UNIQUENESS OF MEROMORPHIC FUNCTIONS

BY

INDRAJIT LAHIRI

Abstract. We prove a uniqueness theorem for meromorphic functions.

1. Introduction and definitions. Let f and g be two nonconstant meromorphic functions defined in the open complex plane C. In the paper we deal with the problem of finding out relations between f and g on the basis of their a-points. We do not explain the standard notations and definitions because they are available in [2].

Definition 1[1]. We denote by E(a, k; f) the set of distinct zeros of f - a ($a \in C$) whose multiplicaties are less than or equal to k, where k is a positive integer or infinity.

Definition 2. If k is a nonnegative integer or infinity, we denote by $n_k(r, a; f)$ the number of zeros of f - a in $|z| \le r$, where a zero of multiplicity p is counted p times if $p \le k$ and 1 + k times if p > k; $N_k(r, a; f)$ is defined in terms of $n_k(r, a; f)$ in the usual way.

Definition 3. We define $\delta_k(a;f) = 1$ - $\limsup_{r \to \infty} \frac{N_k(r,a;f)}{T(r,f)}$. Then $0 \le \delta(a;f) \le \delta_k(a;f) \le \delta_{k-1}(a;f) \le \cdots \le \delta_0(a;f) = \Theta(a;f) \le 1$ and $\delta_{\infty}(a;f) = \delta(a;f)$.

Definition 4. We denote by $\overline{n}(r, a; f, \leq k)$ and $\overline{N}(r, a; f, \leq k)$ the counting functions for distinct zeros of f - a of multiplicities not greater

Received by the editors October 3, 1996 and in revised form January 17, 1997.

AMS 1991 subject classification: 30D35.

Key words and phrases: Meromorphic function, uniqueness.

than k. If $k \leq 0$, we take $\overline{n}(r,a;f,\leq k) \equiv 0$ and so $\overline{N}(r,a;f,\leq 0) \equiv 0$. Also we define $\overline{n}(r,a;f,\geq k)$, $\overline{N}(r,a;f,\geq k)$, $\overline{n}(r,a;f,>k)$ etc. likewise and we take $\overline{n}(r,a;f,\geq k) \equiv 0$ if $k=\infty$.

Definition 5. We denote by E the exceptional set that appears in the second fundamental theorem (p.34, [2]) and by $S(r; f_1, f_2, ..., f_n)$ a function of r such that $S(r; f_1, f_2, ..., f_n) = o\{\sum_{i=1}^n T(r, f_i)\}$ as $r \to \infty$ $(r \notin E)$ where f_i 's are meromorphic functions defined on C.

Gopalakrishna and Bhoosnurmath [1] proved the following theorem.

Theorem A. If (i) for some $a \in C \cup \{\infty\}$ $\overline{N}(r, a; f) = S(r; f, g)$, $\overline{N}(r, a; g) = S(r; f, g)$, (ii) there exist distinct complex numbers a_1, a_2, \ldots, a_m in $C \cup \{\infty\} \setminus \{a\}$ for which $E(a_i, k_i; f) = E(a_i, k_i; g)$ $(i = 1, 2, \ldots, m)$ where each k_i is a positive integer or infinity with $k_1 \geq k_2 \geq \cdots \geq k_m$ and (iii) $\sum_{i=2}^{m} \frac{k_i}{1+k_i} - \frac{k_1}{1+k_1} > 1$ then $f \equiv g$.

Now one may ask is it possible to replace condition (iii) by $\sum_{i=2}^{m} \frac{k_i}{1+k_i} - \frac{k_1}{1+k_1} \le 1$ and if possible under which situation? The purpose of the paper is to answer this question.

2. Lemma and theorem. First we prove a lemma which is necessary for the theorem.

Lemma. Let k be a nonnegative integer or infinity. Then for $a \in C \cup \{\infty\}$

$$\overline{N}(r, a; f) \le \frac{k}{1+k} \overline{N}(r, a; f, \le k) + \frac{1}{1+k} N_k(r, a; f).$$

Proof. If $k = \infty$, the lemma is obvious. If $k < \infty$ then

$$(1+k)\overline{n}(r,a;f) = (1+k)\overline{n}(r,a;f,>k) + (1+k)\overline{n}(r,a;f,\leq k)$$
$$= n_k(r,a;f) - n(r,a;f,\leq k) + (1+k)\overline{n}(r,a;f,\leq k)$$
$$\leq n_k(r,a;f) + k\overline{n}(r,a;f,\leq k),$$

from which the lemma follows.

Theorem. If (i) $\overline{N}(r,a;f) = S(r;f,g)$, $\overline{N}(r,a;g) = S(r;f,g)$ for some $a \in C \cup \{\infty\}$ (ii) there exist distinct elements a_1, a_2, \ldots, a_m in $C \cup \{\infty\} \setminus \{a\}$ for which $E(a_i, k_i; f) = E(a_i, k_i; g)$ $(i = 1, 2, \ldots, m)$ where k_i is a positive integer or infinity with $k_1 \geq k_2 \geq \cdots \geq k_m$ and (iii) $\sum_{i=2}^m \frac{k_i}{1+k_i} - \frac{k_1}{1+k_1} \leq 1$, (iv) $\sum_{i=1}^m \min\{\delta_{k_i}(a_i; f), \delta_{k_i}(a_i; g)\} > \{1 + \frac{k_1}{1+k_1} - \sum_{i=2}^m \frac{k_i}{1+k_i}\}(1+k_1)$, then $f \equiv g$. In particular, if the right hand side of (iv) is equal to zero, "min" in the condition (iv) can be replaced by "max".

Proof. By the second fundamental theorem we get because $\overline{N}(r,a;f) = S(r;f,g)$.

$$(m-1)T(r,f) \leq \overline{N}(r,a;f) + \sum_{i=1}^{m} \overline{N}(r,a_i;f) + S(r,f)$$
$$= \sum_{i=1}^{m} \overline{N}(r,a_i;f) + S(r;f,g).$$

We note that this inequality is true for g also because $\overline{N}(r, a; g) = S(r; f, g)$.

First we suppose that $a = \infty$. Then a_1, a_2, \ldots, a_m are all finite and by the Lemma we get from above

(1)
$$(m-1)T(r,f) \leq \sum_{i=1}^{m} \frac{k_i}{1+k_i} \overline{N}(r,a_i;f \leq k_i)$$

$$+ \sum_{i=1}^{m} \frac{1}{1+k_i} N_{k_i}(r,a_i;f) + S(r;f,g).$$

Applying (1) to g and adding to (1) we get

$$(2) \quad (m-1)\{T(r,f)+T(r,g)\}$$

$$\leq \sum_{i=1}^{m} \frac{k_{i}}{1+k_{i}} \{\overline{N}(r,a_{i};f,\leq k_{i})+\overline{N}(r,a_{i};g,\leq k_{i})\}$$

$$+\sum_{i=1}^{m} \frac{1}{1+k_{i}} \{N_{k_{i}}(r,a_{i};f)+N_{k_{i}}(r,a_{i};g)\}+S(r;f,g)$$

$$\leq \frac{2k_{1}}{1+k_{1}} \sum_{i=1}^{m} \overline{N}(r,a_{i};f,g,\leq k_{i})$$

$$+\sum_{i=1}^{m} \frac{1}{1+k_{i}} \{N_{k_{i}}(r,a_{i};f)+N_{k_{i}}(r,a_{i};g)\}+S(r;f,g),$$

because $\frac{k_1}{1+k_1} \ge \frac{k_2}{1+k_2} \ge \cdots \ge \frac{k_m}{1+k_m}$ where $\overline{N}(r, a_i; f, g, \le k_i)$ is the counting function for common distinct zeros of $f - a_i$ and $g - a_i$ of multiplicities not greater than k_i .

If $f \not\equiv g$, each common zero of $f - a_i$ and $g - a_i$ is a zero of f - g. Since a_1, a_2, \ldots, a_m are all distinct, we have

$$\sum_{i=1}^{m} \overline{N}(r, a_i; f, g, \le k_i) \le N(r, 0; f - g) \le T(r, f) + T(r, g) + O(1).$$

So from (2) we get

(3)
$$\left(m - 1 - \frac{2k_1}{1 + k_1}\right) \{T(r, f) + T(r, g)\}$$

$$\leq \sum_{i=1}^{m} \frac{1}{1 + k_i} \{N_{k_i}(r, a_i; f) + N_{k_i}(r, a_i; g)\} + S(r; f, g).$$

Now for given ϵ (>) there exists r_0 (> 0) such that for $r \ge r_0$

$$N_{k_i}(r, a_i; f) < \{1 - \delta_{k_i}(a_i; f) + \epsilon\} \cdot T(r, f)$$
 and $N_{k_i}(r, a_i; g) < \{1 - \delta_{k_i}(a_i; g) + \epsilon\} \cdot T(r, g).$

Hence from (3) we get

(4)
$$\left(\sum_{i=2}^{m} \frac{k_i}{1+k_i} - 1 - \frac{k_1}{1+k_1}\right) \{T(r,f) + T(r,g)\}$$

$$+ \frac{1}{1+k_1} \sum_{i=1}^{m} \{(\delta_{k_i}(a_i,f) - \epsilon)T(r,f) + (\delta_{k_i}(a_i,g) - \epsilon)T(r,g)\}$$

$$\leq S(r;f,g).$$

Since the second term of the left hand is not less than

$$\frac{1}{1+k_1} \left[\sum_{i=1}^m \min \{ \delta_{k_i}(a_i; f), \delta_{k_i}(a; g) \} - m\epsilon \right] \{ T(r, f) + T(r, g) \}$$

and $\sum_{i=2}^{m} \frac{k_i}{1+k_i} - 1 - \frac{k_1}{1+k_1} \le 0$, it follows from (4) that

$$\sum_{i=2}^{m} \frac{k_i}{1+k_i} - 1 - \frac{k_1}{1+k_1} + \frac{1}{1+k_1} \left[\sum_{i=1}^{m} \min\{\delta_{k_i}(a_i; f), \delta_{k_i}(a_i; g)\} - m\epsilon \right] \le 0$$

and this implies a contradiction to the condition (iv). Hence $f \equiv g$. Now we suppose that $1 + \frac{k_1}{1+k_1} - \sum_{i=2}^m \frac{k_i}{1+k_i} = 0$. Then from (4) we get

(5)
$$\sum_{i=1}^{m} [\{\delta_{k_i}(a_i, f) - \epsilon\} \cdot T(r, f) + \{\delta_{k_i}(a_i, g) - \epsilon\} \cdot T(r, g)] \le S(r; f, g).$$

Further we suppose that $\sum_{i=1}^{m} \max\{\delta_{k_i}(a_i;f), \delta_{k_i}(a;g)\} > 0$. Then there exists a positive integer $p, 1 \leq p \leq m$, such that at least one of $\delta_{k_p}(a_p;f)$, $\delta_{k_p}(a_p;g)$ is positive. We consider only the case $\delta_{k_p}(a_p;f) > 0$ because the other case is similar. If possible, let $f \not\equiv g$. Then from (5) we get

(6)
$$\delta_{k_p}(a_p; f)T(r; f) \le m\epsilon \{T(r, f) + T(r, g)\} + S(r; f, g).$$

Now we show that

(7)
$$\sum_{i=1}^{m} \overline{N}(r, a_i; f, g, \le k_i) > \frac{1}{2} \{ T(r, f) + T(r, g) \}$$

for all sufficiently large values of $r(r \notin E)$. If possible, let

$$\sum_{i=1}^{m} \overline{N}(r, a_i; f, g, \le k_i) \le \frac{1}{2} \{ T(r, f) + T(r, g) \}$$

for a sequence of values of $r(r \notin E)$ tending to infinity. Then from (2) we get for a sequence of values of r tending to infinity $(r \notin E)$

$$(m-1)\{T(r,f) + T(r,g)\} \le \frac{k_1}{1+k_1}\{T(r,f) + T(r,g)\}$$

$$+ \sum_{i=1}^{m} \frac{1}{1+k_i}\{N_{k_i}(r,a_i;f) + N_{k_i}(r,a_i;g)\} + S(r;f,g)$$

$$\le \left\{\frac{k_1}{1+k_1} + \sum_{i=1}^{m} \frac{1}{1+k_i}\right\}\{T(r,f) + T(r,g)\} + S(r;f,g)$$

i.e.
$$\left\{m-1-\frac{k_1}{1+k_1}-\sum_{i=1}^m\frac{1}{1+k_i}\right\}\cdot \left\{T(r,f)+T(r,g)\right\} \leq S(r;f,g)$$

i.e.
$$\left\{ \sum_{i=1}^{m} \frac{k_i}{1+k_i} - 1 - \frac{k_1}{1+k_1} \right\} \cdot \left\{ T(r,f) + T(r,g) \right\} \le S(r;f,g)$$

i.e.
$$\left\{ \sum_{i=2}^{m} \frac{k_i}{1+k_i} - 1 \right\} \cdot \left\{ T(r,f) + T(r,g) \right\} \le S(r;f,g)$$
i.e.
$$\frac{k_1}{1+k_1} \cdot \left\{ T(r,f) + T(r,g) \right\} \le S(r;f,g),$$

which is a contradiction. So (7) is true.

Since $mT(r,f) \geq \sum_{i=1}^{m} \overline{N}(r,a_i;f,g,\leq k_i)$, it follows from (6) and (7) that

$$\left\{\frac{\delta_{k_p}(a_p; f)}{2m} - m\epsilon\right\} \cdot \left\{T(r, f) + T(r, g)\right\} \le S(r; f, g)$$

which is again a contradiction for sufficiently small ϵ (> 0). Hence $f \equiv g$.

Next we suppose that $a \neq \infty$. Then $\frac{1}{a_i-a}$ $(i=1,2,\ldots,m)$ are distinct elements of C. Let $F=(f-a)^{-1}$ and $G=(g-a)^{-1}$. Then $\overline{N}(r,\infty;F)=\overline{N}(r,a;f)=S(r;F,G)$ and $\overline{N}(r,\infty;G)=\overline{N}(r,a;g)=S(r;F,G)$. Also $E((a_i-a)^{-1},k_i;F)=E((a_i-a)^{-1},k_i;G)$ for $i=1,2,\ldots,m$. Finally $\delta_{k_i}((a_i-a)^{-1};F)=\delta_{k_i}(a_i;f)$ and $\delta_{k_i}((a_i-a)^{-1};G)=\delta_{k_i}(a_i;g)$ for $i=1,2,\ldots,m$. Now by applying what we have already proved to the functions F and G with $(a_1-a)^{-1},(a_2-a)^{-1},\ldots,(a_m-a)^{-1}$ we see that $F\equiv G$ and so $f\equiv g$. This proves the theorem.

Remark 1. Consider $f = \exp(z)$, $g = \exp(-z)$ we see that $\overline{N}(r, \infty; f)$ $= \overline{N}(r, \infty; g) = S(r; f, g)$, $a_1 = 0$, $a_2 = 1$, $a_3 = -1$, $k_1 = k_2 = k_3 = 1$ and $\sum_{i=1}^{3} \min\{\delta_1(a_i; f), \delta_1(a_i, g)\} = 1$. So the condition (iv) of the theorem is necessary.

Corollary 1. If (i) there exists $a \in C \cup \{\infty\}$ such that $\overline{N}(r, a; f) = S(r; f, g)$, $\overline{N}(r, a; g) = S(r; f, g)$, (ii) $E(a_i, 1; f) = E(a_i, 1; g)$ for $a_i \in C \cup \{\infty\} \setminus \{a\} \ (i = 1, 2, 3) \ and (iii) \sum_{i=1}^{3} \min\{\delta_1(a_i; f), \delta_1(a_i; g)\} > 1 \ then f \equiv g$.

Corollary 2. If (i) there exists $a \in C \cup \{\infty\}$ such that $\overline{N}(r, a; f) = S(r; f, g)$, $\overline{N}(r, a; g) = S(r; f, g)$, (ii) $E(a_i, 1; f) = E(a_i, 1; g)$ for $a_i \in C \cup \{\infty\} \setminus \{a\} \ (i = 1, 2, 3, 4) \ and$ (iii) $\sum_{i=1}^4 \max\{\delta_1(a_i; f), \delta_1(a_i; g)\} > 0$ then $f \equiv g$.

References

- 1. H. S. Gopalakrishna and S. S. Bhoosnurmath, Uniqueness theorems for meromorphic functions, Tamkang J. Math., 16(4) (1985), 49–57.
 - 2. W. K. Hayman, Meromorphic Functions, The Clarendon Press, 1964.

Department of Mathematics, Jadavpur University, Calcutta 700032, INDIA