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Abstract. We consider a class of functions, related to the
cyclotomic polynomials, which are invariant under the Fourier
transform; and using the Poisson summation formula, we bring
out its connection with the Dedekind zeta functions associated
with the classical quadratic field. Applying Mellin transform to
the Dedekind zeta functions, we evaluate the Lambert series for
the Kronecker symbol in terms of sums of products of classical
theta functions.

1. Introduction. In this note we will consider the integrals of the

form
/ =1 f(8)t,
0
-where f is a suitable rational function.
To motivate the main theme of this paper, we first begin with the

identity

* t T TS
: ¢t dt = - sec —, -1 <Re s < 1.
(1.1) /0 FRD 5 Sec es

This identity follows easily from the well-known identity [6, p.118]

Oots—-l T
/ dt = — , 0<Res<1
o 141 sin7s
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by the replacements of ¢ with t? and s with =31. One of the most interesting
consequences of (1.1) is an identity known as Ramanujan’s formula [5, p.11]:

o ; 1 1
(1.2) / e~ 2" 2tsech mtdt = sech 7z, ~3 <Imz< 3

-0

To deduce (1.2) from (1.1), we choose t = e™*¥,a > 0. Then the left hand
side of (1.1) becomes

= s—1 t o * —asy
t 1P dt = 3 e sech ay dy.
0 —0o0

Now let as = 2wiz, we obtain

e : T n’z
(1.3) / e~ "%t gech atdt = —sech —,
a a

—0o0

and Ramanujan’s identity follows from (1.3) by choosing o = .

We recall that the Fourier transform of the function f is defined by

o0

f(z) = / e=2int f(1)dt.

—C0
The most well-known example of a function which is invariant under the
Fourier transform is, perhaps, the normal distribution:
o<
/ e—27ri:1:te—7r1b2 dt = 6—7r:t:2 .
—00

Making obvious change of variable, the above integral becomes

(1.4) /00 e 2mizto=at® gy — Mge"rzzz/"‘, a>0.
—oo

So, the identity (1.2) provides yet another interesting example of a function
which has its Fourier transform identical to itself. Before we proceed further,
let us first see the significance as well as the connection between the identities
(1.3) and (1.4). This is achieved by applying the Poisson summation formula
[4, p. 111]
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to (1.3) and (1.4). We obtain

(15) ;ooe_anz — \/g f: e—7r2n2/a

n n=-—oo
and
s T — 2n
(1.6) E sech an = — E sech —.
a et
) n=—o00 n=—oo0
Since sech t = eTz-g-eT’ we can rewrite (1.6) as
Nt e~ T o e—-n7r2/oz
Z 1 4 e—2na T o E: 14 e—2n7?/a’
n=—oco === OO

Although for simplicity, we choose o > 0 in our derivation of (1.3), it is
easy to see that by analytic continuation, all the above identities are valid
for Re a > 0. To understand the link between (1.5) and (1.6), we recall the
definition of the theta function [6, chapter 11]

O3(g) =9s(r) = Y ¢ q=e"" and Im 7 > 0,

n=—oo

and a well-known identity due to Jacobi

= q — g
(1.7) ﬂg(f):1+4zl+q2n=2 > o

Now by choosing o = —mit with Imr > 0, we see that (1.5) is precisely the

Jacobi’s imaginary transformation [6, p. 474]
1 .
(1.8) / 193(—;) =V —ird3(7);

whereas (1.6) is an analog of (1.8) for 93(7).

"In view of the above examples, it is natural to inquire whether there
are other functions which are invariant under Fourier transform. There are,
indeed, many and the particularly important ones are these related to the
Hermite functions (see [4, p. 98]). The aim of this paper is to present

another class of such functions which is a natural generalization of (1.2) and
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more significantly brings out the connection between the quadratic fields
and the theta functions.
We now outline the organization of this paper as follows. In section 2,

we evaluate, using the residue theorem, the integral
[e o]
(1.9) / t*=1g(t)dt
0

where ¢(t) = ¢n(t) = 25___—11 x(n)t"/1 — t¥, and x is a nonunit primi-
tive character modulo N. In particular, the identity (1.1) is derived from
Theorem 3 by choosing N = 4. And for N =3,

hd . 1 1
/ 6“27”'Zt 27t dt = 2wz °
oo 1+2cosh7—§ 1—|—2cosh\/§

In section 3, we further restrict the character x to be quadratic, it thus be-
comes the character of an imaginary quadratic field, and the crucial quanti-
ties such as the class number h and the number w of the roots of 1 of a given
quadratic field enter into the identity naturally. In section 4, the machin-
ery of the algebraic number theory will be applied to the quadratic field to
establish the role of the theta functions in various identities. In particular,
the identity (1.7) is rederived as a special case for N = 4.

We assume the reader is reasonably familiar with the general knowledge

of the analytic and algebraic number theory.

2. Evaluation of the integral (1.9). Let N be a positive integer. A
function  is called a character modulo N if, for all integers n and m,
(1) x(1) =1.
(2) x(n) =x(n+N).
(3) x(mn) = x(m)x(n).
(4) x(n) =0if (n,N), the ged of n and N, is > 1.
A character xg is called the unit character modulo N if xo(n) = 1if (n,N) =
1.
Let ¢ = (y = e?™/N. The Gaussian sum 7,(x) corresponding to the

character x and the integer a is defined as
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N-1

(0= 3 xn)c™

=1

3

And we denote 7(x) = 71 (x)-
Let N’ be a positive integer which is divisible by N. For any character

x modulo IV, we can form a character x’ modulo N’ as follows

, x(a) if(a,N")=1
x'(a) = . ,
0 if (a, N') > 1.
We say that x' is induced by the character x. Let x be a character modulo
N. If there is a proper divisor d of N and a character x; modulo d which
induces x, then the character y is called nonprimitive, otherwise it is called
primitive.

We need a lemma [2, p. 334].

Lemma 1. Let x be a primitive character modulo N. Then for every

integer a
7a(X) = x(a)7(x)-
We now estabish a generalization of (1.1)

Theorem 1. Let x be a non-unit primitive character modulo N and

let

N-1
60 = () = X xlo)e” 1=

n=1

Then
e - 7ri'r‘ pr
ey [Tetema = Y smer f1- @

where ¢* = e>™/N o < Re s < 1.

N-—

Proof. We remark that since ), _ ! x(n) = 0 for any nonunit character

whether it is primitive or not, the rational function ¢(t) is analytic at ¢t = 1.
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The poles of ¢(t) are all simple and located at the points ¢ kk=1,2,...,N—
1, where ¢ = 2™/, The residue of ¢(¢)t*~! at ¢k
1 n—1
o (e gyt = —5¢H D0 xm
t— . n=1

= —%CksTk(X)

= ~-]1v§ksr(x)§(7) (from Lemma 1).

/ zz_}qﬁ(z)dz,
C

where C is the familiar key hole contour which consists of the circles Cj :
|zl = pand Cy : |2| = R, 0 < p < R, and the line segment L : [p, R]. The

path of integration is described as follows: Starting at the point z = p, one

We now consider the integral

first traverses along Cj once in the clockwise direction, then follows along
L to z = R and traverses Cs counterclockwise once and return to the initial
point z = p along L.

The theorem follows easily from the residue theorem by letting R — oo

and p — 0.

Lemma 2. Let ¢N be as in Theorem 1. Then
(a) ¢on(1) = % Z -1 "nx(n) and ¢n(1) =0 if x(-1) =1,

an

(b) T2, dn(e=ok) = o0 Kol
— oo &Qﬁ:ii . B _
(c) o0, on(e*) = { S X i x(-1) =1

S X i x(-1) = -1,
where Re a > 0. Here the character x needs not be primitive.

=1 l-e—om

Proof. (a) The first part follows immediately from L’Hoptial’s rule. To
establish the second assertion, we note that if x(=1) = 1, then

N-1 -1 L N-1
on(l) = -+ Z nx(n Z(—n)x(—n) =N > nx(n)
= : n=1
= “¢N(1)'
Clearly this implies that ¢n (1) = 0.

2
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(b) Since |e~**| < 1,

N-1
¢N(e ak) — Z X(n —ank Z e—aNm
n=1 m=0
= Z x(mN +n)e~*kmN+n)  (from (2))
m=0 n=1
=Y x(n)e ™" =5
n=1
Hence
S de ) = 35 3 xmeresn
k=1 k=1n=1
_ i x(n)e”*"
n=1 1—emen

(c) The conclusion follows easily from the fact:

N-—

ozlc) Z omk:/l _ e
1
N-1 . ) v
=S ifx(-1)=1
-3 X(n)e—a(N—n)k/l _ gmalNk_ { i x(-1)
! s ifx(-1)=-1
From the above lemma, we have
(2.2) |
T gty = | W LNl ) 425 KR ey = )
e ° if x(—1) = L.

We point out that the identity (2.2) holds for any character modulo N

whether x is primitive or not.

From (2.1), (2.2) and the Poisson summation formula, we obtain

Theorem 2. Let x¥ be a primitive character modulo N with x(—1) =
—1. Then
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(2.3)

LI-CHIEN SHEN [J une
_ Z nx(n) + 2 Z X(n)enmr
en7r17'

N-1 nwi NT)
27100 1 x(n)ermi—*/
~r N { N an(n +2Z _ enmi(—4/NT) [°

n=1

where I'm T > 0.

Tt is worthwhile to point out that except when x is quadratic (i.e. x: =

Xo), the evaluation of the Gaussian sum 7(x) for a general character is a very

difficult problem. We refer the readers to an article by Berndt and Evans

[1] for an interesting survey and the historical account of this subject. In

the next section, we will examine the significance of (2.3) for the quadratic

X-
3. Quadfatic characters. We first list some facts about the quadratic
characters.

1. Primitive quadratic characters occur only for the moduli of the form
r,4r and 8r, where r is an odd square-free natural number.

2. Every primitive quadratic character is the character of a quadratic field.
Conversely, the character of a quadratic field of discriminant D is a
primitive quadratic character modulo |D]|.

3. The characters of real quadratic fields are even, i.e. x(—1) =1, and the
characters of imaginary quadratic fields are odd, i.e. x(—1) = —1.

4. Let x be a primitive quadratic character modulo m. Then

vm ifx(-1)=1
00 = {iﬁ if x(—1) = -
5. Let x be an odd primitive quadratic character of an imaginary quadratic

field of discriminant —D < 0. Then the class number A of the quadratic
field is

w D-1
—— S kx(k

where w is the number of roots of 1 contained in the quadratic field and
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6 ifD=3
w=<4 ifD=4
2 for all other D.
6. The quadratic character of the quadratic field of discriminant D coin-
cides with the Kronecker symbol (2).

All the above facts can be found in [2, p. 343 and p. 347-349]. Using the
properties 4 and 5, we can restate the identity (2.1) and (2.3) as

Theorem 3. Let x be the character of the imaginary quadratic field of

discriminant —D. Then

o : 2n 2
—27izt —at —4n°z/aD
e ople dt = ¢p(e
/_oo ol ) avD o )

and
(31) folr) = ~—=Fo(-52)
where

nwir

: = (-D e
f (T)=h+w ( > nwir
. b 1;1 n J1—e

Hence, by choosing o = %, we see that ¢p(e=2"t/ ‘/—5) is invariant

under the Fourier transform.

4. Representation of fp in terms of the theta functions. Let
Q(v/—D) be the imaginary quadratic field of the discriminant —D < 0. The

Dedekind zeta function associated with this quadratic field is defined as

1
¢(s=D) =) w3

Z N(a)
where N(a) is the norm of the ideal a of Q(/—D). Tt is well-known that
((s,—D) can be written as the product of the Riemann zeta function and a
Dirichlet L-series with character x(n) = (=2) (See (2, p. 343]). That is for

Res>1
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n=1 n=1
(22
‘Thus, . |
(4.1) ;ﬁ 22%}<:k2>/”

We recall that the Mellin transform of f is defined as
1 o0
MFf)(s) = ——/ )t~ 1dt.
M6 = 5055 [ 70
In particular, for f = e~*, a > 0,

(Mf)(s) = —

M"‘l{is} = e,
o

Applying the inverse Mellin transform to (4.1), we obtain

D e = i (Z ("_k—D»e‘”* = i <I§)e—nkt

a#0 n=1 ™ kin k,n=1
—ni
- (Pt

Now choosing —t = miT, Im 7 > 0 and ¢ = e~* = €™, the identity (4.2)

therefore

(4.2)

becomes

(%‘3) : i (%) 1 z

n=1

= — ZqN(a)

a#0

- To see the s1gmﬁcance of (4.3), we take D = 3. Since Q(+/—3) has
“the unique factorlzatlon property, all ideals are principal and each has the
form (n + m(), where ¢ = 1+‘/_ and n,m € Z. Since there are 6 units in
Q(V/-3) : £1, i(%‘/—_:‘), there is a six to one correspondence between the
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sets of algebraic integers and the ideals in Q(1/—3). That is, the algebraic
integer n + m( and e(n 4+ m(), e a unit, all correspond to the same ideal

(n + m(). The norm of the ideal is defined as
N(n+m¢) = (n+ml)(n+mé) =n? +mn +m?.

Therefore (4.3) yields

(44) Z (_73) T Enqn — _é_ Z qn2+mn+'m2‘

n=1 (n,m)5£(0,0)

The factor § is to take into account of the ab&e inehtioned six to one
correspondence between the sets of ideals and the algebraic integers. Since
all the ideals are principal, the class number A of Q(\/— is equal to one,
and (4.4) can be written as

o0

1+62( )1—q Z n-l-mn—i—m2

The left hand side of (4.5) is precisely the special case of fp in (3.1) for
D =3.
It is well-known that there are exactly 9 imaginary quadratic fields with

class number h = 1, the discriminants of these quadratic fields are

_D=-3-4,-7,—8 —11,-19,—43, —67 and — 163.

Except for —D = —4 and —8, all the remaining discriminants satisfy
—D = 1(mod 4).
The norms for —D = —4 and -8 are, respectively,

N(m + ni) = m? +n? and N(m + iv2n) = m? 4 2n?,

and for the remaining cases the norms of the quadratic integers (and the

ideals) have the form

D+1
N(m+nCD)=m2+mn+( :— )n2
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where (p = Y=L

To express the right hand side of (4.3) in terms of the theta functions,

we need a

Lemma 4.

o0

ST gt = 9, (g)92(¢P) + 93(g)9s(d”),

n,m=—00

where | = (D + 1) /4.

Proof. We recall first that

93(q)= Y, ¢* and ¥p(g)= Yy ¢+’

n=—oo n=—od

Now, we note that

m2+mn+ln2_{(m+k)2+pk2 if n = 2k
(m+k+3)2+Dk+1)? ifn=2k+1,
hence
= m2+m'n,+l'n2 _ - -
2. ¢ =2 2t )
n,m=—o00 m=—ocon,even m=—0c0 n,odd

_ i f q(m+k)2qu2

k=—00 m=—00

+ {;: i q(@+k{§)2q0(k+§)2

=93(¢)93(¢") + 92(2)92(¢").
We have, in addition to (4.5),

oo _4 qn B
(4.6) 1+ 4; (—n—) . 92(q)
(47 123 (2 7L = @)

and
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(4.8) 1+ 221 (%) - i

for D =17,11,19,43,67 and 163.
The identity (4.6) is precisely the identity (1.7) which we encountered

— = 92(q)92(¢") + ¥3(q)93(¢")

earlier.

In general, we have

Theorem 4. Let —D be the discriminant of an imaginary quadratic
field. Then

folg) = h+w2( )1_q

=h+w Z gN @

4.
( 9) a#0, ideal
h [eS)
-3 % g,
. i=]1 m,n=—oc0
where Q;(m,n),i = 1,2,...,h, are the inequivalent quadratic forms of the

given quadratic field.

A very readable account of the correspondence between the ideals and
the inequivalent quadratic forms of a given quadratic field can be found in
Chapter 12 of [3]. To express the last sum of the above identity in terms of
the theta functions, we need to know the explicit inequivalent forms of the
quadratic forms of the quadratic field Q(v/—=D). For example, if —D = —20,
the class number h = 2, so there are two non-equivalent quadratic forms with

the discriminant —20 : n? + 5m? and 2n? + 2mn + 3m?. And (4.9) yields

2+2 Z,: <_T20> 1 z”qn = 93(q)93(¢q°) + 92(¢*)92(g"®) + 93(¢%)93(¢*°)

[= o]

Tl,2 m2 le mn m2
- Z (q +5m? | (2n?+2mnt )

n,n=—00

5. Remarks on the real quadratic fields. The identity (4.1) (and,
hence, (4.3)) is also valid for any real quadratic fields (See [2, p. 343]). How-

ever, it does not seem possible to express the sum Y ¢V () in terms of the
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theta functions, the complication is caused mainly from the fact that every
real quadratic field has infinitely many units. To illustrate this difference
between the real and imaginary quadratic fields, we consider Q(+/5). It has

class number h = 1 and the quadratic integers are of the form

ax=m-+nn

R

with norm N(a) = ao/ = m? + mn — n?, where @/ = m +ny, n = 4

and ' = -1_—2‘/5 The set of units is the multiplicative group {n* : k € Z}.

Therefore every integer o has infinitely many associates n*a,k € Z, and
all these associates correspond to the same ideal a = () (generated by
«). To establish a one-to-one correspondence between the ideals and a
representative of 7%, the algebraic integers are represented geometrically
in R?; then there exists a fundamental domain X in R? with the property
that for every quadratic integer «, there is a unique element among the
associates {n*a : k € Z} belonging to X (for details, see [2, p. 313-316}).
The identity (4.3) takes the form '

n

(5.1) | 3 M@ = i (%) lz_qn

a0 n=1

where N(a) = |N(a)| = |m? + mn — n2|. To write out the sum on the
left hand side of (5.1), we need to characterize all the algebraic integers
belonging to the fundamental domain X: Let « = m + nn € X. Then
o € X if and only if @ > 0 and

We need a

Lemma 5. a € X if and only if either m > 2n >0 or n+2m > 0 and
m < 0.

Proof. To simplify the computation, we note that nn' = —1 and 747’ =
1. Consider the case o/ < 0. Then o € X if and only if a + o' > 0,
o +n’e’ <0and o> 0. Now observe that '
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0<a+d =m+npg+m+ny =2m+n(n +n9)=2m+n
and
0> a+n’d =m+nan+n*(m+ng) =m(l+9%).
Hence, we have m < 0 and 2m 4+ n > 0. Clearly, under these condition,
a=m+nng>m+(-2m)p = (-m)n+ (-m)(n-1) > 0.

Thus, for o/ <0, « € X if and only if m < 0 and 2m +n > 0.

The case o' > 0 yields m > 2n > 0 and we leave the simple detail to

the reader.

From the lemma, we write

(5.2) | ZqN(a) — Z Z jm? +mn—n?

a#0 m>2n>0 n-};:?0>0
And
2 2
I S
m>2n>0 n=0 n>1 -
- m>0 m=2n-+k,k>1
(5.3) © o .
' m 5n°+5nk+-k
SDITEES o
m=1
k=1
Similarly,
00
Z q|m2+mn—n2|._.z Z q|k2—kn—n2[ (by 1ettingm=—k)
n+2m>0 k=1 n=l§1:)+l
(54) 7 o
5k? Z 5K 4+-5kl+412
= g + q

=1

Using the fact that > ;" ™ = 1(93(q) — 1), we conclude from (5.1), (5.2),
(5.3) and (5.4)

= 5 qn _ 1 5 = 5n%+5mn+m?
> ()L — -1 @+ ) +2 ) g
=1

n=1
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It is precisely the constraint m,n > 1 on the last series (caused by
the infinitude of the units in the real quadratic fields) which prevents us
from expressing the above series in terms of simple combination of the theta
functions. We add that the simplicity of the identity (3.1) is due to the fact
that fp is expressible as a finite sums of the theta functions; therefore any

analog of (3.1) for the real quadratic fields is most likely very complicated!
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