Va € A,z —
z + za is a linear isomorphism, then A is called a transitive left-symmetric
algebra. If Vx € A, R, is a nilpotent linear transformation, then A is called

a nilpotent left-symmetric algebra.

Lemma 3.1. Let A be a left-symmetric algebra. Then we have

(1) ([18]) A is nilpotent if and only if A is transitive.

(2) ([19]) IfVx € A, L, s nilpotent, then A is nilpotent and its sub-adjacent
Lie algebra is nilpotent.

(3) (Scheueman, cf. [9]) If A is transitive, and its sub-adjacent Lie algebra
1s nilpotent, then Yx € A, L, is nilpotent.

Theorem 3.2. Let A be a bi-symmetric algebra and A be transitive (A
is called a transitive bi-symmetric algebra).. Then
(1) Vz € A, L,, R, are nilpotent.
(2) The sub-adjacent Lie algebra ofA is nilpotent.
(3) The ideals N(A), R(A) are non-zero.

Proof. (1) Let A’ be the bi-symmetric algebra which is defined in The-
orem 1.1. Vz € A, (R,, A) is nilpotent following from Lemma 3.1 (1). Since
(Lg, A'Y = (Ry, A) (see Theorem 2.3), and A’ is also a left-symmetric alge-
bra, then (L, A) = (R,, A’) is nilpotent by Lemma 3.1(2).

(2) By (1) and Lemma 3.1(2), the sub-adjacent Lie algebra of A is nilpotent.
(3) Since z — L, is a homomorphism of Lie algebra by Corollary 2.9,

then by Engel’s Theorem and (1), there exists v € A, v # 0 such that
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Vz € A, L,(v) =0. Then v € R(A). Hence R(A) is non-zero. Similarly,

N(A) is non-zero following that x — R, is also a homomorphism of

Lie algebra.

From the relationships between the left-symmetric algebra and the ge-
ometry, we know that the transitivity corresponds to the completeness.

Therefore, we have

Corollary 3.3. Let K be a Lie group. If K admits a complete, locally

flat, left-invariant connection V such that
(3.1) Vv,yX — Vy,xY =Vz[X,Y], VX,Y,Z € K =T(X).
Then K 1is nilpotent.

Proof. Notice that (3.1) corresponds to (2.2). Then this conclusion

follows from Theorem 3.2.
Another conclusion involves affine representations:

Corollary 3.4. Let L be a Lie algebra. If L has an etale affine repre-
sentation p such that p defines a transitive bi-symmetric structure, then L

must contain nontrivial one-parameter subgroups of translations.

Proof. Since the kernel ideal of a transitive bi-symmetric algebra is

non-zero, the conclusion follows immediately (cf. [14]).

In [6], we gave the concepts of simple left-symmetric algebra (without
non-trivial ideals except one dimensional trivial left-symmetric algebra) and
semisimple left-symmetric algebra as the direct sum of simple left-symmetric
algebras. Also we have known that there are transitive semisimple left-
symmetric algebras and their sub-adjacent Lie algebras are not nilpotent.

Hence we have

Corollary 3.5. There does not ezist the transitive bi-symmetric algebra

which is semisimple.
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Lemma 3.6. Let A be a bi-symmetric algebra. Set

(3.2) Al = A A = A A% > 1,
(33) Al = A, Ai+1 == Ai . A, 1 Z 1.
Then

(1) Vi, A* and A; are ideals of A.
(2) There exists n, such that Atk = A, Vk > 1.
(3) There exists m, such that Apyr = Am,Vk > 1.

Proof. (1) follows from Theorem 2.10 (4). (2) and (3) can be obtained
from the finiteness of dim A.

Proposition 3.7. Let A be a bi-symmetric algebra. Then the following

conditions are equivalent:

(1) A is transitive.

(2) There exists n, such that A™ = {0}.
(3) There exists m, such that A,, = {0}.

Proof. (1)==-(2) Since A is transitive, Vz € A, L, is nilpotent. Hence
by Engel’s Theorem, there exists a basis such that L.(Vz € A) corresponds
to a strict upper triangular matrix simultaneously under the same basis.
Therefore there exists n such that A™ = {0}.

(2)=>(1) Vz € A,i > 1,L,(A*) C A®. Then we can obtain an inducing
map L, : A*/A"+ — A'/A"*! from L., and L, = 0. Therefore L, is a
nilpotent linear transformation. Then A is transitive.

By the symmetry, we know (1)<=>(3). Herice we obtain the proposition.

Definition 3.2. Let A be a left-symmetric algebra. If Vo € A, L, is

a derivation of its sub-adjacent Lie algebra, then A is called a derivation

algebra.

Lemma 3.8. ([14]) Let A be a left-symmetric algebra. Then A is a
derivation algebra if and only if Vx,y € A, R Ry = Lg,.
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Theorem 3.9. Let A be a left-symmetric derivation algebra. Then A
is bi-symmetric if and only its sub-adjacent Lie algebra is 2-nilpotent (i.e.
[:L'7 {% Z]] =0,Vz,y,z € A).

Proof. If A is bi-symmetric, then Vz,y € A, Rz = [Re, Ry). Since A
is a derivation algebra, Li, 4} = [Rs, Ry] by Lemma 3.8. Therefore ad[z,y] =
Ligy) — Rizy) = 0. Then A is a 2-nilpotent Lie algebra.

Conversely, if A is a 2-nilpotent Lie algebra, then Vz,y € A, ad[z,y] =
0. Hence as above, we can obtain R, = [Rs,Ry]. Therefore A is bi-

symmetric by Corollary 2.9.

Corollary 3.10. The left-symmetric derivation algebra which is com-

patible with Heisenberg algebra must be bi-symmetric.
Proof. Heisenberg algebra is a 2-nilpotent Lie algebra.

Corollary 3.11. Let K be a Lie group. Let K possess a locally flat
left-invariant connection adapted to the adjoint structure (the ezistence of
such structure is obtained in [14]; see the Remark). Then K is 2-nilpotent

if and only if the connection satisfies (3.1).

Remark. Comparing this conclusion with “...(Lie group) K possesses
a locally flat bi-invariant connection adapted to the adjoint structure if and
only if K is 2-nilpotent” (Proposition 1.11 in [14]), we have known that we
give a more general description on the locally flat connection adapted to the

adjoint structure in a 2-nilpotent Lie group.

4. Classification of transtive bi-symmetric algebras in dimen-
sion < 4. In [9] and [10], Kim gave the classfication of transitive left-
symmetric algebras whose sub-adjacent Lie algebras are nilpotent in dimen-
sion 3 and 4 using the extensions of left-symmetric algebras. By Theorem
3.2, we can give the classification of transitive bi-symmetric algebras in di-

mension < 4 from these results. At first, we give the following definition:

Definition 4.1. Let A be a left-symmetric algebra, e;,...,e, be a
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basis. Set
(4.1) Aij =eej = Za”ek

Then the (form) matrix A = (4;;), i.e

Zk 1“116k Zk 1alfnek
e (Tl Bt

Zk 1 nlek Zk 1 nn

is called the (form) characteristic matrix of A.

Lemma 4.1. ([6]) The structure constants {af;} in Definition 4.1 sat-
isfy

n
k
(4.2) E(aijaﬂ ]la’zk Z(ajla’kl zla‘]k)
k=1

Theorem 4.2. Let A be a left-skymmetric algebra. Then A is bi-
symmetric if and only if the transposed matriz A’ = (Aj;) of the charac-
teristic matriz A is also the characteristic matriz of some left-symmetric

algebra.
Proof. This theorem directly follows from Lemma 2.2.

Corollary 4.3. Let A be a left-symmetric algebra, A be its characteris-
tic matriz. Then A is bi-symmetric of type I if and only if A’ can be turned

to A under a transformation of the bases.

Corollary 4.4. Let A be a left-symmetric algebra, A be its character-

istic matrix.

(1) If A is symmetric, i.e. Aj; = Ayj, then A is commutative. Hence A is
of type I;
(2) If A is anti-symmetric, i.e. Aj; = —A;j;, then A is a bi-symmetric

algebra of type I.

Proof. (1) directly follows from Theorem 4.2.



142 CHENG-MING BAI AND DAO-JI MENG [June

For (2), let —ey, -+, —e, be a new basis of A, then it is easy to imply the
characteristic matrix under this basis is just .A’. Hence A is a bi-symmetric

algebra of type 1.

Proposition 4.5. (1) The transitive bi-symmetric algebra in dimension
1 is just the trivial left-symmetric algebra in dimension 1.

(2) The transitive bi-symmetric algebra in dimension 2 must be com-
mutative. Hence it must be isomorphic to one of the left-symmetric algebra
of type (AIV) and (AV) in Theorem 2.6.

Proof. (1) is obvious.
For (2), since the sub-adjacent Lie algebra of A is nilpotent, A is abelian.

Then the conclusion follows from [3] or [10].

In fact, the symbol used in [9] and [10] is a kind of brief description
of characteristic matrix. Therefore as an example, we give the concrete

classification in dimension 3.

Lemma 4.6. Let A be a lefi-symmetric algebra, C(A) its center. If
A? C C(A), then A is bi-symmetric.

Proof. Obviously A is associative. Hence A is bi-symmetric.

Lemma 4.7. The classification of 3-dimensional transitive left-
symmetric algebras whose sub-adjacent Lie-algebras are nilpotent is given

by the following table:
0 0

(1)C(A) = (e1); A= (0 A ), where
e 0
1L A= (Y, el)
0

2. A = () o)
3. A = (_0 %1)

(& €1
4)\. Al B (-61 )\61)

0 e
5”. Al = (Mel 6;)
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0 0
6. A = (el 62)
(2) C(A) = (e1, €2).
7. A= (e1,eq,e3leses = ey, otherwise 0).
(3) C(4) = A.

8. A s trivial.

Theorem 4.8. The transitive bi-symmetric algebra in dimension 3
must be tsomorphic to one of the left-symmetric algebras in Lemma 4.7
Hence the transitive left-symmetric algebra in dimension 3 whose sub-

adjacent Lie algebra is nilpotent must be bi-symmetric.

Proof. By Lemma 4.6, the left-symmetric algebras of type 1, 2, 3,
4 and 7, 8 in Lemma 4.7 are bi-symmetric. For 5,, if 4 = 0, then the
characteristic matrices of type 59 and 6 are mutually transposed. Hence

they are bi-symmetric. If p # 0, then let ¢] = pe;. Hence under the

0 0 0
basis €], e2, €3, the characteristic matrix is (0 0 %e’l ) It is just the
0 ¢ e2

transposed matrix of type 51. Hence Vu, type 5, is bi-symmetric.
m

Remark. From the point of view of characteristic matrix, the bi-
symmetry of type 1, 2, 3, 7, and 8 can be obtained from Corollary 4.4. For
45, let e, = —eq, then under the basis ey, €5, 3, the characteristic matrix is

just the transposition of A. Moreover,

Corollary 4.9. The bi-symmeiric algebras of type 1, 2, 3, 45, 541, 7
and 8 in Theorem 4.8 are of type I, and type of 5,, p # £1 and 6 are of
type II: 59 ~6; 5, NS%, uw#0,+1.

Similarly, we can obtain the classification of the transitive bi-symmetric

algebra in dimension 4:-

Theorem 4.10. The transitive bi-symmelric algebra in dimension 4
must be isomorphic to one of the following types of left-symmetric algebras
(symbols used in Theorem 5.1 in [9]):

(i) 3-8; type L
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(ii) 183, 2039 type L

(iii) 3041, 3141 type I;

28~309; 29~310; 30, ~301 (t # 0,%1); 31, ~311 (¢ # 0,1).
(iv) 404 type I; |

37_y ~Ady; 39y ~Aly 1; 40q ~45_5.

(v) 41, is bi-symmetric, of p,t satisfy

Wt —1)+ (=2t +1) =0, t £ 1+ p)/2.

Hence p # 0,1 and p = %,t = % when p = (1 —t) for the above equation.
Therefore, 41,: ~ 41, v, where p' = —};, t = W:tl-l'_#)’ uw # £1,0 and
p#E1-1t
41_; 1 type L
(vi) 46-56, 57, type I;
57, ~57_¢ (t # 0).
(vii) 59, 601, 61, 62 type I;
58~600; 60, ~601 (t 7 0,%1).

Remark 1. There are some errors in the conclusions in [9]. The
algebras of type 183 and 193, 203 ; (V¢) and 203 ¢ are isomorphic respectively.
For the former, the formula of the tra,nsfofmation of the bases is given as
follows:

, , 1 , , 3
€] = €1,y = ey — 161,63 =e3 — 162,64 =eq4 + Zez;
for the latter, it should be

, ; t ; t , 3t
€] = ej,eg = ez + 161,63 =e3 + 262,64 = e4 — ~4—ez.
Remark 2. There are many bi-symmetric algebras of type I which are
not associative. For example, 183, 203, 303, 311, etc. The isomorphisms
between A and A’ of these algebras may not be too obvious. Here we just

give an example. For 183, the isomorphism from A’ to A is given as follows:

1 1
€] = e1,€y = ez, €5 = 5(63 —e4);€y = —5(363 + e4).
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