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Abstract. By analogy with the usual notions of orthogo-
nal and orthonormal sets, we say that a set of vectors {z;} € C»
is rectangular if z7z; = 0 whenever i # j; it is rectanormal if it
is rectangular and z7 x; = 1 for all i. We show that every inde-
pendent set is equivalent to a rectangular (but not necessarily
rectanormal) set, and give necessary and sufficient conditions
for the equivalence to be achieved by a triangular transforma-
tion, as with the classical Gram-Schmidt process. We show that
any rectanormal set {z;} € C™ can be extended to a rectanor-
mal basis, and that any rectangular set can be extended to a
basis with a canonical pattern to the bilinear products zIz;.
We also give necessary and sufficient conditions for one given
set of vectors to be an orthogonal transform of another given
set of vectors.

1. Introduction. We denote by M,, , the set of m-by-n complex ma-
trices and set M,, = M, ,,. We shall use Q to denote a complex orthogonal
matrix (Q € M,,QT = Q7!). A complex matrix A € M, is symmetric if
A = [a;j] = AT, where AT = [a};] is the ordinary transpose of A.

If b(e,®) : C" x C* — C" is a symmetric bilinear form [b(z,y) = b(y, z)
and b(azx + By, z) = ab(z,z) + By, z) for all z,y € C* and all o, f € C"},
there is a unique complex symmetric matrix S = [s;;] € M, such that
b(z,y) = 2T Sy for all z,y € C™; the entries of S are s;; = b(e;, e;), where

{e1,e2,...,€,} is the standard orthonormal basis of C™. Since one may
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factorize any symmetric matrix as S = AT A for some A € M, with the
same rank as S [7, corollary (4.4.6)], any symmetric bilinear form on C* xC"
can be written as b(z,y) = (Az)T (Ay) for some A € M,. The matrix S,
and hence the matrix A, will be nonsingular if y = 0 is the only y € C* for
which b(z,y) = 0 for all x € C*. Thus, the study of such bilinear forms and
the geometry induced by them may, by a nonsingular change of variables,
be reduced to the study of the basic bilinear form b(z,y) = z7y. ‘

Just as the Hermitian form h(z,y) = z*y is invariant under unitary
transformations, the bilinear form 27y is invariant under complex orthogo-
nal transformations: (Qz)T(Qy) = 2T (QTQ)y = =Ty if QT Q = I. We shall
be interested in geometric and algebraic results involving complex orthogo-
nal matrices that are analogues of familiar results about Euclidean geometry
and unitary matrices.

A fundamental difference between the bilinear form b(z,y) = zTy on
C" x C™ and the Hermition form h(z,y) = z*y is that, if n > 2, there
are always nonzero vectors z such that 7z = 0; as an example consider
z=1[1,%,0,...,0]T.

Definition 1.1: A vector z € C™ is said to be isotropic if 7z = 0 and

nonisotropic if z7xz £ 0.

Definition 1.2: A set of vectors {z; : ¢ = 1,2,...,k} C C" is said to
be rectangular if z7 x; = 0 whenever i # j; it is said to be rectanormal if it

is rectangular and zfz; =1 forall i =1,2,..., k.

Observation 1.3: Let X € M, ; with k¥ < n. Then XTX =1¢€¢ M,

if and only if the columns of X form a rectanormal set.
Lemma 1.4: A rectanormal set is linearly independent.

Proof. The assertion follows from observation (1.3) since XX =1 €
M}, implies that rank X > k. One may also give a proof that parallels the
classical argument in the orthogonal case: Let {z1,z3,...,21} C C® be a

rectanormal set. If ayx1 + asxg + ... + apzr = 0 for some choice of scalars
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a; € C, then 0 = 0(z;) = (11 +aza + ... +apzp) o = ozl 2 = o =
fori=1,2,... k.

2. Analogues of the Gram-Schmidt algorithm and some of
their consequences. The Gram-Schmidt algorithm shows that any in-
dependent set of vectors is triangularly equivalent to an orthonormal set
in the following sense, and this fact has many important consequences for

Euclidean geometry and the linear algebra of unitary transformations.

Definition 2.1: Two set of vectors {z1,z9,...,2} C C™ and {y1,y2,
., Yk} C €™ are said to be equivalent if Span{zi,zs,...,zx} = Span
{y1,92,--.,yx}. They are said to be triangularly equivalent if Span{z;,z,,
oo, xi} = Span {y1,ya,...,y:i} fori=1,2,... k.

X =[zize.. 2] € My and Y = [11y2 ... yk] € M, i, then the sets
of columns of these two matrices are equivalent if and only if X = Y A for
some (not necessarily unique) nonsingular A € M. They are triangularly
equivalent if and only if X = Y B for some nonsingular upper triangular B €
Mjy,. The classical Gram-Schmidt algorithm shows that any independent
set is triangularly equivalent to an orthonormal set. It is not true that
every independent set is triangularly equivalent to a rectanormal set, as the
example {x} = {[1 i]7} shows, but any set of vectors is equivalent to a
rectangular set. The key insight into proving this is the following theorem
of Takagi [12], for which independent proofs were given later by Jacobson
[9], Siegel [11], Hua [8], and Schur [10] (for a discussion and yet another
proof see [7, section (4.4)]).

Theorem 2.2. (Takagi) Let A € M,, be symmetric. There ezists a uni-
tary U € M,, and a unique nonnegative diagonal matriz 32 = diag(oy,02,.. .,
On) € M, with oy > 09 > ... > 0y > 0 such that A = USUT. The entries
o; are the singular values of A and hence the number of nonzero entries o;
15 equal to the rank of A.

It follows immediately from Takagi’s theorem that any complex symmet-

ric A € M, can be written as A = BT B for some B € M, with the same
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rank as A; if A=USUT, take B € (USY?)T.

Theorem 2.3. Let {z1,22,...,2r} C C™ be given with 1 <k <n and

let X = [z122...2k) € My . There exists a rectangular set {y1,ys,...yx} C

C™ that is equivalent to {z1,%2,...,Zxr} and is such that:
a)
I, 0
Ty _ r
)

where Y = [y1y2...Uk] € My x,r = rank X7 X, and I, € M, is an identity
matriz. The product XT X is nonsingular if and only if there is an equivalent
set {y1,Y2,.--,Yk} that is rectanormal.

b) The matrices X and Y are related by X = Y B, where B € M, is
nonsingular and depends on X only via the product XTX, i.e., if Z € My
is given and ZT 7 = XTX; then also Z =Y B for some Y € M, i such that

I. 0
0 0

vy = [ ] =v7Ty.

Proof: a) Since XT X is symmetric and rank X7 X = r < k, by Takagi’s
theorem (2.2) there exists a unitary matrix U € M}, and a diagonal matrix
3 o= [13 8] € My (where A € M, is a nonsingular positive diagonal
matrix) such that

A1/2 0 A1/2 0
XTx =T =U T
[ 0 0 G 0 v

’ 1/2 1/2
(A 0o 1[L o0][A 0 Jyr,
0 Ik—r 0 0 0 Ik—'r

where I. € M, and I},_, € Mj_, are identity matrices. The diagonal entries

(2.2a)

of ¥ are the singular values of X7 X. Tt follows from (2.2a) that

(2.2b) wxXTXWT = (XWT)(XWT) = [10 g]

where
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AYE g 77
W = U

[ 0 I, € M,
is nonsingular and depends on X only via the product XTX. If we set
Y = XW7T, we have

-]t 9]
and hence the columns of Y comprise a rectangular set that is equivalent to
the set of columns of X. The last assertion follows from the observation that
XT X is nonsingular if and only if r = k and YTY = I, i.e., {y1,92,---,uk}
is a rectanormal set.

b) Let B = (WT)™1 5o that X = Y B and B depends on X only via
the product XTX. Thus if Z € M, is such that Z7Z = XTX = USUT,
then the same W as in a) produces a matrix ¥ = ZW7T such that

VIV —wzTzwT = [IO 8]

Hence Z =Y (WT)~! = Y B, where Y7V has the same form as in (2.2b).

The crucial parameter in the preceding. lemma is 7 = X7 X, where

X = [z122 ... 2%) € My, . Although r > rankX is impossible, it can happen
that » < rankX even if X has full rank. This is in sharp contrast to the

classical Euclidean situation in which X*X = rankX always.

Geometrically, theorem (2.3) says that and k-dimensional subspace V

of C™ has a rectangular basis in which some basis vectors may be isotropic

and some are not. If {z1,23,...,2%} is a basis of V and we set X =

{z129... 21} € M, 1, then any basis of V form the columns of a matrix Y =

XC for some nonsigular C € M. Since rank Y7V = rank(XC)T(XC) =

rank CT(XTX)C = rank XT X, we see that every rectangular basis of V

has the same number of nonisotropic vectors in it.

Corollary 2.4. Let 1 <k < n and let V be a k-dimensional subspace
of C*. Then V can be written as a rectangular direct sum V = V1@V, of

two subspaces Vi and Vs, in which
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(a) 2Ty =0 for allz € V1, y € V3.

(b) r = dim V; = rank XTX for any X = [z122...,%k] € My whose
columns form a basis for V, and 0 <r < k.

(¢) If r > 1, Vi has a rectanormal basis.

(d) Ifr <k, V2 has a rectangular basis of isotropic vectors, and every vector
i Vo 1s isotropic.

(e) r =k if and only if V has a rectanormal basis, and r = 0 if and only if

V has a rectangular basis of isotropic vectors.

Y = {y1,¥2,.-.,y"} is rectangular set of isotropic vectors and y =

o1y; + aays, ..., pYP € Span Y then

n
yTy = aayly; =0
ij=1
because the terms in this sum with ¢ = j vanish by isotropy and the terms
with 7 # j vanish by rectangularity. The assertion (c) does not imply that
there are no isotropic vectors in V; when r > 2, for if {z,y} is a rectanormal
set in Vi, then {x + 4y, — 7y} is an independent (but not rectangular) set
of isotropic vectors in Vj. Thus, V7 can even have a basis that is isotropic,
but such a basis could not be rectangular as well because every rectangular

basis of a subspace contains the same number of nonisotropic vectors.

Definition 2.5. A subspace V C C™ is said to be

(a) Isotropic if V has a rectangular basis of isotropic vectors, and hence
every vector in V' 1is isotropic.

(b) Singular if V has a rectangular basis containing at least one isotropic
veetor.

(¢) Nonsingular if V has a rectanormal basis.

If {z1,22,...,2} is a basis for a subspace V. C C*, if X = [z129... z]
€ M, , and if r = rank X TX, we have seen that V is isotropic if r =
0, singular if r < k, and nonsingular if r = k. A subspace V C C" is

singular if and only if there is a nonzero vector z € V such that z7y = 0
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for all y € V, for if {vy,vs,...,vx} is a rectanormal basis of V and we
write z = 2111 + 29V + ... + zpV; and Y = Y101 + Y2v2 + ... + Yrvk, then
zTy = 2101 + 22v2 + ... + zxvp = 0 for all y € V' (in particular, for y = v;)

if and only if all z; = 0.

Lemma 2.6. Let {z1,22,...,21} C C™ be a given set of linearly in-
dependent vectors and let X; = [z1x2...2;) € My, for i = 1,2,... k.
There exists a rectanormal set {y1,vy2,...,yr} C C™ that is triangularly
equivalent to {1, Za,...,zx} if and only if each XF X; has full rank i, i.e.,
det[XT X;] #0 fori=1,2,... k.

Proof. Define Y; = [y1yz... 45} for i =1,2,...,k. If {z;} and {y;} are
triangularly equivalent and {y;} is a rectanormal set, then X; = Y;B; for
some nonsingular upper triangular matrix B; € M; for: =1,2,...,k. Then

det[ X7 X;] = det[BT YTV, B;] = det[BY B;] = [det B;]* # 0.

Conversely, suppose det[X} X;] # 0 for i = 1,2,...,k. If k = 1, pick
y1 = 71/(x721)Y/? and we are done since z7xz; # 0. If £ > 1, make the
induction hypothesis that the lemma has been proved for k =1,2,...,p—1.
Consider the linearly independent vectors {z1, 2, ...,z,}. By the induction

hypothesis, Y, 1 = X,_1B,_1 for some nonsingular upper triangular matrix
B, 1 € M,_;, where Y;,TllYp_l =1¢€ Mp,_,. Define

p~1

2 =2p (2, 9:)yi

=1

Then
ng—xgyizﬂ for i=1,2,...,p—1

and

p—1
zgzp = xgxp - Z(xgyi)Q # 0.

=1

Thus, 2, is nonisotropic and we may set
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p—1
Yp = Zp/(zgzp)l/2 = bpzp = by, — Z bp@gyz‘)Yi-

1=1

The matrix

_ | Bp1 %
a5
is a nonsingular upper triangular matrix and Y, = X, B,, as desired.

Every orthonormal set can be extended to an orthonormal basis of C™;

we now prove that every rectanormal set can be extended to a rectanormal
basis of C™.

Theorem 2.7. Let k be a given integer, 1 < k < n, and let {z1,z2,...,
zr} C C™ be a given rectanormal set. There exists a vector x4 € C™ such

that {x1,29,...,2k+1} C C™ is a rectanormal set.

Proof. Let y = [y;] € C™ be a vector whose coordinates are to be deter-

maned. If we set

k
v=y-—> Tz

i=1
then
k
T T T T T .
vizp=y xj—Z(y )T ;=Y asj—yij =0forj=1,2,... k.
i=1
Thus {z1,%2,...,Zk, v} is automatically a rectangular set for any y € C™.

If we can choose y so that vTv # 0, we can set zp41 = v/(WTV)Y2 and

{z1,22,---, Tk, Tr+1} will be a rectanormal set.

Write x;‘r = [zs1Zi2 .. . :cin]T fori=1,2,... k and compute

k
Vv =yTy = (3" )
i=1
k23

k
= Z(l — ol —ay = - Tyl -2 Z TmiTmji¥ils

1=1 m=11:j=1,i<y
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If all the coefficients of the y? terms were zero, then

n

k n
O=Z(1—x%i—$gi—...—xii) :n—z Zx?m =n—2xfn:ﬂm =n—k

i=1 m=1 =1 m=1
which is a contradiction, since k < m by assumption. Let i° be the least
value of the index i =1,2,...,n for which 1 — 23, — 2%, — ... —xzi #0. If

we set

y; =1,y; =0 if ¢ #¢°, then

VTV: (1 _"I’.%’P ‘—xgio - ... —.’Eiio) #0.

as desired.

Corollary 2.8. Any rectanormal set in C™ can be extended to a rec-

tanormal basis of C™.

It is not possible to extend a given rectangular set {z1,z2,...,zx} C C®
to a rectangular basis B = {xy,%s,...,z,} of C" if the given set contains
any isotropic vectors, for then the necessarily nonsingular matrix X X,
would have a zero row, where X, = [z122...2,] € M,,. However, we show
next that it is always possible to extend a given independent rectangular
set to a larger rectangular set in which the bilinear products z¥ z; have
a canonical pattern. The given set spans a singular subspace, while the
extended set spans a larger nomnsingular subspace, which therefore has a

rectanormal basis.

Theorem 2.9. Let W = [E F| € My, r4, have full rank r +p < n and

suppose

I, 0O

T _ r

=[5 )

where E€E M, ., F € Mp,,p2> 1,7 >0 and I, € M, is an identity matriz.
Then

1) n>r+2p and
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2) there exists G € My, such that the matric H = [E F G| € My 42,
has full rank rank r 4+ 2p < n and satisfies

I. 0 0
(2.10) H'TH=10 0 I,| € M43,
0 I, 0

where I, € M,.,I, € M, are identity matrices. In particular, HT H is
nonsingular, and hence the column space of H is a nonsingular subspace
of C™.

Proof. 1) Let V denote the span of the columns of W. Then V =
dimV = r+p, where V denotes the set of complex conjugates of the vectors
in V. By hypothesis, the p independent columns of F' are orthogonal to
V. Therefore, dim V+* > p, 7+p =dimV = dim V < n — p, and hence
n >+ 2p.

2) Let V' denote the orthogonal complement of the span of the columns
of E. The p independent column of F are in V’, and they may be augmented
by n —r — p additional independent vectors T3, Ty, ..., Tn_r—p in V' to form
a basis for V. Let F' = [fifs... fp] € Mpp and X = [z122...Tpr—p] €
My, n—r—p. Then XTE =0 by construction and the matrix L= [E F X] €

M, is nonsingular. Since L is nonsingular, the product

ETE ETF ETX I. 0 0
LTL=|FTE FTF FTX|=1|0 0 FTx
XTg XTrp XxTx 0 FTx XxTx

is nonsingular. Consider the first tow of FT X, which has entries Lz
for ¢ = 1,2,...,n — 7 — p. Not all of these entries are zero since LTL is
nonsingular. Suppose ¢ is the least index for which ff z; # 0. Let Z;, = cz;,
where ¢ € C" is such that fi Z; = 1. Define z; = z; + aj:E%, where the
sclar o is such that flT:Ej =0forj=1,2,...,n—r —p,j # . Notice taht
a”:'fE =0for j =1,2,...,n— 7 —p. Replace each column z; by %; without
disturbing the rank and permute the columns so that 5:,2. becomes that first

column of X. After these manipulations, F7 X has the form
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FTX = [i 2} :

Consider the second row of FT X, which has ffz;i=1,2,...,n—r—p. This
whole row cannot be zero, and it cannot be that its only nonzero entry is
f# z; because then the first and second rows of F7 X would be proportional;
both possibilities are excluded because LT L is nonsingular. Suppose 7’ is the
least index greater than 1 for which f2T z;,7 0. Scale z;, as before to obtain
#;, with f§'#;,= 1, and use Z;, as before to zero out all of the other elements
in the second row, even the first. This manipulation will not disturb the
entries of the first row since f{7;,= 0.

One can proceed in this fashion down the first p rows of FT X to obtain

a final X such that

FT 0 %P . 79
xr|FXl=|L X{X; X[X,
0 XI'x; XIXx,

where X = [X; X;] and X; € M, ,. Notice that X7 E =0 and FT X, = I,.
Let

1
G=X, - iF(X;le).
Then
1
GTE =XTE - -i(X{Xl)FTE =0
1
FTG=FTX, - 5FTF(XlTXl) =1,
1

2
+ LT X)(FTR)(XT X))

1
GTq =xTx, - 2XTr(xTx,) - 5(XlT X)) FTX,

: 1 1
=X{ X, (I, - 3l =5l +0)=0.

Let H = [E F G]. Then
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ETE ETF ETG L 0 0}
HTH=|F'E FTF FTG|=|0 0 I,
GTE G'F G'G 0 I, 0

has the desired form and HT H is nonsingular.

Theorem (2.9) implies a generalization of corollary (2.8) to the problem
of extending a given independent rectangular (but not necessarily rectanor-
mal) set to a basis B = {2;} such that the set of products 27 z; has a canon-
ical structure. If a given independent rectangular set of vectors {ej,es,...,
ery f1, f2,-. ., fp} C C™ is such that each f; is isotropic and each e; is nor-
malized so that efe; = 1, then the theorem (2.9) says that there are p addi-
tional independent isotropic vectors gy, g2, . .., gp such that the matrix H =
[E F G] € My, 49, satisfies the identity (2.10), where F = [ejes...e.] €
My F = [fifz.. . fo) € Myyp and G = [192- .- gp] € My p. Since HTH
is nonsingular, theorem (2.3) ensures that the column space of H has a
rectanormal basis, and corollary (2.8) says that there are n — r — 2p vec-
tors xi,%2,...,Tn—r—2p that extend it to a rectanormal basis of C". Let
X =[z122...Tpr_2p] € Mpp—r_9p andset L = [E F G X] € M,,. We
conclude that the given set of vectors {e;} U {f;} may be augmented by
additional vectors {g;} U {z;} to form a basis with the following canonical

bilinear product structure:

(2.11) _
ETE ETF ETG ETX I. 0 0 0
[T — FTE FT'F FTG FTX| |0 0 I, 0
" |GT'E GTF GG GTX| |0 I, 0 0
XTg XTr XTg XTx 0 0 0 I,,_2

where I € M; denotes an identity matrix of size k. If p = 0, this reduces
to theorem (2.7). Notice that LT L is a symmetric permutation matrix,
and hence I = (LTL)? = (LTLLT)L. Thus L~! is easily computed as
L1 = (LTL)LT, which is a permutation of the rows of LT. Such matrices
may be thought of as a generalization of complex orthogonal matrices. We

formalize these observations as

Corollary 2.12 Let {ey,e2,...,¢€r, f1, f2,..., fp} C C" be a given rect-
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angular set with el e; =1 fori=1,2,...,r and fffi=0fori=1,2,...,p.
Then n > 7 + 2p and there are p additional isotropic vectors g1,92,...,9p
and, if n > 1+ 2p, n — 1 — 2p rectanormal vectors T1,Ta,...,Tn_r_2p 50
that the set B = {e;}U{f:} U{g;:} U{z;} is a rectangular basis of C™ whose

bilinear product structure is given by (2.11).

One consequence of the inequality in (1) of theorem (2.9) is that any
isotropic subspace of C™ has dimension at most [n/2]. Subject to this bound,
there exist isotropic subspaces of all possible dimensions k = 1,2,...,[n/2],
as exemplified by the spans of the first k& vectors in the sequence of standard

rectangular isotropic basis vectors
e1=101400...07,e=[001:00 ... 0]T,...

In general, eg; 1 = egx—1 + teax, where the standard unit basis vector e; =
0...010 ... O]T has +1 in the jy, position and zero entries elsewhere.
In ordinary Euclidean geometry, any k-dimensional subspace can be
transformed unitarily onto any other k-dimensional subspace. In partic-
ular, it can be transformed unitarily into a standard k-dimensional sub-
space that is the span of ey, es,...,ex. This is a consequence of the polar
decomposition [7, section (7.3)] that permits us to write any X € M, s,
k <n,as X =UB, where U € M, is unitary and B = M, ;, has the form
B = [(X*X)Y? 0]*, where (X*X)'/2? denotes the unique positive semi-
definite square root of X*X. Thus if Y € M,,  satisfies Y'Y = X* X, we
can write Y = VB for some unitary V € M,, (and the same B € M, ;)
and hence X = UB = UV*X = WX, where W = UV* € M,, is unitary.
The geometrical consequence of this argument is that a given set of column
vectors [z123...xk] = X € M, can be transformed unitarily into another
given set [y1y2...yx] € My, ie., X = UY for some unitary U € M,, , if

and only if X* X =YY, i.e., all the respective inner products are the same.

In the geometry associated with the bilinear form zTy, things are not
so simple. There are as many as k + 1 essentially different (i.e., not orthog-

onally equivalent) k-dimensional subspaces of C™ in this case, depending
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on whether the subspace is nonsingular, isotropic, or singular (as many
k — 1 different isotropic possibilities); one must have k£ < [n/2] to real-
ize k + 1 different possibilities, of course. In order to show that any k-
dimensional subspace of C™ can be transformed orthogonally into one of
the standard k-dimensional subspace spanned by appropriate combinations
of standard unit basis vectors e; and standard rectangular basis vectors
€95-1 = ezj_1 + tey;, we need to know when two matrices X, Xy € M, x
are of the form X; = QX,, where Q € M,, is complex orthogonal. It is
certainly necessary that X7 X1 = (QX2)T(QX,) = XIQTQX, = XTI X,,

but this is not sufficient, as shown by the example

0 0

1
Xl‘_z‘ 00

8 ,X{Xlz() X2:|: }7X2TX2:O

Even if we add the necessary condition that rank X; = rank X, the example
1 o
L i 0 -

01

Xy = 0 i

JXTx, =0 XQ:[ },XQTXQ:O.

shows that there still may be no orthogonal @ such that X; = QX5 since
the zero vector cannot be the orthogonal image of a nonzero vector.

If X1 € M, with ¥ < n and if X; has rank ¢ < k, there is some
permutation matrix P € M, for which X3P = [Xl, Xl] and X; € M, ,
has full rank ¢; then X'l = X’lC € My x—q for some C € Mgg—q. Ifin
addition, X; = QX3 for some orthogonal Q € M,, and X, € M, i partition
X3P = [Xy X,] conformally with the given partition X; P = [X1 Xi] and
observe that XiP = [X; Xi] = [X; X,C] = QXyP = [QX, QX,]. Thus
Xy = QT(QXQ) =QTX,C = QT(QXQ)C = X,C. 1t is therefore necessary
that if X, P =]X; X,C] for some X, € M,, with full rank and some
permutation matrix P € My, then XoP = [XQ XQC] and X, € M, , has

full rank ¢. These necessary conditions are also sufficient.

Theorem 2.13. Let X;,X, € M, , with 1 < k < n and let rank
X1 = q. There is a complex orthogonal Q € M, such that X, = QX5 if and
only if
(a) X¥ X, =XIX,.
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(b) rank X; = rank X5, and, in addition

(¢) If 1 < g < k and P € My, is a permutation matriz such that X; P =
(X, X{]. X, ¢ M, , has full rank g, and X, = X,C for some C €
M, k—q, then XoP = [Xz XQC], where X4 € M, 4.

Proof. The necessity of these three conditions has already been shown.
Suppose X; and X, satisfy (a), (b), and (¢). If ¢ = 0, then X; = X, =0
and there is nothing to prove. If 1 < ¢ < k, compute the two quantities
AT A ~
X, X, X
PUXTX)P=(X;P)Y(x;P)= |5

( ( XTx, X

2

which are equal by (a). In particular, X TX =X
to consider:

Case 1: Suppose rank X, = X?X’l = g, and hence also rank X;Xz =
¢. Theorem (2.3) guarantees that there is a nonsingular B € M, such that
X, = }71B, Xy = YQB, where Yl,f/Q € M, 4 have rectanormal columns.
By corollary (2.8) there are matrices Y; € M, n—q With rectanormal columns

such that Q; = [}71 }71-] € M, is complex orthogonal, ¢ = 1,2. Now write

where R = {? BOC] € M,. Then XoP = QsR and R = Q¥ X, P, so
X;P = QR = QlQ%—‘XQP and hence X; = QX,, where Q = Qng 1S
complex orthogonal.

Case 2: Suppose X?Xl, and hence also X;FXQ, has rank r < ¢, and
use theorem (2.3) as in the previous case to write X, =Y;B,i=1,2, for

some nonsingular B € M,, but now V.,V € M, 4 satisfy
- T o I. 0

By theorem (2.9), 2¢ — r < n and there are Z;,Zy € M,, 4—, such that the
matrices H; = [f/i Z;] € My, 24—r satisfy
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I, 0 0
HIm;=10 0 I,,| €My, i=1,2;
0 I_, 0

in particular, both products are nonsingular. By theorem (2.3) there is
one nonsingular G € My,_, such that H; = W,;G, i = 1,2, where W1, W, €
M, 24—r have rectanormal columns. Use corollary (2.8) to extend the column
sets of Wy and W5 to rectanormal bases of C™ and let @; = [W; V~Vz] e M,
¢ = 1,2, denote the resulting complex orthogonal matrices whose first 2¢ —r

columns are the columns of W;. Then

X.P =[X: RiC|=[F; V:BC|= [V zi][ﬁ BOCJ _ HR
=W;GR = [W; W] [GOR] =QR, i=1,2

B BC GR
0 O]Equ_randRE[O

Q3 X3P and X1 R = Q1P = Q1QT X3P, s0 X; = QX,, where Q = Q,Q7 €
M,, is complex orthogonal.

where R == { ] € M,. Finally, R =

The preceding argument also covers the remaining possibility that ¢ = &
if we simply omit all terms involving C and take X; = X;.
It follows immediately that any subspace of C* can be mapped orthog-

onally onto a subspace of standard type with a canonical rectangular basis.

Corollary 2.14. Let V C C" be a k-dimensional subspace with ba-
sis {T1,%2,..., Tk}, and let X = [z129...24] € M, .. If rankXTX = 7,
then 2k —r < n and there is a compler orthogonal matriz Q € M,, such
that V. = Qspan{ej,eq,...,e.} U {ert1,Er43s - Ergagkmr)—1}, where we
agree that the second set of wectors in this union is present only if k > r,
i.e., {Qe1,Qer, ..., Qe }U{Qery1,Qerys, ... y Qrta(k—ry—1} 18 @ Tectangu-
lar basis of V.

Proof. The subspace V' has a rectangular basis containing k—r isotropic
vectors and 7 rectanormal vectors. The set {e1,es,...,€r,6r41,6r43,...,

Er42(k—r)—1) i independent, rectangular, and contains k—r isotropic vectors

and r rectanormal vectors. Existence of the required complex orthogonal
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matrix @ that maps this standard set onto the given rectangular basis of V'
follows from the sufficiency of conditions (a) and (b) of theorem (2.13) in
the full rank case.

Given any unit vector x € C™, one can always construct a unitary
matrix whose first column is z. Analogously, given any vector z € C" such
that 27z = 1, one can always construct an orthogonal matrix whose first
column is z. Let z = [z; y7]7, where z; € Cand y € C* 1. If 2y # —1,

then
T

xI; Y
Q= { ] €M,
y -1+ (1+1x1)yy

is orthogonal. If z; = —1 then yTy = 0 and

is orthogonal.

Given any two vectors z and y with the same FEuclidean length, one can
always construct a unitary matrix U such that Uz = y; U may be taken to
be a Householder transformation. Analogously, given two nonzero vectors z
and y such that 27z = yTy, theorem (2.13) says that one can always find
an orthogonal matrix @ such that Qx = y. There are two cases to consider.

Case 1: If 272 # 0, there is no loss of generality in scaling = and y by
the same factor so that z7z = yTy = 1. If 2Ty # 1, let v = z + y and
consider the matrix Q = —I + 2vvT /vTv. If 27y = —1, let v =2z — y and

consider the matrix
1
Q=I-20TpTv =1~ §VI/T.

Case 2: Suppose 2Tz = yTy = 0. If 27y # 0, let v = z+y and consider
the matrix Q = —I + 2vvT /vTv. If 2Ty = 0, we can find isotropic vectors
21,22 € C™ such that 272 # 0, yT29 # 0, and 2T 2y =yT21 =272, =0. To
do so, one applies theorem (2.9) to W = [z] if the set {z,y} is dependent or
to W = [z y] if z and y are independent. Let z = 23 + 22, so that 2Tz =0,
2Tz # 0 and y©'z # 0. We have already shown that there are orthogonal
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matrices @ and @ such that Q,z = z and Quy = 2. Hence Qz = y where
Q = Q¥ Q, is complex orthogonal.
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