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Abstract. The Tricomi equation: yuzs + uyy = 0 was
established in 1923 by F.G. Tricomi who is the pioneer of mixed
type boundary value problems. In 1981, A.V. Bitsadze and then
R.I. Semerdjieva (1992) introduced the hyperbolic equation:

Lu = K1 (y)uzz + (K2 (y)uy)y +ru = f.

In this paper we consider the more general case of above
equation: Lu = f, so that it is also elliptic in the upper half-
plane and parabolic on the line y = 0, and then prove the
uniqueness of quasi-regular solutions for the correspond-
ing Tricomi problem by employing the well-known a-b-c energy
integral method. This result is interesting in fluid mechanics.
(S.A. Chaplygin (1904) considered the equation of a perfect gas,
which was of mixed type).

The Tricomi Problem. Consider the parabolic elliptic-hyperbolic

equation

(%) Lu = K1 (y)uss + (K2(y)uy)y +r(z,9)u = f(2,9)

([1],[8]), in a bounded simply-connected domain D of the zy plane with a
piecewise-smooth boundary G = 8D = g1 U go U g3, where f = f(z,y) is

continuous, 7 = r(z,y) and K; = K;(y) are once-continuously differentiable
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for z € [-1,1] and y € [-m,M] with —m = inf{y : (z,y) € D}, and
M = sup{y : (z,y) € D}, as well as K, satisfies
>0, for y>0
Ki(y)d =0, for y=0
<0, for y<0
Also Ky =K (y) is once-continuously differentiable in {-mM], and K3 (y) >
0 everywhere in D. Besides limy_,o K(y) exists, if
>0, for y>0
K = K(y) = K1(y)/Ka(y)§ =0, for y=0
<0, for y<0

The boundary of D is formed by the following curves:

y

A=(-1,0) A=(LD)

(1) a curve g; which is the elliptic arc lying in the half-plane y > 0 and
connecting points A(1,0) and A'(-1,0);

(2) two hyperbolic characteristic arcs g, and gs:
Yy Yy
gz::rz/ v —K(t)dt + 1, ggzac:—/ v-K(t)dt —1
0o - 0

descending from A(1,0) and A’(—1,0) until they terminate at a common
point of intersection P(0,y,) in the lower half-plane.

Denote the elliptic subregion of D by
D.(=the space bounded by g; and A’A),

- the ‘hyperbolic subregion of D by
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Dy, (=the space bounded by g2, 93 and AA’),
and the parabolic arc of D by
D,(=A'A)={(z,y)eD:-1<z<1,y=0}.

Note that the order of equation (*) does not degenerate on the line y = 0.
But (*) is parabolic for y = 0 because K1(0) = 0 and K,(0) > 0.

Assume boundary condition
(*x) u=0 on g;Ugs.

The Tricomi problem, or Problem (T) consists in finding a function

u = u(z,y) which satisfies equation (*) in D and boundary condition (**)
on g1 U g2([3}, [4], 6])-

Definition. A function u=u(z,y) is a quasi-regular solution ([3](,))
of Problem (T) if

i) weC*(D)nC(D), D=DUG, G=28D,

ii) Green’s theorem is applicable to the integrals

// uz Ludxdy, // uy Ludzdy,
D D

iii) the boundary and region (surface) integrals which arise exist,

iv) u satisfies equation (*) in D and boundary condition (**) on g; U g.

Uniqueness Theorem. Consider parabolic elliptic-hyperbolic equa-
tion (*) and boundary condition (**). Also consider the afore described
simply-connected domain D of the xy plane.

Assume conditions:

(R1): 7 <0 on g3,

(Ry): the boundary arc g1 is star-like in the sense that (z + 1)dy —ydz >0
Rs) {2r+(m+1)1"$ +yry, <0 for y>0
3):

r+(z+1)r, <0 for y <0,
Ki(y) >0 whenever y > 0,K;(y) = 0 whenever y =0,
(Ry): and K1(y) < 0 whenever y <0

Ky(y) >0 everywhere in D,
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(Rs): Kl(y) >0(:=1,2) in D,
where K;(i = 1,2), and 7 are once-continuously differentiable and f is con-

tinuous.

Then Problem (T) has at most one quasi-regular solution in D.

Proof. We apply the a-b-c classical energy integral method with a =
0 and use boundary condition (**). First, we assume two quasi-regular

solutions uy,us of Problem (T). Then claim that
u=u —us=0 in D.
- In fact, we investigate |
(1) 0=J=2(Mu,Lu)y = //DZMuLuda:dy,’
where Mu = b(x, y)u, + c(z,y)uy, and
Lu=L(u; —ug)=Luy —Lus=f—f=0 in D,
with choices:

, y>0
(2) b=z+1 in D,c={y V=
0, y<o0.

Consider the ordinary identities:

20K 1 Ugtye = (bK1u2), — by Kiu2

20K uztyy = (20Kauztuy )y — (bKpul)s + bo Kaul — 2(bK>), u,u,
2cK1UylUse = (2cK1Uz0y )y — (cK1u2)y + (cK1)yu2 — 2K cptizty,
2cKoUylyy = (chuZ)y - (cKz)yuz,

2brun, = (bru?), — (br)u?,

2cruuy = (eru?), — (er)yu?,
2btuzuy = 2btuguy,

2ctuyty = 2ctu;j

where t(= coeflicient of u, in Lu), or
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3) t = K3(y)-

Then employing above identities and Green’s theorem, and setting ¢ =
K} (y) we obtain from (1) and (*) that

(4) 0= Jz//DZ (buz 4 cuy) [Kl (Y uze+Ko (y)uyy-i—'ru—l—tuy] dxdy=1Ip+Ig,

where

Ip = // i (Aui + Bul + Cu® + 2Dumuy)dxdy,

Ig = yi(:ap) (Zui + Bul + Cu® + 25umuy)ds,
with

A= —b Ky + (cK1>y, B =b,Ky— (cKz)y + 2t

C=- [(br)z + (cr)y], and

D=- [chm + (bKs)y — bt],

A= (bvl - cv2)K1, B= (— buy + cvz)Kz,

C= (bvl + cv2)r, D = bKyvy + cKqvy, where
®  v=(um)=(F -F) @>0,

is the outer unit normal vector on the boundary G of the mixed domain D.

Note that in D,y > 0(ifb=z+1, c=y):
/
A=-K;+ (yKl) =yKj >0 (from condition (Rs):i=1)
!

B=FK,— (yKQ) + 2yt = —yKb + 2yK, = yK, > 0
(from condition (Rs) : ¢ = 2)

C=—((z+1)r), —(yr)y = —(27" +(z+Dry + yry> >0
(from condition (R3) : y > 0)

D= —((x+1)K2)y+(a:+1)t = (z+1)(—Kg+t) =0 (from (3)),

and
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AB—D?=y’K{K} >0 (from condition (Rs)),

Similarly in D,y <0 (ifb=2+1, ¢=0):

A=-K; >0, B=Ky,>0

C=—((z+1)r)e =—(r+ (z+1)r;) > 0 (from condition (R3):y < 0)
D=—(z+1)K;+ (z+ 1)t = (z+1)(=Kj +t) = 0 (from (3)),

and
AB — D? = (—K;)K, > 0 (from condition (Ry4) : y < 0).

Therefore the region (surface) first integral Ip (of (4)) is nonnegative.
In fact,

(6) Ip=ILip+I,p+1I; >0,
because, if Q@ = Au2 + Bu2 + 2Du,uy = Q(uz,u,), then

o= || Quewdsdy= [ y(KiuZ+ KfuZ)deay >0,
D,y>0 D y>0
(from (Rs))

Ip = // Quz, uy)dzdy = // (— Kiu? + Kzuz)dxdy >0,
D,y<0 D,y<o
(from (Ry))

and

—// (21" +(z+1)r, + yry)u2dxdy >0
2 D,y>0
Iy = // Cu’dxdy =
—// (r + (z + 1)rx)u2da:dy >0,
D,y<0

from condition (Rj).

Note that on g; (ifb=z+1,c=y):
A= [(a: + vy — yvz]Kl, B= [— (z+ vy +y’Ug]K2,
= [(x +1)v; + yv2] T, D= (z + 1)Kovg + yKqv;.

From boundary condition (**) we get 0 = dul|,, = u.dx + uydy, or
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(6a) uy = Nvy, uy = Nuo,
where N is a normalizing factor. Therefore
Igl = / é(umauy)ds + / 5U2d8

a1 qn
(7) = / N2 [(;L‘ + 1)’01 + y’l)z] (Kl’U% + KQ’U%) ds

g1

+ / [(w + vy + yvg] ru?ds,
91
where
5 = Qluaruy) = Aul + Bul +2Du,u,

is a quadratic form on G with respect to us,u,.
It is clear from (**), (5), (7) and (Rg) that

(8) I = [ N?l(o+1)dy - ydal T > 0
g1

where

9) H = K192 4+ Kyv3 (> 0 on g1).

Similarly on go (ifb=z+1, ¢c=0):
I, = / Q(uguy)ds +/ Cu’ds
g2 g2

= / N?[(z + L)v1|Hds +/ [(z + 1)v1|ru’ds, or

g2
(10) I, =0,
because of (**) and H = 0 on g (as g» is characteristic of (*)).
Finally claim that on g3 (if b=z +1, c=0):
(11) Iy = [ Ous,uy)ds + / Tulds > 0.

g3 g3
Tn fact, C = [(z + 1vi]r > 0 on g3, because of condition (Ry). Also
Q = Q(ug,uy) is non-negative definite on gs. It is clear that A==+

1)v1]K; > 0 on g3, because
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y
(z+1)|,, = ~/ V=K@t > 0 on g5, wil, <0, and K1y, < 0.
0

Also

B _[(x + 1)v1]K2 >0 on g3,

because Kj|,, > 0 and above facts.

Besides
.5 = (CC + 1)K2'U2.
Finally

— ~ 2 2
AB — (D)2 = —-[(.’IJ + 1)1)1] K1K2 - [(CII + 1)112] K22
= —(z +1)*K, [Kl?}% + szg]
= —(z+1)?KoH =0 on g,

because H = 0 on g3 (as g3 is characteristic of (*)). Thus I,, > 0 and the
proof of (11) is complete. Therefore

(12) Ig = Igl + Igz + Igs = Igl + Igs > 0.

Hence from (4), (6), (12) and the fact that Ip > 0 and Ig > 0 we get
that v =0 in D.

In fact, from (4) yields that the sum J of Ip(= Iip + Lp + Ip) and
Ig(= I, + I, + I,,) vanishes in D.

Also I1p > 0, I,p > 0, Iy > 0, and Iy 20,1, =0, I, > 0. Therefore
Ip =0and Ig =0, orIlD:()aLndIg3 =0.

First I1p = // y(Kiu? + Kéui)dmdy = 0 yielding v, = u, = 0
in D,y > 0 since K?,yfo()(i = 1,2) from condition (Rs). Thus u = ¢ in
D,y >0, and as u = 0 on ¢g; (from (**)) it will follow that u(z,y) = 0 in
D,y >0.

Second

I

g5 = /g3 [KZ(M'% —uy)2+(—r)u2] </0y \/T(t)dt)dy =0
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(because on

gs 1 dzr = —ﬁdyZ ‘—(\/ —Kl/\/z)dy, $+1=-/0y \/—K(t)dt> 0

and v; = dy/ds < 0) yielding that v = 0 on g3 (as r < 0 on g3 from
condition (Ryp)).

Thus by a well known theorem for hyperbolic equations if v vanishes
on go (which holds from (**)) and g3 then it vanishes throughout D,y < 0.
( Another reasoning is that, in particular, u(x,0) = 0 and u,(z,0) = 0, so
that u(z,y) = 0 in D,y < 0, because of the uniqueness of the solution of
the Cauchy problem for equation (*)). Thus u(z,y) = 0 everywhere in D,
completing the proof of the uniqueness theorem.
Note that the afore-mentioned theorem is interesting in Aerodynamics and
Hydrodynamics ([2]).

Special Uniqueness Theorem 1. Assume a new Tricom: equation
(13) Lu = yugzy + Uyy +1u = f(2,9),

where r = const. < 0, in mized domain D of xy plane bounded by charac-

teristic arcs gs,93 (for y < 0):
2
g2(= PA) 1z = ——-?;(—y)s/2 +1 and
2
g3(= A'P) z= 5(—19')3/2 -1,
2/3
so that they intersect at point P = 0,—(%) ), and by the arc g1 (for

y > 0) connecting points A = (1,0) and A’ = (~1,0).

Also assume that the boundary arc g, is star-like in the sense that
(Ra1) : (z +1)dy — ydz > 0.

(Take e.g. the upper semi-ellipse g1 : z* + Ay? =1, A(= const.) > 0, y > 0,
satisfying (Ra1)).
Then Problem (T) for equation (13) has at most one quasi-regular

solution in corresponding special domain D.
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Special Uniqueness Theorem 2. Assume a parabolic elliptic-

hyperbolic equation

(14) Lu‘ = YlUze + ((y - kyp)'“’y)y +ru= f(xay)7

VE—1
0) in mized domain D of zy plane bounded by characteristic arcs gs, g3 (for

y.<0):

92(= PA) : z = ky, tan™! \/: Y +1/—yly — ky,) + 1 and
Y — kyp
=A'P):z=—ky,tan™', /- Y —+/—yly — ky,) — 1,
93( ) Yp Y — kyp ( Yp)

so that they intersect at point

P= <0,1/<\/F—ktan-1

where r = const. <0, k = const. > 2, y, = 1/ (vk —1—Fktan=t 2L >(<

1
V& - 1))
and by the arc g1 (for y > 0) connecting points A = (1,0) and A’ = (—1,0).

Also assume that the boundary arc g, is star-like in the sense that
(Ra2) : (z + 1)dy — ydz > 0.

Then Problem (T) for equation (14) has at most one quasi-regular

solution in corresponding special domain D.

Note 1. Substituting \/—t/(t — ky,) = ¢, we get that

Yy t Y
— dt = ky,tan™1, [— + 1/ ~yly — ky,),
= ke [ k)

where

2¢” @
—F __dp=tan"lyp— .
/(1+<p2)2 v 1+<p2+c

Note 2. The cases r = 0 and 1 < k = const. < 2 in D yield also
uniqueness results for quasi-regular solutions in above theorems.

Note 3. No compatibility relations exist about u = u(z,y) on the

parabolic arc D,.
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