BULLETIN OF THE

INSTITUTE OF MATHEMATICS
ACADEMIA SINICA

Volume 25, Number 3, September 1997

ON THE ASYMPTOTIC BEHAVIOR OF
SOLUTIONS OF A HIGHER ORDER
LINEAR DIFFERENTIAL EQUATION

BY

GARY D. JONES

1. Introduction. Asymptotic behavior of oscillatory solutions of sec-

ond order differential equations

(1) y' +p(t)y =0

have been widely studied. For example, if p(¢) tends monotonically to infin-
ity with £, then (1) has at least one nontrivial solution that tends to zero.
However, that need not be the case for all solutions [10].

However, for

(2 y@) — p(t)y = 0,

Hastings and Lager [5] proved that all oscillatory solutions tend to zero if
p(t) tends monotonically to infinity with {. The author [6] proved that all
oscillatory solutions of (2) are unbounded if p(t) decreases monotonically to
zero as t tends to infinity. ’

With even the lesser hypothesis 0 < m < p(t), where m is constant,
Svec [11] proved that there is a pair of linearly independént zero tending

oscillatory solutions for
(3) . ™) +p(t)y = 0..

This result’ has been generalized by Kiguradze [8] for equations of order

n > 2. The author proved {7] that if (3) has an oscillatory solution then

Received by the editors June 13, 1996.

171



172 GARY D. JONES [September

it has a pair of unbounded oscillatory solutions such that every nontrivial
linear combination of them is unbounded provided 0 < p(t) < M where M
is constant.

The purpose of this paper is to obtain similar results for certain equa-

tions

(4) y™ 4 p(t)y = 0,

where p(t) is assumed to be a real-valued continuous function. In particu-
lar, we shall obtain theorems analogous to those in [7]. Our results apply
to nonoscillatory as well as oscillatory solutions. However, the results for

nonoscillatory solutions are already known.

1. Preliminary results. In this section we will give definitions and
results that will be used to prove our main theorems.

Following Elias [2], we let o(co,...,c,) denote the number of sign
changes in the sequence cy, ..., c, of non-zero numbers. For a solution y # 0
of (4) and z € (0,+00), we define

S@a*) = lim_o(y®),~y'®),-.., ()" @)

and
S(y,=7) = lim_o(y(),y'(t),--.,5™ ().

Let a < z; < ... < 2, < b be the zeros of y(t),y'(t),...,y* V() for
a solution y to (4), where the same z; = c is used to denote zeros of two
different derivatives y\) and y*) if and only if ¥y (c) = y*®)(c) = 0 implies
either y®)(c) =0 forall j < h < kory®™(c)=0for k< h <n-—1and
0 < h <j. If n(x;) denotes the number of consecutive (with y following
y(»=1)) derivatives which vanish at z; and < q > denotes the greatest even

integer that is not greater than ¢, we have the following theorem.

Theorem 1. [2] Every solution y of (4) satisfies_the condition
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n(y) = S@a")+ Y (n(z)) +S@,b7) <n.
a<lz<bh
Moreover S(y,b”) and n — S(y,at) are both even if p(x) < 0 and both odd
if p(z) > 0.

As a consequence of Theorem 1, we have

Theorem 2. [2] Ify is a solution of (4) then S(y,z*) is a nondecreas-
ing integer valued function of x. Also S(y,z™) is a non-increasing integer

valued function of x.

Letting
Yr (.’1)) Yr+1 (SC) T Ys (.’L‘)
yn(z) Yrpa(z) - yl(2)
W(yr7y7‘+17"'7ys)(x) = . ' . .
@) v @) e T ()

and using Theorem 1 and 2, we can obtain

Theorem 3. [3] Let v be an integer so that (—1)""7p(z) > 0. Then
there are linearly independent solutions y;(z,b) of (4) fori=10,1,...,n—1
with the following properties:

(a) yi(z,b) has a zero of multiplicity ezactly i at x = a.

(b) yi(z,b) has a zero of multiplicity at least n — 1 — [i + (1 + (—=1)*77)/2]
at x =b.

(¢) z€s5pan(y(z,b), Yy+1(2, )y ., Yys2s41(x, b)) for 0 < s < (n—y—1)/2
implies v+ 1 < S(z,z7) < v+ 2s+1 and

n—(y+2s+1) < S(z,z7)<n—(y+1) for z € (a,b).

(d) W(y,(z,b),...,Yy+2s+1(x,0)) #0 fora <z <b.

(e) For any increasing sequence {b,}52; such that limg_.o by = oo, there
is a subsequence {by; }32, such that (yi(z, by, )®) converges to (y;(z))*
for k,i =0,1,...,n—1 with convergence uniform on compact intervals

and yo,Y1,---,Yn—1 1S a basis for the solution space of (4) satisfying

(a), (¢), (d)-
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An immediate consequence of Theorems 1 and 2 is the following
Theorem 4. [2] If y is a solution of (4) then

lim S(y,z™)

ezrists and is less than or equal to n.

If y is a solution of (4), we say y € Sy provided lim, ., S(y,z%) = k.

We will use the following class of inequalities due to Gabushin [4]. Also
see [1,9]. Here ||f|l,=/;|f(t)[Pdt when 1 < p<oo and ||fllec =supscs [ £(2)]
with J being a given half-line.

Theorem 5. Let n and k be integers satisfying 1 < k < n. Let

p,7 < oco. There is a finite constani K such that
ly®llq < Kliyliglly™ 117
holds if and only if

n/qg < (n—k)/p+k/r

Here % = 0 when s = co.

2. In this section we will consider certain even order equations (4).

Thus, it will be more convenient to write the equation as

(5) y®) +py = 0.
We let
n—1
Fly(z)] = Z(—l)iy(""i_l)(w)y("“)(37)- '
=0 , .

Differentiating F' with respect to z, we obtain

I;émrr;a 1. If y is a solution of (5) then

F'ly(z)] = [y™ @)]* + (~1)"p(z)y*(z).
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Theorem 6. If (—1)"p(z) > 0, |p(z)| < M and y is a solution of (5)
such that Fly(z)] > 0 for z > a, then y is unbounded.

Proof. Since F'[y(x)] > 0, if y is a solution of (5) for which Fly(z)] > 0,
it follows that

(6) | / ” Fly(@)]ds = +oo.
But
™ | Flvtoias = @) - b
Where
Gt =3 [s) - g(—w‘(n 1= iy @y ),

It follows from (6) and (7) that

(8) limsup |y ()| = co for some j=0,...,2n — 2.

T —r00

If ly(z)| < B, then by (5) and the hypothesis
v (2)] = Ip(z)y(z)| < MB.

Hence by Theorem 5, 3 (). is bounded for j = 0,...,2n. From this con-

tradiction we see that y is unbounded.

Theorem 7. If (—1)"p(z) > 0 and |p(z)| < M then there are linearly
independent solutions y; for © = n,n+1,...,2n — 1 of (5) so that every
nontrivial linear combination of them is unbounded. Further, for each i =
n,n+1,...,2n—1,y; can be chosen to have a zero at x = a of order e:cathy
i. For p(z) positive y; and y;41 are in S;1q fori =n,n+2,...,2n — 2
while for negative p(x),yan—1 s in Son, y; and y;y1 are in S;y1 for i =

nn+2,...,2n—3.

Proof. Let y be any nontrivial linear combination of ¢, ¥n+1,---,Yon—1
which are given by Theorem 3. Now y has a zero of multiplicity at least n
at z = a. Thus by Lemma 1, F[y(z)] > 0 for z > a. The result now follows

from Theorem 6.
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Combining Theorem 7 with results of Kiguradze [8], we have the fol-

lowing

Corollary 1. Suppose (—1)"p(z) > 0 and 0 < & < |p(z)| < M. Then

every solution of (5) is either unbounded or tends to zero.

3. We will now consider certain odd order equations and will write (4)

in the form

(9) y@r D 4 py = 0.
We let

(n) LR : . .
Rl = L2 + S @)

Differentiating F, with respect to x, we have

Lemma 2. If y s a solution of (9) then

Fyly(2)] = (=) 'p(2)y’(2).
Theorem 8. If (=1)"*1p(z) > 0, |p(z)| < M and y is a solution of (9)
such that Fs[y(z)] > 0 for x > a, then y is unbounded.

Proof. Assume that y(z) is bounded where Fo[y(z)] > 0. It then follows

that y(®»*1)(z) is also bounded. From Theorem 5,
(10) y®)(z) is bounded for 0 <k < 2n+1.

It now follows that Fyly(z)] is bounded. Consequently, from Lemma 2

| roly? @ < oo
Thus,

/:o [y(2n+1)(t)} Zdt = /aoo p2(t)y2(t)dt <_,M /:o Ip(t)lyz(t)dt < Oo

Again applying Theorem 5,

v la < K|yl vy 25
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for n +1 < k < 2n + 1. Consequently,

1) 4 )
(11) / [y(k)(t)] dt<oco for n+1<k<2n+1.

2
Because [y(k)(m)} has a bounded derivative, it follows from (11) that

(12) lim y®(z)=0 for n+1<k<2n+1.
I OO

From (10) and (12)

T——00

(13) fim_ 3 (-1 @)y () = .
i=1

If y(z) is an oscillatory solution of (9), let {z;}32, be a sequence of
zeros of y(™)(z) that diverges to co. It then follows that

lim Fy [y(wj)] =0,

j—r00
contrary to the fact that Fy[y(z)] is positive and increasing.

If y(x) is nonoscillatory, y*)(z) is monotone for k£ = 0,...,2n. Since
Fly(x)] is positive and increasing, it follows from (13) that y(™(z) is
bounded away from zero. In that case, y("~V)(z) is unbounded, contrary
to (10).

Theorem 9. If (—1)"*!p(z) > 0 and |p(z)| < M then there are linearly
independent solutions y; fori = n,n+1,...,2n of (9) so that every nontrivial
linear combination of them is unbounded. Further, for each i = n,n +
1,...,2n, y; can be chosen to have a zero at x = a of order exactly i. For
p(x) positive y; and y;41 are in S;y1 for i = n,n+2,...,2n — 1, while
for negative p(x),yan s in Szn+1,"yi and Yi+1 are in S;yq for i = n,n +
2,...,2n—2.

Proof. Let y;(x) for i = n,...,2n be linearly independent solutions of
(9) with zeros of order ¢ at z = a. If y(z) is any nontrivial linear combination

of y; for ¢ = n,...,2n, then Fyly(a)] = 0. Since Fply(z)] is increasing
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it follows that Fy[y(z)] > 0 for z > 0. The conclusion now follows from
Theorem 8.

Theorem 10. If (=1)"p(z) > 0, |p(z)| < M and y is a solution of (9)
for which Fs[y(a)] <0, then y is unbounded.

Proof. By Lemma 2, Fy[y(z)] is decreasing for every solution y of (9).
If y is so that Fy[y(a)] < 0 then Fyly(z)] < 0 for z > a. In that case

(14) o lim / Fly(¢)]dt = —co.
But

/ " Baly(@))dt = Gly(@)] - Gly(a)]

where ,
1, [° 2ol o om -
Gly(=)] = (n—7) /a [y(”’(t)] dt‘f‘;(—l)f—l(n—z)y( +) ()19 ()
> n‘j(—l)"“(n — i)y (2)y 1 (z).
By (14) - |
lim Gly(z)} = —co.
Thus
(15) mkﬂ@%(—ﬂ”%n — )yt (2)y 1 (z) = —oo.
=0

As in Theorem 8, since |p(z)] < M, the assumption that y is bounded
implies y(27*1) is bounded. Thus, as before y®) is bounded for 1 < k < 2n,
which is contrary to (15).

As before, we have the following

Theorem 11. If (—=1)"p(z) > 0 and |p(z)| < M then there are a
linearly independent solutions y; for i = n+1,n +2,...,2n of (9) so that
every nontrivial linear combination of them is unbounded. Further, for each
i=n+1,n+2,...,2n, y; can be chosen to have a zero at x = a of order

ezactly i. For p(z) positive y; and y;41 are in Sit1 for i = n+2,n+
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4,...,2n — 1, while for negative p(x),y2n 5 10 Son+1;¥; and y;y1 are in
Siyi fori=n+2,n+4,...,2n - 1.
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