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Abstract. We propose a sufficient condition for a pla-
nar set to contain points of multiplicity ¢ on a planar Brownian
path; here ¢ is the cardinality of the continuum. Any self-similar
fractal with positive Hausdorff dimension will satisfy this con-
dition and hence contains ¢ multiple points of Brownian paths.
As a consequence, two independent one dimensional Brownian
motions will collide at the same position uncountably often.

1. Introduction. Given a function w : (0,00) — R%, a point z € R% is
a k-multiple point or point of multiplicity & of w, k being a cardinal number,
finite or infinite, if the cardinal number of w1 ({z}) is greater than or equal
to k. For example, if w is a one dimensional Brownian path, then every
point in R! is a c-multiple point of w, here ¢ is the cardinal number of
the continuum. In .fact, we have the following interesting results due to
Dvoretzky, Erdos, Kakutani, [1], [2], [3] and Taylor [2]: with probability
one, a 2-dim Brownian path has points of multiplicity ¢; a 3-dim Brownian
path has double points but no triple points; a d-dim Brownian path, d >
4, has no double points. Recently Evans [4] and Tongring [9] investigate
conditions for a set to contain k-multiple points of Brownian paths for finite

k. Motivated by their works, we shall propose conditions on a planar set
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which are sufficient to ensure the E contains c-multiple points of a planar
Brownian path. As a consequence, we will show that two independent 1-
dim Brownian motions collide uncountably often at the same point with

probability one.

2. Basic Definitions. We present here some elementary definitions
and concepts from potential theory. The material is mainly borrowed from
Kametani [7]. First, let |- | denote the Euclidean norm in R%. Let h(t) be a
strictly increasing continuous function defined for small positive ¢ satisfying

lim, |, h(t) = 0. For E C R4, let
mn(B) = imint { 3 WS, )5 U552, 8(57) < )

€l0 -

J

where each S; is an open ball with diameter 6(S;), and the infimum is taken
over all possible covering of E by a sequence of open balls with diameter less
than €. my(-) is called the Hausdorff measure with respect to the function
h(t). Obviousely, if h(t) > g(t), then mj > m,. When h(t) =t%, 0 < a <
00, 0 < t < 1, write mq(+) instead of my=(-) and call my(-) the a-dimensional

measure. Of course, my > My, for a < o/. Let
s(E) =sup{a: my(F) = oo}
=inf{a : ms(F) < co}.
(sup® = 0,inf@ = oco). Call s(E) the Hausdorff dimension of the set E.
Let ¢(t) be a strictly decreasing, continuous function defined on positive

t satisfying lim,|,¢(t) = co. Let E be a bounded Borel set in R, 1 a

probability measure on E, and let

‘ ¢IL' = xTr — .
U () /E 81z — y)u(dy)

U;f() is called the potential of ¢ with respect to the distribution p. Let
V¢(E) = inf, sup, U;f(:z:), where the infimum is taken over all probability
measures on F, and supremum is taken over all points in E. The capacity,
C?(E), of E with respect to the function ¢ is defined to be ¢~} (V*(E))
with the understanding that ¢~!(co) = 0. The following result is proved in
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Kametani : if my(F) > 0, E is bounded Borel, and if Jo+ #()dA(t) < oo
then C?(E) > 0.

Now we will consider the case d = 2. We will take ¢.(t) = (log 1)F,
k > 1, and write C(E) for C*(E). Cy(E) is called the k-th logarithmic
capacity of the set E (E is a bounded Borel set inkR2). From what we just
mentioned above, we see if s(E) > 0, then C(E) > 0, Vk > 1.

3. Main results. Our main results in this paper will be stated in

Theorem 3.3. First, we state two lemmas.

Lemma 3.1. Let E be a bounded Borel set in R%. Then Cy(E) > 0,
iof and only if k independent planar Brownian motions will have a common

double point in E with probability one.

Proof. By looking at the proof of Theorem 1 in Tongring [9], we see
that k independent planar Brownian motions will have a common double
point in F if and only if a planar Brownian motion will have a 2k-kultiple
point in E. By Theorem 5.1 in Fitzsimmons and Salisbury [5], the lemma

now follows.

Let C = C[0,1] = {f : f : [0,1] — R?, f is continuous} and Let
A = {(u,v) : 0 <u <wv <1}. Let (W;);>0 be a planar Brownian motion.
For each (u,v) € A, let

Wu+t)— W), f0<t<v—u,

Wo(t) = {W(v) - W(u), ift>v—u.

Let I(dudv) be the intersection time of (W;), i.e., formally,
l(dudv) = 670y (W (u) — W (v))dudv
The following lemma is the Theorem 2.1 in Le Gall [8].

Lemma 3.2. Suppose ® is a positive Borel function on C°> = CxCxC
and B a Borel set in A. Then
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E{/ O (o Wy u Wy, Wh)l(dudv)
B

_ — dudv u 7(v—u 1-v
= (2m) 1/B(U_U)E[<I><U1,L ), U2~

Where L~%) is a Brownian bridge of length v — u,U;, Uy are two inde-

pendent Brownian motions starting from the origin, U* denotes the stopped

process of U stopped at time u.

Theorem 3.3. Let E be a Borel set in R%. Suppose for each z € E,
(i) there is a bounded Borel set E,CE such that Cy(E;) > 0, Vk > 1,

(ii) there is a positive sequence an(x) decreasing to 0 such that
E.Dan(z)(Ey —z) +z = {a,(z)(y —z)+ 2z :y € E.}.
Then almost all paths of (W) will have c-multiple points in E.

Proof. By the strong Markov property, we may assume (W;) starts from
a z(0) € E. By(i), there exist a z(1) € E,(o) and two times ¢33, 12 such
that W(t11) = W(t12) = z(1). By (i) and the scaling propety of (W), we
may assume 0 < t1; < t;2 < 1. By lemma 3.2, we may consider oWy, and
t,, W1 as two independent planar Brownian motions. Again by (i) and (ii),
there exist z(2) € E,(1) and ta1, 122,103, t24 such that W(ta,) = W(tas) =
" W(tes) = Witas) = 2(2), 0 <t < tog < t11 < 112 < ta3 < 24 <1, and
t11 —tar < 3, tog — 12 < L and (0Wiyy, s Werys t1oWeas» t,4W1) can be
considered as four independent planar Brownian motons starting from z(2).
Continue the arguments, we get a double sequence {t,; :n > 1,1 < j < 2"}
‘in [0,1] such that for each n and each j, theré are tpy11, tn+1i4+1 such that
if j is odd, then tp411 < tng141 < tnj, tnj — tnyu < (%)” and if j is even,

then t,; < tni1 < lptutlsbariirr — o < (%)"- Now, let
K =Ny (Ut {tn; 1 1 <5 <2707,

where the superscript—means taking closure. It’s not hard to see K is a
perfect set (each neighborhood of any point in K contains another point of

K) and hence uncountable.
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Any line segment, any self-similar fractal defined in Hutchinson [6] will

fulfill our assumptions. In particular, by considering E to be the diagonal

line, we obtain

Corollary 3.4. Two independent 1-dim Brownian paths will collide
uncountably often at the same position. That is, if Wi(t), Wa(t) are two
independent Brownian paths, then there 1s a x € R* and a uncountable time
set TC(0,00) such that Wi(t) = Wa(t) = z,Vt € T.

Remark. It seems reasonable to conjecture that any set E of posi-
tive Hausdorff dimension will contain points of multiplicity ¢ for a planar

Brownian motion, but we cannot prove that.
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