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Abstract. In this paper, we introduce likelihood ratio
to be a measure of the deviation of the dependent sequence of
discrete random variables, relative to the type of independence.
By restricting the deviation, a subset of sample space is deter-
mined, and on this subset, a class of limit theorems represented
by inequalities are given. Furthermore, by allowing the selec-
tion function to take values in the interval [0,1], the conception
of random selection is generalized. A strong limit theorem on
gambling system is a simple- corollary of the conclusion of this
paper.

1. Introduction. The notion of random selection originates from
gambling. Consider a sequence of Bernoulli trials and suppose that at each
trial the bettor has the free choice of whether or not to bet. A theorem
on gambling system asserts that under any system the successive bets form
a sequence of Bernoulli trial with unchanged probability for success. The
importance of this statement was recognized by von Mises, who introduced
the impossibility of a successful gambling system as a fundamental axiom.
(c£.[3], p.91; [7], p-186). This topic was discussed still further by Kolmogorov
in [9]. The connection between this topic and the martingale theory were
discussed by several authors (cf.[2], p.316; [5], pp-299-302; [8], p.328; [24],

p.452). The purpose of this paper is to extend the discussion to the case
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of dependent random variables, in virtue of the notion of likelihood ratio
and by using an analytic technique. We also extend the notion of random
selection by allowing the selection function to take values in [0,1].

Let S = {to,t1,-..} be a countable (finite or denumerable) set, {X,,
n > 1} a sequence of random variables taking values in S with the joint
distribution
(1)

P(X)=21,X0=2%9,..., Xn=2pn) =p(21,...,2,) >0z, €5, 1 <i<n
Let

(2) ;= (pi(tO)api(tl)y- .. ,pi(tn), c ) pi(tn) >0,2=1,2...

be a sequence of distributions on S. In order to indicate the deviation
between {X,,n > 1} and a sequence of independent random variables with
distribution (2), we introduce the likelihood ratio of {X,,n > 1}, relative

==

to the product distribution II?_;p;(z;), as follows

71 pi(X;)
(3) Tnlw) = p(Xl,l._.,Xn)-
where w is a sample point, and X,(w) is denoted by X, for the brevity.
The product distribution II? ;p;(x;) is called the independent reference of
{Xi,1 <4 < n}. In order to extend the idea of random selection (cf.[22],
p-277), we first give a set of functions f,(z1,...,%,) defined on S™(n =
1,2,...) and taking values in the interval [0,1], which we call the [0,1]-valued

selection functions. Then let

(4) Yn+1 = fn(Xla- .. ,Xn), Yl =1, 0< Y1 < 1.

2. Main results.

Theorem 1. Let {X,,n > 1} be a sequence of random wvariables with
distribution (1), ¢ > 0 be a constant, ¢, € S,v,(w) and Y, are defined
respectively by. (3) and (4). 6;(-) be the Kronecker delta function on S,i.e.
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(5) 6:() =65 (i,5€8).

Let

(6) D(c) ={w: li%inf(l/zn)lnyn(w) > —c,ZYi = 00}.

i=1

Then

(7) limsup(1/ DY) D Yilbu(Xi) —pitr)] Sc+2Ve ae, we D(c);

=1 =1

When 0 < c < 1,

(8) lin%inf(l/ Zn:Y;) z": Yi[6:, (X5) —pi‘(tk)] > —2v/c ae., we€ D(c).

Remark 1. In order to explain the real meaning of the [0,1]-valued
random selection we consider the following gambling model. Let {X,,,n > 1}
be independent random variables with distribution (2). Interpret X,, as the
result of the n-th trial, and Y,, as the stake which the bettor puts down at the
n-th trial, the type of which may change at each step. Let p,, denote the gain
of the bettor at the n-th trial. Suppose that by the gambling rules, u, = ¥,
if the event {X,, =t} occurs at the n-th trial; and pn, = 0if {X,, = t;} does
not occur. To sum up, p, = Y56, (X, ). Let the entrance fee that the bettor
pays at the n-th trial be u!,. Also suppose that p! is proportional to Y,
ie., pul, = b,Y,, where b, is a constant. Thus the > -, ¥;6;, (X;) represents
the total gain in the first » independent trials, Z;;l-biY; the accumulated
entrance fees, and Y ., Y;[6;,(X;) — b;] the accumulated net gain. The
Corollary 2 of above theorem shows that if b, = p,(tx)(n = 1,2,3,...),
then the accumulated nét gain in the first n independent trials is to be of
smaller order of magnitude than the accumulated stakes S Y as the later
tends to infinite, and the formula (39) may be regarded as an extension of
the classical definition of “fairness” of game of chance. The above theorem
extends the discussion to the dependent case.

It should be mentioned that in the above remark the stake and en-

trance fee at the n-th trial are all random variables determined by Xi, Xo,
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..y Xn—1(n > 2). For the discussion of nonrandom situation the readers
may consult [1], [4], [6], [10], and [23].

Remark 2. Obviously v,(w) = 0 a.e. if and only if {X,,,n > 1} are
independent random variables having the distribution (2), and it will be
shown in (27) that in general case limsup,(1/> ", Y)Iny,(w) < 0 a.e.
in D. Hence y(w) = liminf,(1/Y ., Y;)Iny,(w) can be used to measure
the deviation between {X,,n > 1} and the independent reference with the
distribution (2) on D. The smaller |y(w)| is, the smaller the deviation is.
Roughly speaking, the first condition in (6) can be regarded as a restriction
on the deviation between {X,,n > 1} and the independent reference with
the distribution (2). The above theorem states that under such restriction
the ratio (1/ > 1, ¥;) >, Yi[6:, (Xi)—pi(ts)] is correspondingly restricted.
Formulas (7) and (8) give, respectively, the upper and lower bounds of its
superior and inferior limits with respect to ¢. As c is small, the absolute
values of these bounds are small also. Summarily, the situations of this
theorem are similar in some sense to those appeared in the theorem on the

stability of solution of differential equation.

Remark 3. The above theorem is a kind of small deviation theorems,
which investigate the approximation of the true joint distribution of { X, } by
a product distribution (reference distribution). Though by the definition of
a.e. convergence on a measurable set (7) and (8) hold trivially if P(D(c)) =
0, this case goes beyond the scope of small deviation. For this theorem
to be of any use, one needs to choice proper reference product distribution
and give some suflicient conditions to establish that P(D(c)) > 0. We shall

discuss this problem in section 4.

Proof. Let @ = [0,1], the class of all Borel measurable set F and the
Lebesgue measure P be the probability space to be considered. We first
give, in the above probability space, a realization of the sequence of random
variables with distribution (1). Split the interval [0,1) into countable right-

semiopen intervals at the ratio
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p(te) :p(t1) + oo p(t;) « ...

and denote them by dey, (X1 = to,t1,...). These intervals will be called
d-intervals of first order. Suppose the (n — 1)st (n > 2) order d-intervals
dey..zn_q, (i € S,1 <i<n—1) have been defined, then split each right-
semiopen d-intervals dg, ., , into countable right-semiopen intervals

dey..zp_q2,(Tn = to,t1,...) at the ratio

p(xlr--)xn—ht()) 1p($17--- 7xn—17t1) L :p(xla"'axn—hti) Py

the d-intervals of the nth order are created. It is easy to see that for n > 1.

(9) P(dz,,...t.) =P(21,. -, Tn)

define. For n > 1, a random variable X, : [0,1) — S as follows
(10) Xnlw)=z, ifwée€ds .-

Then we have

(11) {w:Xl =m17"'7Xn :xn}:dml...mn;

(12) P(dg,.. ) = P(X1 =21,..., X0 =2a) = (@1, -, Tn)-

Thus, {X,,n > 1} has distribution (1). It is obvious that v,(w) and
Y, +1(w) are constants in each n-th order d-interval. Moreover,

H?:lp’i (:L"L)

(13) Tnlw) = 2

n"

Now, we shall give a proof for this theorem according to the above
realization of {X,,n > 1}. For the need of proof, we construct a auxiliary
function. Let A > 0 be a constant. We first define a sequence of random
variables A, (t;,w)(t; € S,n=1,2,...) by the following equations:

)\n(tkaw)[]' B pn(tk)] _ )\Yn(w)

Pa(ti)[L = An(tr, )] w € [0,1)

(14)

that is,
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)‘Yn(w)pn(tk)
1+ (AY=@) — 1)p, ()

(15) An(te,w) = ,w€[0,1)

and when t; # g, let

(16) M(ti) = o= 1) we
By (15),
(17) 1—)\n(tk,w) B 1

1- pn(tk) 1 + ()‘Y" - 1)pn(tk)

It is easy to see that on each (n—1)st order d-interval (the interval [0,1)
is named the 0-th order d-interval) A, (¢;,w) is a constant and {A,(¢;,w),j =
0,1,...} is a probability distribution on S.

Similarly, split the interval [0,1], according to the ratio A;(fp,w) :
A1(t1,w) : ..., into countable right-semiopen intervals, and denote them
by D, (z1 = to,t1,...), these intervals will be called D-intervals of first or-
der. Proceeding inductively, suppose the (n — 1)st order (n > 2) D-interval
Dy, .z, ,(x; € 5,1 <i<n—1) has been defined, then split D,, . _, into

countable right-semiopen intervals according to the ratio
)\n(to,w) : /\n(tl,w) e, (w (S d11~~~$n—1)7

and denote then by Dy, . (2, = to,t1,...). By induction, when n > 1, we

have
(18) P(Dm-..zn) = H?=1)\i(xi,w)7 we dacl..lmn-

Let d;, ., and d} . be, respectively, the left and right end points
of dg,...z,, define D7, and D} similarly. Let Q be the set of end

points of all d-intervals. Now we define an function f on Q as follows:

(19) fdz. 2,) =Dg, o, fldF, 2.) =D} ..

Ifwe[0,1] — Q, let

f(w) = sup{f(t), t€ QN[0,w)}
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Obviously, f is a increasing function on [0,1]. Let

Ta(hw) = 52 0 € day.o-
Aw) =P, L b
By (13) and (18)-(21),
f( T]. xn) f d; .z ) n )‘i T;
Ty (hw) =Gz =T mne) _ (e N0
dazl .x dml .x pl(xl)
(22) " "

Ai(J,w)
pz(])

8;(=:)
- ’Yn(w) HJES[ ] ,Ww € dml...a:n-

By (10) and (14)-(17)

X, §;(Xs:)
T\ w) = mw)m_lﬂ]es[ Gy )]

pi(7)
I (e o B
o { SRR )

1
= An(w AE‘ 1Yibe, (X )H,? , wE 0,1
) T - D @ €O

Let A(tg, ) be the set of points of differentiability of f. Then P(A(t,
A)) = 1 by the theorem on the existence of the derivative of a monotone
function. Let w € A(tg,\), dz, ..z, be the nth d-interval including w. Then
by a property of the derivative (cf. [3], p.423),

(24) lim T, (), w) = finite number, w € A(tg, A)-

Since .50, Y; = oo when w € D(c), hence by (24),

(25) hmsup I/ZY YInT,(\,w) <0, w € A(ty,A) N D(c).

=1

Let
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(26) D={w:)» Y;=oo}
1=1
Since T, (1, w) = v, (w), by (24) we have
(27) hmsup(l/ ZY JIny,(w) <0 ae, weD.
=1

This is the reason that we assume c¢ > 0 in the definition of D(c). By (25),
(23) and (6),

gy TSR YYD, (KA = Yol + (V6 — )
" i=1 i=1 i=1
<ec, wé€ A(tg, A) N D(e).

Letting A > 1, and dividing the two side of (28) by In A , we have

msun(1/ S v d S ys (x [l + (AY — 1)pi(t4)]
(09) fp(”;‘?){gm(’” ; T\ }

<c/ln), we A(ty,A) N D(c).

In virtue of the property of superior limit:

(30) limsup(an, — b,) < d implys limsup(a, — ¢,) < limsup(b, — ¢,) +d

b

and the inequalities:
(B1) 1-1/z<lnz<z-1(z>0),2"-1<r(z—-1) (z>0,0<r<1)

we have, by (29)

lim sup(l/ Z Y:) Z Yi[6s, (X:) — pi(te)]

=1 =1

< hmsup(l/ iY i {ln [+ O = Dpite)] - Yz‘pi(tk)} +c¢/ln X

InA

v v
(32) < hmsup(l/ZY Z [(/\_1___11)/1_)&(:*,_,6) - Yipi(tk)} +c/(L—1/X)

< limsup(1/ Z Y)Y Yipi(te) (A — 1) +c+¢/(A - 1)
n i=1 i=1

SA—1l+c+c/(A=-1), we A(te,\) N D(c).
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It is easy to see that the function g(A\) = A—1+4+c+c/(A—1), XA > 1, attains

its smallest value g(1 ++/c) = 24/c+ c at A =1+ +/c when ¢ > 0. Thus it
follows from (32) that

lim:‘up(l/ Z Y;) Z Yi[be, (X:) = pi(ta)]

=1 1=1

<c+2ve, we A(tg,1++c)nD(c).

(33)

Since P(A(tk,1++/c)) =1, (7) holds by (33) when c > 0. In the case ¢ =0,
choose \; > 1 (i =1,2,...), such that A; — 1 (as ¢ — o0), and let

A(tk) = ﬂ?ilA(tk, )\1)

Then for all ¢ > 1, we have by (32).

(34) 1imnsup(1/ZYi) > Yilbe, (Xi) — pilte)] < X — 1, w € A(ty) N D(0).

=1 =1
Since A\; — 1 — 0 and P(A(tx) = 1. (7) follows from (34) as ¢ = 0.
Let 0 < A < 1, and divide the two sides of (28) by In A. In virtue of the

property of inferior limit
(35) liminf(a, — b,) > d implys liminf(a, — ¢,) > liminf(b, —c,) +d

and by using the inequalities (31), we have
(36)

linizinf(l/ Z Y:) ZY}[&,C (X5) — pa(tw))

=1 =1

2\ (Infl + s(AY: — 1)p;(tx)]
Z { InA :

Zliminf(l/ZYi) —Yipi(tk)}—i-c/ln)\
=1

=1

n n Y’i _ .
>tmint() 3 %)Y | S - Vi (1) + /(1 =1/
i=1 —1

>A—1+c+c/(A=1), we A(te, A) N D(c).
It is clear that the function A(A) = A —1+c+c¢/(A—1), 0 <A < 1, attains

its greatest value h(1 — 1/c) = 2¢/c at A = 1 — \/c. Consequently, we have
by (36),
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liminf(1/ Y Y:) D Yil6u, (X:) — pi(ta)]
i=1 i=1
> —2v/¢, w € A(ty, 1 —+/c) N D(c).

Since P(A(t,,1—+/c)) =1, (8) follows from (37) when 0 < ¢ < 1. Imitating
the proof of (7) with ¢ = 0, it can be shown that (8) also holds for ¢ = 0.

(37)

Remark. In the above proof the analytic technique proposed by the
first author was used, the crucial part of which is the application of Lebes-
gue’s theorem on differentiability of monotone functions to the study of
a.e. convergence (see [11] and [12]). In [13]-[20] this technique was used to
obtain a class of strong limit theorems, some of which were represented by
inequalities, and it was extended by considering the random selection system
n [21]. In the proof of Theorem 1 these techniques were further spreaded
by using the [0,1]-valued selection functions in place of the 0,1-valued ones

in the random selection system.

Corollary 1. Under the assumptions of theorem 1, we have

(38)  Lm(1/) Y)Y Yil6,(X:) —pite)] =0 ace., w e D(0).

i=]1 =1

Proof. Let ¢ =0, (38) follows from (7) and (8).

Corollary 2. Let {X,,n > 1} be independent random variables with
the distribution (2), D defined by (26). Then

(39)  lLm(1/) YD Yil6u(Xi) —pi(tx)] =0 ace., w € D.

=1 =1

Proof. In this case. v,(w) =1 and D(0) = D, hence (39) follows from
(38).

Remark. If p;(tx) = p(te) (i =1,2,...), then (39) can be rewritten as
follows:
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(40) m(1/ ) Y)Y Yiby, (Xi) =p(ts) ae,w€D.
=1 =1

If fo(z1,...,%s) in (4) is restricted to take values in {0,1}, then (40)
is the well known theorem on gambling system (cf. [7], p.186).

Corollary 3. Let tr, € S,> oo, pi(ts) = 00,¢ > 0 be a constant. And
let

(41) D(tx,c) = {w : liminf[1/ > pite)]In y(w) > —c}.

=1

Then

lim sup(1/ Z pi(tr)] Zpi(tk)[étk (Xi) — pi(te)]
(42) " i=1 i=1
<c+2v/c a.e., w € D(tx,c);
When 0 <c <1,
lirrhinf[l/ Z pi(te)] Z i (te)[6r, (Xi) — pi(ta)]
-oi=1

=1

> —2v/c a.e., w € D(ty,c).

(43)

Proof. Let fi_1(z1,...,%i—1) = pi(tx) (¢ > 2), (42) and (43) follow

immediately from theorem 1.

Corollary 4. Under the assumptions of Corollary 3, we have

(44) liTrln[l/ ipi(tk)] Zn:pi(tk)[étk (X;) —pi(te)] =0 a.e., w € D(t,0),

Corollary 5. Let m be a positive integer, u; € S, 1 <4 < m, Sp(us,
e Umsw) be the number of (u1,...,um) in ther sequence (X1,--.3Xm),
(X2, s Xm41)s- - » (Xnem+1,--+»Xn) (n > m), denote 6y, (i1) - bu,, (im)
bY 6wy, (81, - - - 1%m), that is

5 (Z i )_{17if(i17"'77:m):(’u‘la"'aum)a
ur SIS T i (i i) 7 (U, ey Um)-
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Also let t, € S, ¢ > 0 be constants, D(uy,...,un;c) the set of sample

points satisfying the following conditions:

(45) Im S, (U, ... Um;w) = 00;
(46) liminf(1/8, (u1, ..., Um;w)] Iny, (W) > —c.
Then

lim sup[1/S, (w1, .., Um;w)][Sn (v, .- . Um, tr; w)

(47) - Z Pi(tr)Ouy - um (Xicm, Xicmt1, -+, Xio1)] < ¢+ 2v/¢
i=m-+1
a.e., w € D(uy,...,unm;c).

When 0 <c<1,

Uminf[1/Sn (u1,. .. Um; w)][Sn (U1, - - s Um, tr; w)
48) = > Piltk)buyecum Kicm, Ximmept, -+, Xi1)] > —24/C
t=m+1
a.e, w € D(uy,...,un;c).

Proof. In theorem 1, let -y, = 0 and

filz1,...,2) =0 f0<i<m-—1;

f,;_l(.’l’ll, ST ,Lli'i_l) = (5ul...um (.’Ei_m, ‘e ,.’Ei_l), if 1 _>_ m -+ 1.

Then

Now we have

D Yib (X)) = Y bupun (Kicmy .o Xio18, (X3)
=1

i=m+41

= Sn (U1, Um, b w),
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n

ZY; = Z 5u1---um(Xi~—m7 . ,X,;_l) - Sn_l(ul, - ,um,w).
=1 i=m-+1

Noticing that S,(u1,---,Um;w) — Sn—1(U1,...,Um;w) = 0 or 1 (47) and
(48) can be derived respectively from (7) and (8).

Corollary 6. Under the assumptions of Corollary 5, we have

Hm[1/Sn (U1, - 5 Um; W)|[Sn (U1, -+ ) U, tr; W)

(49) - Z Pi(tk)0uy -y (Xicmy Xicma1y -+ -, Xie1)] =0
i=m+1

a.e., w € D(ug,...,Umnm;0).

3. A special case of independent reference. In Theorem 1 the
estimations of the bounds of the superior and inferior limits of (1/ ., ¥;)
Sor Yilbe, (Xi) — pi(te)] are given, where t; is a individual value of Xi.
In some cases of independent reference the above technique can be used to
give estimations of corresponding bounds of (1/ > 71—, ¥;) Y21, Yi(Xi —my),
where m; is the expectation of the distribution (2). As an example, the case

that (2) is Poisson distribution will be studied in the following theorem.

Theorem 2. Let S be the set of nonnegative integers, {X,,n > 1} a
sequence of random variables with distribution (1) . Y, defined by (4), A; >
0(i = 1,2,...) constants, g(X:,J) = (l/j!)e'A")\g(j =0,1,2,...) a Poisson
distribution with parameter \;,yn(w) be the likelihood ratio of {X;,1 < i<
n} relative to the product distribution II7_;g(\i, ;) (z; € ), that is

(50) Tolw) = [z g(Xs, X)) /p(Xis -, Xon).

And let M > 0, 0 < ¢ < 1 be constants. D(c) the set of sample points

satisfying the following conditions:

(51) > Yi=o0;
i =1
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(52) limsup(1/ Y Y:) > X\ < M;
" n=1 4=l
(53) liminf(1/ Z Yi)lnvy,(w) > —c.
i=1
Then

(54) limsup(l/i:Yi) zn:Yz(Xl ~ M) <2VMc+c ae,we D(c);

=1 =1

when 0 < c < M,

(55) lim inf(1/ iYi) iy;-(x,- - X) > -2VMc ae., we D(c).

=1 =1

Proof. Use the realization of {X,,,n > 1}, which was created in the
proof of theorem 1 (let ¢, = k,k = 0,1,...,). Let A denotes the collection

of d-intervals of all orders, and A > 0, 0 < y; < 1 be constants. Denote
(56) Yn = fn——l(mla v 75571—-1) = Yn(w)a wE dzl,...,zn_la n > 2.

Define a set function on A as follows:

(57) 1oy .z) = A2im2 IO fexp(— AV A)AT [2,);
(8) w(0,1)) = > u(ds,)-
z3=0

It is easy to see that u is an additive set function on .A. Hence there exits

X1 ...LTqn

an increasing function f defined on [0,1] such that, for any d

(59) tn(day.an) = AAAE, o) = Fr(dZ, L)

Let

R ) - B ) pde )
€0 L) = o T ) T v’

w e dml.,.mn-
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Let A(X) be the set of all points of differentiability of fy. Imitating (25), we

have

(61) hmsup I/ZY InT,(A\,w) <0, weA)ND(c).

By (10), (50) and (56)-(60).
(62) InT,(Aw) ziXiYiln)\+i/\i(l—)\Yi)+ln'yn(w).

By (61), (60) and (53),

limsup(1/ > Y;) [ZXY I =) N -
(63) " i=1 i=1 i=1
w € A(A) N D(c).
Letting A > 1, dividing the two sides of (63) by In A, and using the

property of superior limit (30), it can be obtained that

n

limsup(1/ ) ¥:) Y Yi(X
" i=1

i=1
<hmsup(1/ZY Z[ 1) Y})\i] +c/In ),
=1 =1

w € A(A) N D(e).

(64)

By (31), (64) and (52),

limfup(l/ Z Y:) Z Yi(X; —

(65) <hmsup(1/zy) Zn: [()\ 11)7)\)\ Yi}‘i] + 1 —cl//\

<OA—1DM +c+ c/()\ ~1), we AN N D(c).

It is easy to see that when ¢ > 0, the function g(A) = (A=1)M +c+c/(A-1),

A > 1, attains, at A = 1+ y/c/M, its smallest value g(1 + /c/M) =
9vMc+ c. Hence, imitating the proof of (8), (54) holds by (65) when ¢ > 0.
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Letting 0 < A < 1, dividing the two sides of (63) by In A and using the

property of inferior limit (35), we have

liminf(1/ ) ;) D Yi(X: — )
i=1 =1

(66) . = (Y —1)
i E ; E —— YN | + A,
> hmnmf(l/ 2 Y:) 2 ) A ¢/In

w € A(A) N D(e).

By using the inequalities (31), it follows from (66) and (52) that

liminf(1/ ) Yi) Y Yi(X: - \)
i=1 =1

0 timint(1/ Y)Y [%I&—A ~Yihi| +¢/(A—1)

>A=-1M+c/(A-1), we AN ND().

It is clear that the function h(X) = (A — 1)M —¢/(A — 1), 0 < A < 1,
attains, at A = 1~ \/c/—M, its greatest value h(1— \/c/_M) = —2v/Mc when
0 < ¢ < M. Consequently imitating the proof of (9), (55) holds by (67)
when 0 <c< M.

Remark. It is easy to see that the fact that the Poisson distribution
depends on a parameter plays an important role in the above proof . This
is the reason that we choose the Poisson distribution as the reference in
Theorem 2. Similarly, the other discrete distributions depending on a pa-
rameter, such as the geometrical distribution and Pascal distribution, may
also be chosen as the reference to obtain the corresponding formulas. We

shall discuss this problem in another article.

Corollary 1. Under the assumptions of Theorem 2, we have

n

(68) lim(1/ znjyi) SYiXi - X)) =0 ae, we D(0).

i=1

Proof. Putting c = 0, (68) follows from (54) and (55).
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Corollary 2. Let {X,,,n > 1} be independent random variables having
Poisson distributions with parameters {A,,n > 1}, D* the set of sample
points satisfying (51) and (52). Then

(69) lim(1/Y Y)Y Yi(X;—2) =0 ae, weD"
=1 3==1

proof. In this case, 7,(w) = 1, and D(0) = D*. Hence, (69) follows
from (68).

Now, we shall provide a nontrivial example for which the condition
P(D(c)) > 0 can be satisfied.

4. Application to the approximation of Markov chains.
Finally we give some applications of the above theorems to the independent

approximation of Markov chains.

Theorem 3. Let {X,,n > 1} be a nonhomogeneous Markov chain with

state space S ={0,1,2,...}, initial distribution

(70) @i) =P(X,=9)>0, i€S

and transition probabilities

(71) Pu(i,j) = P(Xn = j|Xn-1 =14) >0, 3,5 €5, n > 2,

and Yn(w) and Y, defined by (3) and (4) respectively. Let k € S, and
Sn(k,w) be the number of k in the sequence X1, Xa,..., Xy, that is,

(73) Su(k,w) = 8(Xs).
i=1
If for alli,j € S,
(74) liminf p,(5)/pn(%,7) > d - uniformly,

where 0 < d < 1 is a constant, then
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(75) hmsup(l/n)[S (k,w) Z pi(k)] <2v/=Ind —Ind ae;
and when d > e 1,

(76) hmmf(l/n [Sn(k,w) — Zp,(k > —2v—1Ind a.e.

Proof. In this case we have

(77) p(X177Xn) = Q(XZ)H:L=2p’L(X'L——1)XZ))

(78) T (w) = [y pi(Xa)l/ [g(X D) ps (X1, X))

Moreover, for arbitrary sequence of positive numbers {a,,n > 1} we have
(79) Iirr; inf /a, > limninf Un/Op—1.

We have by (77)-(79) and (74),

lim inf[y, (w)]*™ > lim infy, (W) /Ya—1 ()]
80 n n
(80) =liminf p(X,)/pn(Xn-1,Xn) > d
implying that

(81) liminf(1/n)Inv,(w) > Ind.

Thus, if put y3 = 1 and fi(z1,...,2i-1) =1 (z > 2) in (4), then ¥, = 1,
D(—1Ind) = [0,1). And consequently, (75) and (76) can be established by
Theore 1.

Remark. By putting y; = 1, fi(z1,...,2,-1) = 1, ¢ > 2, (27) implies
that -

(82) limnsup(l/n) Iny,(w) <0.

This together with (81) implies d < 1.
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Corollary 1. If the condition (74) of Theorem 3 is replaced by the

following one:

(84) d = liminfd, > 0,
then

(85) lim sup(1/n)[Sy (k, w) — ipz(k)] <2v-Ilnd—Ind a.e;

and when d > e~ !,

(86) limninf(l/n)[Sn(k,w) - ipz(k)] > —-2V—Ind a.e.

=1

Proof. Obviously (83) and (84) imply (74). Hence (85) and (86) follow
from Theorem 3 directly.

Corollary 2. Under the conditions of Theorem 3 or Corollary 1,if
d =1, then

(87) 11m(1/n )[Sn(k,w) — }_:p1 )=0 ae.

Proof. Letting d =1 in (75), (76), (85) and (86). Corollary 2 follows.

Theorem 4. Let the distribution (2) in the definition of y,(w) be the
Poisson distribution g(A;,j) = (1/5)e= X, where 0 < X\; < M. Then

under the conditions of Theorem 3 or its Corollary 1 we have

(88) lim sup(1/n) Z(Xz —X)<2vV—-Mlnd—-1Ind a.e;
" i=1

and when e™M < d <1,

(89) lim inf(1/n) i(xi —~X) > —2V/—MInd ae.
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Proof. Imitating the proof of Theorem 2, (88) and (89) can be estab-
lished by Theorem 2.

Acknowledgment. The authors are thankful to the referee for his
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