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Abstract. This paper studies the problems of enumerat-
ing partitions of the set {1,2,...,n} with given partition-sizes

and specific properties. Six properties are considered.

1. Introduction. Consider the problem of partitioning an ordered
set N, = {1,2,...,n} of objects into indistinguishable parts. Let Tiyen, Tp
denote the parts and n; the cardinality of m;. A partition is called a p-
partition if the number p of parts is specified, and an {n;}-partition if the
cardinality n; of m; for each ¢ = 1,2,... pis. Let p; denote the number of

parts of size j in {n;}. Clearly, the number of p-partition is

1%~ k(P n
) = 30 (o b,

which is exponential in general. Thus it is very time-consuming, in searching
for an optimal partition under some cost functions, to examine all these
partitions. One approach popular in the operation research literature to
deal with this “size” problem is to work with cost functions such that an
optimal partition exists in a specific class of polynomial size. Six such classes

have been identified in the literature. We say a part A penetrates another
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part B if there exist z, 2 € B and y € A such that z < y < z. The six

classes are:

Consecutive (C) No part penetrates any other parts.

Nested (N) No two parts penetrate each other.
Order-consecutive (O) The parts can be labeled such that m;does not

penetrate U ;.
1<

Fully nested (F) The penetration relation forms a linear order.
Almost fully nested (A) Fully nested except for parts of size one.
Size-consecutive (5) Consecutive plus the condition that : < 7,

1 € Wy, J € m, implies np, < ng.
Let #0(n, p) and #¢o({n;}) denote the number of p-partitions and {n; }-
partitions in class Q. Hwang and Mallows [2] counted #c(n,p), # N(n,p),
#0(n,p), and #p(n,p). In this paper, we provide the rest of the enumera-

tion picture. Some simple cases will be settled here immediately.

Folln) = iy and #s(nh) =1
I1 i>1Ps
It follows that #s(n,p) is simply the number of shapes for given n and
p, or equivalently, the number of ways of partitioning n into p unordered pos-
itive integers, which is a well-known [1] unsolved problem in combinatorial

theory, with (7"_17% being the dominant term.

2. The main results.

Theorem 1.

(-7 (ni-1) e
T —;j! Yoes1 g if minng > 1
i>1

#F({n’}) = (p-—l)!Hn'>1(ni'—1)

f minn; = 1.
H]’21 ;! f 1 7

Proof. (i) minn; > 1. Suppose that the part which penetrates all other
parts is of size k. Then the other p — 1 parts consist of p; parts of size j for
j # k and py — 1 parts of size k. Since the parts are indistinguishable, there

are
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(p—1)! _ (p=1)ps
e =D Izeps! T ps!

ways of ordering p — 1 parts in the linear order of penetration. Note that if
m; penetrates 7;. Then there are n; —1 spaces (between the elements of ;)
. P (i1 . .
that 7; can lie. Hence there are H—ﬁél——) ways of choosing the spacing for
each 7; except the part which penetrates all other parts.
(ii) minn; = 1. The argument is similar to (i) except the part pene-

trating all other parts must be the unique part of size 1.

Theorem 2.

n —p1— )], o1 (ns —
#A({ni})=( )(p 2L~ Do 1)Zk]ﬁ“1.

.1
P1 Hj>1p7' k>1

Proof. There are (:1) ways of choosing a set of p; positions for parts of
size one. For each such choice S, the remaining partition of N,,\ S into p—p;

parts must be fully nested. Theorem 2 follows from Theorem 1 immediately.

Theorem 3.

P /n n—i—2
#anp) = (z) <2p — 2 - 2)‘
i=0

Proof. Consider almost fully nested partitions with exactly ¢ parts of
size one. There are (T:) ways of choosing these ¢ parts. The remaining
partition of IV, \ S into p — i parts must be fully nested. However, the latter
includes fully nested partitions which has a unique part of size 1 penetrating
the other; these partitions should not be counted since parts of size one are
already taken out. We count such partitions.

We use the same parenthesis representation of a partition as used in [2].
For each part 7ri,‘put a left parenthesis to the space immediately left to the
minimum element of 7;, and a right parenthesis to the space immediately
right to the maximum element of m;. Then the number of fully nested
partition of n — ¢ elements into p — ¢ parts is the number of ways of inserting

2(p — ¢) parentheses into the n — i + 1 spaces, except that the first space
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and the last space must be occupied by the parts which does not penetrate

s

A parts of size 1 corresponds to a pair of left-right parentheses with one

any other parts. Hence the number of fully nested partitions is (2

space apart. Hence once the position of the left parenthesis is chosen. The
position of the right parenthesis is also determined. Hence there are only
2p — 2i — 3 parentheses to choose. Furthermore, the space occupied by the
above-mentioned right parenthesis cannot be occupied by other parentheses.
So the number of spaces should also be reduced by one. Therefore the

number of fully nested partitions with a unique part of size one is ( n—i-2 )

2p—2i—3
Tt follows that the number of fully nested partitions without a part of size

n—i—1 n—1—2Y\ n—i—2
2p— 2 —2 p—2—-3) \2p—2-2)

Theorem 3 follows immediately.

one 1s

For a subset S of {n1,...,n,}, let p;(S) denote the number of parts of
size 7 in S.

Theorem 4.
#o({n:}) =
pHISI=T) oIS ISt
592{;} << 2191 >Ha’21 pi({ni} \ SN I1;5,1 P (S)! jl;[i(] Y )

Proof. The elements of a part in an order-consecutive partition are
either consecutive or split into two consecutive subsets, called left block and
right block. We call the former type of part a solid part and the latter a
split part. Let S denote the set of split parts in order-consecutive partition.
Consider the permutation of the 2|S| blocks and the p — |S| solid parts.
Note that in an order-consecutive partition, the split parts must be fully
nested among themselves. So the first |\S| blocks always represent the left
blocks. Also note that the two middle blocks, representing the left and right

block of the same part, cannot be adjacent or the part would not be split.
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Therefore there exists a one-to-one mapping between this set of constrained
permutation and the set of unconstrained permutation of 2|S| blocks and
p—|S]—1 solid parts, by eliminating the solid part following the |S|th block
in a constrained permutation. It is well known [1] that the cardinality of
the latter set is (7 +2|fgl|_ h.

There are (p—|[S)!/ [],5, pj({n:}\ S)! ways of ordering the p—|S| solid
parts, and |[S|!/[],>, p;(S)! ways of ordering the |S| split parts. Finally, the
numbers of ways of splitting j objects into nonempty left and right blocks
is simply 7 — 1.

Let #n-({n;}) denote the number of nested {n;}-partitions when the
n elements are arranged into a cycle. Kreweras [3] proved

nl

(i) = G T

Lemma 5.

#n{ni}) = #n-({n:})-

Proof. Consider the cyclic array as obtained from the linear array by
connecting its first and last elements. Clearly, this connection preserves
nonnestedness. So if the linear array is not a nested partition, then the
cyclic array is not. On the other hand, suppose that the cyclic array is not
a nested partition. Then there exist four elements w, z, ¥, z in that order
on the cycle such that w and y belong to one part, while z and z belong to
another part. No matter where we cut the cycle into a line the linear order
of these four elements must be one of the following four patterns: wzyz,

Tyzw, yzwx, 2wry, which are all nonnested.

Corollary 6.

n!

#avlinad) = (n—p+ 1)'! [j>105"

Surprisingly, no direct argument on #y({n;}) is known.
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3. Distinguishable parts. We call a partition an ordered partition
if the parts are distinguishable. An ordered p-partition can obtained from
its unordered counterpart by multiplying a factor of p!. An ordered {n;}-
partition can be obtained from its unordered counterpart by multiplying a
factor of ][5, p;!. This is because an ordered {n;}-partition, the cardinality

of m; is fixed at n;. Hence only parts of the same size can be interchanged.
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