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Abstract. In this paper, an integro-functional equation
is introduced to characterize the gamma density function.

1. Introduction and Main Theorem. The problem of characteriz-
ing population distribution through the independence of two statistics is of
importance in mathematical statistics. The analysis of this problem requires
the solving of some nonlinear integro-functional equations. To character-
ize the normality through the independence of a tube statistic with finite
basis and the sample mean, Anosov(1964) used the corresponding integro-
functional equation to establish the problem. And it is remarked in Kagan
et al. (1973, p.3) that, in this circle of problems, only the simplest one has
been solved so far. '

Recently Hwang and Hu (1994) introduced a useful set of nonlinear
transformations, and obtained the distributions of studentized order statis-
tics by applying these transformations. In this paper, an integro-functional
equation, which can be used to characterize gamma population; is estab-
lished by our nonlinear transformation (1994).

For obtainning our main result, the following integral-functional equa-
tion is defined. Let ¢ = (t1,---,tn-1),m > 3, and let A,, be a closed subset
of the surface of the unit sphere {¢ : ¢ +--- +¢2_; = 1} in R*"! and let
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o, (t) be a distribution function over the set A,. And let X;(f),1 <4 < n,

be defined and continuous on A, and such that

(1.1) i i(t) =0, i)\?(t) =1.

Let f(z) be a defined and continuous density on (0, +00). Then the integro-

functional equation is defined by
(1.2) / mig f(2(0Ai(t)+1))don (8) =Co-[f ()] / Ti—1 f (WAi(t)+ Ddon (t)
An An

for all z > 0 and for sufficiently small v > 0, where C, > 0 is a constant.

Note that the boundedness of the continuous functions A;(t), 1 <4 < n,
is very important here, and holds by the relation Y1 A2 (t) =1 as given
in (1.1). The boundedness of A;(¢) implies that v “X(t) +1 > 0 for all
sufficiently small v > 0, and thus the integro-functional equation (1.2) is
well-defined.

In this paper, we obtain what function f will be the only solution of
the integro-functional equation (1.2) as the folldwing:

Main Theorem: The gamma density function

(13) v f(z)= I;—(Oéjl‘—m-xa_i‘e_”/ﬁ, z>0
is the only solution of the integro-functional equation (1.2), where o, 3 > 0
are parameters.

. Section 2 gives an illustration of the integro-functional equation (1.2),

and the proof of the main theorem will be presented in Section 3.

2. An Illustration of Integro-Functional Equation. As a fnatter
of fact, Hwang and Hu(1994) have already obtained an illustration of integro-
functional equatioh in exponeritial density case as follows:

Lett= (t1,...,tn-1) and A, be given by |

24 +t2 =1

2.1 An=1% 1/2
(2.1) 1 () ha<te<0, 2<k<n-1
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and define the distribution function o,,(t) over the set A, by
(2.2) don(t) = an - (=t,) """V . dF,(t), te A,

where a,, is the normalizing constant, and F,,(¢) is the uniform distribution
over A,. Note that this distribution function o,(t) is defined in Hwang and
Hu(1994).

Let X;,...,X, be iid random variables from the exponential distri-
bution with parameter 0, that is, the density function f(z) is given by

f(z) =60e7%" x> 0 and zero otherwise. Define

ZX“ = 5n/ X0

where S, is the sample standard deviation. Now, by applying a non-linear
transformation given in Hwang and Hu (1994, Theorem 2.2), we obtain that
if X,, and V,, are independent then the integro-functional equation (1.2)
holds for all z > 0 and for all v > 0 in the neighborhood of the origin,
say 0 < v < +/n/(n —~1); and A, and 0,(t) are given as in (2.1) and (2.2)
respectively, and the functions A;(¢) are

i—1

’\"(t):[nn—]_' i[(n k)(n—kﬁ)} '?’“15"3”_1

k=1
1 7
M) = ~tn-1/V2 = ,?i:l [(n —k)(n—k+ 1>] e

the summation will be taken as zero for 7 = 1. Note that by a straightforward

=

computation, these functions A;(t) actually satisfy the relations (1.1).

3. Proof of Main Theorem. In view of the relation (1.1), it is
easily to prove that if f(z) is a gamma density as given in (1.3), then the
integro-functional equation (1.2) holds. And it is natural to ask: under what
conditions on f(z) will the gamma densities be the only solution of (1.2)?

Assume that f(z) is continuously twice-differentiable, it can be easily
shown that the gamma density actually is the only solution of the equation

(1.2). To this end, we differentiate twice with respect to the variable v on
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the two sides of (1.2), and then letting v — 07 and taking the relation (1.1)
into account; the operations involved being valid in view of the conditions
imposed on f(z) and the boundedness of the continuous functions X;(t). As

a result, we obtain a second order differential equation,
.’1;2 . [yll A yn—l _ (yl)2 _ y'n—Z] — quq, N yn’ z>0

where y = f(z) and C/, is a constant. And it follows from the probability
character of f(z) that the gamma density is the only solution of equation
(1.2). Thus, this completes the proof of our main result in this case.

However, it would not be easy to solve this problem under the con-
dition that f(z) be continuous which is weaker than continuously twice-
differentiable. In the following, we apply both the results of Anosov (1964)
and Hwang-Hu (1994) to prove the main theorem under the condition that
f(z) be continuous.

Six lemmas which will be used to prove the main theorem are presented

as follows:

Lemma 3.1. Let f(z) > 0 be defined and continuous on (zo, 1), and
let u(z) = n(f(x)), and define

n

(3.3) Losu(z) = Y _[u(z(Xs(t) + 1)) — u(z)]

i=1

for sufficiently small v > 0 and t € A, where \;(t);1 = 1;2,-~',n, are as

defined in (1.1). Then, the integro-functional equation (1.2) can be rewritten

as

(3.4) / exp(L, su(z))do, (t) = h(v) |

n

where o, (t) is a distribution function over A,.

(3.5) h(v) = Cy, - /A T [0 (2) + 1)don(t)

Proof. This lemma follows immediately from the definition of L, ;.
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Lemma 3.2. Let L, ; be defined as in (3.3). Then,
(1) L, is a linear operator.
(2) For any linear function £(x), L, +£(z) = 0.
(3) If w(z) is a convex function, then L, w(z) > 0.
(4) If w(x) is a concave function, then L, ;w(z) < 0.
(6) If w(z) is continuously twice-differentiable on (zo,z1) and [za, 73] C

(zo,z1), then

1
(3.6) lim = - L, w(z) = ?12- 2% (z)

w0t V2

uniformly for x in [z2,23],t € A, and

{ 1 _ 1 2 "
(3.7) v~h_£1(1)+ ) N L, qw(z)do,(t) = 5w (z)

uniformly for z in [zq, z3].

Proof. (1) and (2) follow immediately from the definition of L, ;. Let
z(vA;(t) + 1), 1 < i < n, belong to the domain of the function w(zx), thus
the relation A1(t) +--- + A\, (¢) = 0 as given in (1.1) gives

T = %Zx(v)\i(t) +1)

and the results (3) and (4) follow from the well-known property of convex (or
concave) function. And (5) follows by a direct computation and the relations
(1.1), the computation involved being valid in view of the conditions imposed

on w(z) and the boundedness of the continuous functions A;(t).

Lemma 3.3. Under the conditions of Lemma 3.1, and h,(v) as defined
in (3.5), and let ¢(x) = e* —1 —x. Then,
(1)

. v,t Un v,t On v h
(38) /A uufz)d / B(Lou(2))d0 (1) = hn(0) — hn(0)
@)

(3.9) /ALv,tu(x)dan(t)Shn(v)—hn(O)
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(3) For sufficiently small v > 0 such that |L, u(z)| <1, then .

(3.10)  hn(v) — hn(0) < / Ly 1u(z)doy, (t) +/ (Lo su(z)]2don (2)
Ay, An '
Proof. By the definition of L, ¢, we have Lg,v(z) = 0 and h,(0) =1,
and (3.8) follows from (3.4) and the definition of ¢. (3.9) and (3.10) follows
from (3.3), (3.8) and the inequalities e* < 1+z for all z € R, e®* < 14z +z?
for |z| < 1.

Lemma 3.4. Let u(z) be defined and continuous on the interval [x§,x7].
Then, either it is convez or there exists a linear function £(x) such that the

difference g(x) = u(z) — £(x) has a local mazimum in (z§, 7).
Proof. The proof can be found in Kagan, Linnik and Rao (1973), p.146.

In the proof of Lemma 3.5 and 3.6 below, we need an averaging op-
eration, and define it as follows. The averaging operation transforms wu(x)
into '

+00
ue(z) = i K (z — y)u(y)dy

where the kernel K. is chosen such that it has the following properties:

it is nonnegative and twice continuous'ly differentiable on (—¢,¢€), and zero

+oo
/ K (z)dz =1

hd e ]

outside, and

such an averaging leaves constants invariant, and commutes with integra-
tion with respect to t and with the linear operator L, ;. The properties
of the kernel K, are widely used in mathematical analysis, see for example
Wheeden and Zygmund (1977).

Lemma 3.5. Under the conditions of Lemma 3.1, and let u(x) satisfy

(3.4). Then, the function u(zx) is either convexr or concave function.

Proof. Let [zj,2]] be any closed interval such that [z§,z}] C (z0,z1),

it follows from Lemma 3.4 that u(z) is either convex or there exists a linear
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function £(z) such that g(x) = u(z) — £(z) has a local maximum in (3, z*).
For the latter case, we shall prove that u(x) must be concave. To this end,
let z* be a local maximum point for g(z), then in view of the relations (1.1)
we get g(z*(vA;(t) +1)) < g(z*), 1 < < n, for sufficiently small v > 0, and
consequently L, .g(z*) < 0. Since u(z) = g(z) + {(z), it follows from (3.4),
(3.11) and (2) of Lemma 3.2 that

bn0) = [ exp(Lueg(a™))don(t) < [ 1d0a(®) = ha(0),

n An

and from (3.9), we get
/ Ly u(z)do,(t) < hy(v) — by (0) <0
An

for all sufficiently small v > 0. Now, carrying out the averaging operation,
it implies

/ L, u.(z)do,(t) <0,

by dividing this relation through by v2, and letting v — 0%. Since u.(z) is
continuously twice-differentiable, it follows from (3.7) that u”(x) < 0, i.e.,
ue(x) is a concave function. As e — 0, u.(z) — u(z) uniformly for all =
in [zg,z7], and the limit of concave functions is itself such a function. Thus,

we have established Lemma 3.5.

Lemma 3.6. Under the conditions of Lemma 3.5, the function u(z)

has the form
(3.12) w(z) =a+bln(z)+c-x

for any closed interval [zo, 23] such that [11:2",:63] C (o, 1), where a,b,c are

constants.

Proof. Tt follows from Lemma 3.5 and (3), (4) of Lemma 3.2 that
L, ;u(x) > 0(or < 0), according as the function u(z) is convex (or concave). .

Since |L, ;u(z)| < 1 for sufficiently small v > 0, and so



168 TEA-YUAN HWANG AND CHIN-YUAN HU [September

[Lou(@)]® <+ sup  |Lysu(y)] - Lysu(z)

and from (3.9) and (3.10)
/A Ly yu(@)don (2) < hn(v) — b (0)

S/ Lv,tu(x)dan(t) + sup ]Lv,tu(y)l /A Lv,tu(w)dan(t)

zzSulzs
t€EA,

n

where the sign + is taken in the convex case and the sign — in the other.
Next, by carrying out the averaging operation, dividing above inequalities
through by v?, and letting v — 0%, then it follows from (3.7) and

sup |Lysu(y)] — 0 as v— 0Ot

za<ulzs

tEA,
that
hn(v) — ha(0)

2

R (U) - hn(o)

S 1imv—>0+ 2
v

1 1
—ixz ' ’LLZ(.’E) Sli—mv—m'*' < 5372 ' ’u’/el(x)

v

Hence, the limit exists (say equal to ¢1), i.e., lim,__ ¢+ [R(v) — h(0)]/v% = ¢,
and that u”(z) = 2¢1/2%; so that ue(z) = ac + befn(z) + cc - . As € — 0,
ue(z) — u(x) uniformly for z in [z3,x3)], and the limit must be the form

(8.11). Thus, we have established lemma 3.6.

Proof of Main Theorem. Since f(z) is not identical to zero, and is
continuous on (0, +oo), we may assume that f(z) > 0 on some subinterval
(zo,z1). It follows from Lemma 3.1, 3.6 and u(z) = ¢n(f(z)) that f(x) must
be representable in the form f(z) = a3 b -exp(c; - z) for any closed interval
[z, z3] such that [z9,z3] C (xo,21), where a1, b;,c; are constants. Now,
by the continuity of f(z), it must be representable in that form throughout

z > 0.. And it follows from the probability character that f(x) is the gamma

density as given in (1.3). Thus, this completes the proof of main theorem.

References

1. D. V. Anosov, On an integral equation arising in statistics, Vestnik Leningrad

Univ., 7(1964), 151-154.



1997] ON AN INTEGRO-FUNCTIONAL EQUATION 169

2. T.Y. Hwang and C. Y. Hu, On the joint distribution of studentized order statis-
tics, Ann. Inst. Statist Math. 46, 1(1994), 165-177.

3. A. M. Kagan, Y. U. Linnik and C. R. Rao, Characterization problems in Math-
ematical Statistics, Translated from the Russian by B. Ramachandran, John Wiley and
Sons Inc., 1973.

4. R. L. Wheeden and A. Zygmund, Measure and Integral: An introduction to Real
Analysis, Marcel Dekker, Inc., New York., 1977.

Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan.

Department of Business Education, National Changhua University of Education,
Changhua, Taiwan.



