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Abstract. We consider multilevel additive Schwarz meth-
_ods with partial refinement. These algorithms are generaliza-
tions of the multilevel additive Schwarz methods developed by .
Dryja, Widlund and many others. We will give a different proof
by using quasi-interpolants under some weaker assumptions on
selected refinement subregions to show that this class of methods
has an optimal condition number. Our proof uses some results
on iterative refinement methods. As a by-product, the multi-
plicative versions which correspond to the FAC (Fast Adaptive
Composite) algorithms with inexact solvers consisting of one
Gauss-Seidel or damped Jacobi iteration have optimal rates of
convergence.

1. Inty'oduction. In this paper, we consider some solution methods of
the large lin:ea,r systems of algebraic equations which arise when working with
elliptic finite element approximations on composite meshes. We consider the
following linear, self-adjoint, elliptic problems discretized by finite element
methods on a bounded Lipschitz polyhedral region © in R™.

- E—%i-aij(a:)%‘; =f inQ,
(1) U = Ug on I'p C 09,
Ejziaij(w)%‘;ni=g onT'y =00\TIp.

Here the matrix {a;;(z)} varies moderately and is positive definite with
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a positive uniform lower bound ¢ for almost all z in . Each a;;(z) is a
bounded measurable function in € and 7 is the unit outward normal to
0. We assume that the measure of T'p is strictly greater than zero. This
insures a unique solution to problem (1).

We will assume, without loss of generality, that ug = 0. If not, we can

always substract an arbitrary function w that equals up on I'p from u. Let
V=HLQ)={ue HY(Q)| yu =0 on I'p}.

Here v is the trace operator. The standard continuous and discrete weak

formulations for the above elliptic problem (1) then consist of

@) a(wv) = fG), VeV,
and
(3) a(uha’uh) = f('vh)a V’Uh € Vh’

respectively. Here

a(u,v) = /Zam(x g—ai—dw and f(v)=/9fvdx+/ guds.

Tn

The space V" will be defined in the next few paragraphs. It is easy to see
that the norm (a(u,w))!/? is equivalent to the seminorm [ul () in HY(Q)
and the ratio of equivalence constants is not large.

To simplify the presentation, we use continuous, Lagrange finite element
of type 1 and only consider homogeneous Dirichlet boundary value problems.
Then we will remark how to proceed our analysis to more general mixed type
boundary condition and Lagrange elements.

The space V" is defined on a composite triangulation, which is possibly
the result of a large number of successive refinements. The triangulation of
{2 is given in the following way.

We first introduce a relatively coarse triangulation of 2, also denoted
by €4, and denote the corresponding space of finite element functions by

V" We can think of this space as having a relatively uniform mesh size
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hy. Let €5 be a subregion where we wish to increase the resolution. We
do so by subdividing the elements and introducing an additional finite ele-
ment space V*2. We assure that the resulting composite space V1 + Vb2 is
conforming by having the functions of V"2 vanish on 99Qy. We repeat this
process by selecting a subregion 23 of {23 and introducing a further refine-
ment of the mesh and finite element space, etc.. We denote the resulting
nested subregions and subspaces by €2; and V"¢ respectively. Throughout,
we have Q; C Q;_1 and VRN HI(Q;) C VA C HE (), 5= 2,---,k. The

composite finite element space on the repeatedly refined mesh, is
VE=vyhpvhe 4oy VR

We assume that all the elements are shape regular in the sense that
there 1s a uniform bound on hg /px. Here hi and pg are the diameter and
the radius of the largest inscribed sphere of any element K, respectively.
Our theoretical bounds, developed in this paper, also depend on the shapes
of the subregions ;. -

The finite element problem is defined by equation (3) and the corre-
sponding stiffness matrix canF conveniently be computed by using a process
of subassembly. Introducing subscripts to indicate the domain of integra-

tion, we write
a’(ua 'U) = a0\Q, (u’ 'U) + a0\ Qs (u’ ’l)) +--+aq, (u7 'U).

The stiffness matrices corresponding to the regions Q; \ ;41,1 < <
k — 1, and €y are computed by working with basis functions related to the
mesh size h;. The quadratic form corresponding to the composite stiffness
matrix is the sum of the quadratic forms corresponding to £;\Q;41,1 < ¢ <
k —1, and Q. When we refine a finite element model locally, the modified
stiffness matrix is obtained by replacing the quadratic form associated with
the subregion in question by the one corresponding to the refined model on
the same subregion. It is therefore relatively easy to design a method which

systematically generates the stiffiness matrices for all the standard problems
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necessary while, at the same time, the stiffness matrix of the composite

model is computed.

We use the framework of multilevel additive Schwarz methods, which is
described in Dryja and Widlund [7], and Zhang [17] to discuss a new kind of
algorithm for composite finite element problems. If we compare this kind of
algorithm with the AFAC (Asynchronous FAC) methods is [3], we can see
that they are both additive Schwarz methods. In the new algorithms, we
decompose the problems corresponding to the refined subregions with uni-
form mesh size, used in AFAC, into many much smaller problems which are
much easier to solve. However, this is at the expense of slower convergence

of the algorithms.

We will apply quasi-interpolants and some theoretical results from FAC
and AFAC methods to prove in a different way that the iteration operators of
these methods have a uniform lower bound under some weaker assumptions
than those before. Bornemann and Yserentant [1] have obtained another
proof of the optimality based on the ﬁse of K-functionals under some re-
strictions on these refinement subregions. We remark that our proof can
be generalized to these cases of refinement everywhere and refinement for
solution singularity coming from the coefficients of the original differential
equation and is different from Zhang’s which was obtained by considering a
decomposition based on the Galerkin projection on a larger convex domain.

Therefore we conclude that our results in this paper are better than theirs. -

We can also consider some multiplicative versions of above methods.
These variants correspond to the FAC algorithms with inexact solvers con-
sisting of one Gauss-Seidel or damped Jacobi iteration. We can use the
similar arguments of Zhang to show that these variants have an optimal

rate of convergence.

In Section 2, we describe general multilevel additive Schwarz methods

and mention some theoretical results about them.

In Section 3, we describe general multilevel additive Schwarz methods

with partial refinement and mention the earlier theoretical result. Then we
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describe quasi-interpolants and prove some lemmas about them which we
need to apply in next section.

In Section 4, we develop our optimality proof based on some assump-
tions coming from iterative refinement methods and describe some multi-

plicative variants.

2. General multilevel additive Schwarz methods. We now give
a description of general multilevel additive Schwarz methods which is de-
veloped in Dryja and Widlund [7]. We define a sequence of nested trian-
gulations {YF_;}. We start with a coarse triangulation Tt = {71} with
quasi-uniform mesh size hy, where 7} represent an individual triangle. The
successively finer triangulations T' = {r}}(I = 2,...,L) are defined by di-

viding each triangle in the triangulation Y'~! into several triangles, i.e.
g )
1 1y N; refinement ~.o 1y Ny refinement refinement ~k E1Nz

We assume that the triangulations T! have quasi-uniform mesh size h;_; for .

each [.

Let VP [ =1,---,k, be the space of continuous piecewise linear element
associated with the triangulation Y!. The finite element solution, up, € V* =

Vhe satisfies
(4) a(tn, dn) = f(¢r), Von € VP =V

~ 1
We assume that there are k—1 sets of overlapping subdomains {{;}];,

[ =2,3,---,k. On each level, we have an overlapping decomposition

~ 1
Q=ulQ

i-
~1 . .
We assume that the sets {Q;} satisfy the following assumption.

~1 .
Assumption 1. The decomposition ) = Ufi‘lQi satisfies

(1) 8L aligns with the boundaries of level | triangles, i.e. Q& is the union
of level l triangles. Diameler (%) = O(hy—1).
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(2) On each level, the subdomains {Q} N =1 form a finite covering of Q, with
a covering constant N, i.e. we can color {QL}, | using at most N,
colors in such a way that subdomains of the same color are disjoint.

(3) On each level, associated with {QL}Nt | there ezists a partition of unity

{6}} satisfying

>0 =1, with 6} € HH(S)NCO({),0 < 0! <1 and | 76| < C/hu_s.

(4) hi/hiy1 is uniformly bounded.

One way of constructing subdomains {Q’}z_l, = 2,---,k, with the
above properties is described in Dryja and Widlund [4], [6]. Each triangle

T'l_-l,i =1,---,Ni,l = 2,---,k, is extended to a larger region 7 ”l 1

Z so that
chj_1 < dist(@%ﬁ"l,a‘rf_l) < Chy_1, aligning 87'2 ! with the boundaries of
level [ triangles. We cut off the part of 7:~! that is outside . We use Fi-l
as the subdomains Q. Another way of constructing {Q!} is given in the
next section.

Let Ny =L,V = VM and V™ = VR A HY Q) for s = 1,---, N}, 1 =

-, k. The finite element space V* = Vh* ig represented by

hzlivhl _ZZVhl
=1

=1 i=1

Let P} : Vh — Vih’ , be the projection defined by
o(Pu,¢) = a(u,¢), Vo€V

The k-level additive Schwarz operator P is defined by

k. N,

(5) P=)">"P.

=1 i=1
Instead of solving the original finite element equation (4), we use the follow-

ing algorithm.

Algorithm 1. Let P be the operator defined by (5). Apply the conjugate

gradient method to the following symmetric and positive definite system
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Puy, = gh,

with respect to the inner product a(-,-) for an appropriate g such that the .
solution uy, is the same as that of (4). - .
The following theorem, which is given in Zhang [17], proves that this

multilevel additive Schwarz method has an optimal rate of convergence.

Theorem 1. For P defined above, the following inequalities hold
Cra(up,ur) < a(Pup,up) < Coalup,up) Yup € Vi

Thus k(P) < CoCT 1 Here the constants C; and Cy are independent of the v

mesh sizes {hi} and k.

3. Description of multilevel additive Schwarz methods with
partial refinement and some properties of quasi-interpolants. We
can modify the general multilevel additive Schwarz methods such that they
can handle the finite element problems (3) with composite mesh sizes.

We now give a description of multilevel additive Schwarz methods with
partial refinement. Like the procedure in last section, we define a sequence
of nested triangulations {Y}_;}. We start with a coarse triangulation T!=
{7} }fv=11 with quasi-uniform mesh size h;, where 'rilrgpresent an individual
triangle. The successively finer triangulations Y' = {7}}(l = 2,---,k) are
defined by dividing each triangle in the triangulation T'~1 into several tri-

angles, i.e.
1 Iy N, refinement ~a2 11 N, refinement refinement ~nk k1N
T —{Ti}ll — T _{Ti}l = e > T —{T’i}l .

We assume that the‘triangulations ! have quasi-uniform mesh sizes h;_3
for each (.

Let us define Q; = Q. Then for each 2 <1 < k, we choose §;,which
is a subregion of §;_1, such that dQ; aligns with boundaries of level [ — 1
triangles. Let Vhe | = 1,---,k, be the subspace of continuous piecewise
linear element associated with the triangulation YT of H3(Q). We also set
Vh to be VA A HE(S%). The finite element problem is to find up, € V* =
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Vhi .o 4 Ve satisfying

(6) a(un, n) = f(dn), Von € VE=Vh 4. p ke,
We assume that there are k£ — 1 sets of overlapping subdomain {Qﬁ fv=‘1,
1=2,3,---,k. On each level, we have an overlapping decomposition
o = Ul QL

We also assume that there are another k — 1 sets of overlapping subdomains
{QI} %M, such that we have

Q=uUlMQoL
We can now make the following assumptions similar to Assumption 1.

Assumption 2. Let us assume that

(1) The mesh sizes h; are bounded from above and below by const.q' uni-
formly for alll. Here q is a positive constant less than 1.

(2) (U1 NIU)\IN=0 forl=2,3,---,k.

(3) 6(25 aligns with boundaries of level | triangles, i.e. Qi is the union of
level | triangles. Diameter () = O(hi_1). |

(4) On each level, the subdomains {QL}N1FM form o finite covering of Q,
with a covering constant N., i.e. We can color {QU} Mt ysing at
most N, colors in such a way that subdomains of the same color are
disjoint.

(5) On each level, associated with {QL}N! | there exists a partition of unity
{6}} satisfying

Zeﬁ =1, with 6} € H}(Q)nC°(Q),0 < 6! <1 and| v 6}| < C/hi_;.

: . ANi+M,
One way of constructing subdomains {Ql.__f;r ‘4, 1=2,---,k, with the

above properties is mentioned in last section. Let N; = 1, Vlh1 =VM and
Vi’“ =Vh nH&(Qi) fori=1,--- Ny + M, 1 =2,---,k. The finite element
space V" is represented by
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k k N;
Vh — thl — ZZ‘/;IH.
=1 =1 =1

Let us define P! as the orthogonal projection from V* onto Vih’ with respect
to a(-,-) which is the same as those in last section. The k-level additive

Schwarz operator P is defined by

(7) P=>">"F.

Let us denote the multilevel additive Schwarz methods by MAS. Then we

have the following algorithm.

Algorithm 2 (MAS with partial refinement). Let P be the op-
erator defined by (7). Apply the conjugate gradient method to the following

symmetric and positive definite system
Puy = ghs

with respect to the inner product ‘a(-,-) for appropriate gn such that the

solution uy, is the same as that of (6).

Bornemann and Yserentant [1] have established the following optimality
theorem for MAS under Assumption 2. Our main pﬁrpose of this paper is

to prove the following theorem under some weaker assumptions.

Theorem 2. For P defined by (7) and under Assumption 2, the fol-

lowing inequalities hold
Cra(un,upn) < a(Pup,up) < Coalup,up), Vur € vh.

Thus k(P) < CoCy 1 Here the constants C; and Cy are independent of the

mesh sizes {hi} and k.

We now mention a special decomposition of the domain 2 in Zhang [17].
It is called MDS (the multilevel diagonal scaling). Let ¢ be a nodal basis

function of V™ and associate with each ¢, the subdomain QL = supp{4.}.
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We may choose V}! = span{¢}} = V™ n H}({1l) and obtain the decomposi-

tion

and the Galerkin projection P} corresponding to V;*. Let P’ = Yk PO
P}. Tt is easy to see that the above construction satisfies Assumption 2.
Therefore we have another variant of Algorithm 2 whose optimality follows

from Theorem 2.

Algorithm 3 (MDS with partial refinement). Let P’ be the op-
erator defined above. Apply the conjugate gradient method to the following

symmetric and positive definite system
P,Uh = Gh,

with respect to the inner product a(-,-) for an appropriate g, such that the

solution up, is the same as that of (6).

Let K, be the stiffness matrix associated with Vh let K, be the stiff-
ness matrix associated with V" and let D, = diag(K,). Let I, : V* — vk,
1 <1<k, be the standard inclusion operator, and let If : V® — Vhi be an

operator related to [; in the following way:
(Iun, v')e = (un, v') g2y, Vo' € V.

Here (-,-); is the discrete inner product in V" , which is equivalent to L2(Q),
defined by

(uh,oh) = hp Z u(z)t(z), Vul, ol e Vi,
:zE/\/z

Here N is the set of nodes of the degrees of freedom in V™. Algorithm 3
can then be written as: Find the solution of Kpx = b by solving the pre-

conditioned system

B 'Kz = B,
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where
Byt =ht LK+ +RE_y - Tea DL Ly + B - D

We remark that if we replace the matriées D, by identity matrices, we obtain
the BPX algorithm with partial refinement.

In order to prove Theorem 2 under some weaker assumptions, we need
to introduce the concept of quasi-interpolants and prove some of their prop-

erties which we need later.

Definition 1. Given a triangulation T of Q, we associate with Y a fi-
nite element subspace V(Y) of L2(Q) which consists of piecewise polynomials

of degree less than or equal to m. A linear mapping
Q: L*(Q) — V(Y)
1s called a quasi-interpolant of order m if it satisfies the properties
Qu=u, VYueV(Y),
and for a constant C depending only on the shape regularity such that
IQullzege) < € - ull oy VK €T, Vu€ LX(Q).

Here K denotes the union of the neighbouring elements of K.

The following example is similar to one given in Oswald [12].

Example. We construct a quasi-interpolant for linear elements in two
dimensions with zero boundary data. The procedure can be generalized to
the cases of more general Lagrange elements and higher-dimensional spaces.
Consider an arbitrary nodal point P;(=vertex) of T which in not on 052 and
its adjacent triangles. Define on the region a piecewise linear and continuous
function with value 3 at P; and -1 at the other vertices of this region. Extend
this function by zero to Q and scale it by the factor 3/|4;|, where A; denotes
the support of this function. Denote the nodal basis function corresponding

to P, by ¢; and this L*™ function by ¢;. Now we may take
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QU‘—‘Z/Q(U@I)H(Q)'@'- ’

If we look at the quadrature rule for triangles which uses the side midpoints
as integration points and is exact for polynomials of degree 2, it is easy
to see that () satisfies the first condition in Definition 1. There remains
to verify the second condition. We first consider these elements K which
satisfy K N 0§ = §. For such element K with area |K|, we have |4;| > | K|,

for each of its three vertices P;, and

|(w, 67) 2| < Nullzaan - 195 z20a) < C - 1A% - lull g2y
for the corresponding coefficients. Therefore

IQuilzaqey < 1K1 - max (w6 s2y] < C -l ey

For these elements which intersect 92, we can use similar arguments to
prove the same inequality as above. Finally we remark that the value of Qu
at an arbitrary interior vertex P only depends upon the values of u in the
elements which have P as a vertex. »

Let @ be a quasi-interpolant of order 1 from HE(£2) C L2(S2) onto the
space V™, for 1 =1,2,--- ,k. We construct Q,u by the rules of the above
example. In order to prove our optimality result in next section, we need the
following three lemmas about quasi-interpolants Q;u. The proof of the first
lemma is based on using smooth functions to approximate elements in H*(Q2)
-and applying the fundamental theorem of calculus to the region. Proofs of
Lemma 2 may be found in {10] and [11]. Proofs of the boundness of the L?
projection in H} () are given in Scott and Zhang [13], and in Bramble and

X [2]- Lemma 3 just states the corresponding result for quasi-interpolants.

Lemma 1. Let Q be a domain in R?, which has the following special
form : {(z1,22)|a < z1 < b, 9(x1) < z2 < f(x1)}. Here f(z) and g(z) are
piecewise C*, continuous functions on [a,b] such that g(z) < f(z) on (a, b).
Then for all w € HY(Q) vanishing on {(z1,z2)la < 21 < b, 25 = g(z1)}, we

have
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< —_ .
lellzeqe) < max, |f(z) — g(2)| - lul g (0)-
We can also get similar inequalities in R™ for n > 2.

Lemma 2 (Poincaré’s inequality). Let

{u}o = ‘-é—l/ﬂu

Then there ezists a constant C(), which depends only on the Lipschitz
constant of 89, such that for all v € H*(Q2) we have

lu — {u}allz2) < C(Q)Halulm1(q)-
Here Hgq is the diameter of Q.

Lemma 3. There ezists a constant C, which depends only on the shape

reqularity, such that

|Quul () < Clulmiqa)y,  Yu € Hy(Q).

Proof. Let us first consider the elements K that satisfy K N9Q = 0.

Then we have
1@l g (k) = |Qru — el (xy = 1Qu(w — ue)la (k)

< Chy M| Qulu — ue)llL2qxy < ChyHlw = cllpz (k)

for any constant c. Here K is the union of the neighbouring elements of
K and u, € V™ is equal to c at the interior nodes and 0 at the boundary
nodes..

Take c to achieve the infimum. By Lemma 2, we have
|Quularr ey < B! Sinfllu —ell 2y < Chit - C'lulul g 7y = Clul g z)-
Let €y denote the union of such elements K. By shape regularity, we obtain
|Quul (0 < Clula ()

for some constant C. Now it is sufficient to prove that



104 HSUANJEN CHENG [June

|Quul 1 (ana) < Clu|g1(q)-

It is obvious that we can write Q\ Qy = Ufi"lﬁoi as a nonoverlapping union.
Let Qf; = Ukeq,.K where K is the union of the neighbouring elements of
K. It is obvious that each region Qf; and each function u € HE(Q) satisfy
the conditions of Lemma 1 and that the constant of this lemma is O(hy).

Then we have _
|Quel a1 r) < Ch M| Quull 200
< Chz_lﬂ’“”L?(Qg,i) < Chl—l . hll’U,lHl(Qai) = C!’U'IHI(Q(’):')'

By combining the above results, the proof of the lemma easily follows.

Besides the above lemmas, we also need the following two lemmas which
are not directly related to quasi-interpolants. The first lemma is often used
in finite element approximation theory and its proof can be carried out by
using a standard duality argument; cf. [3]. The proof of the second lemma
may be found in [9] and [15]. It means that we can estimate the lower bound
of the opefator P defined by (7) through constructing a good decomposition

of finite element functions.

Lemma 4. Let P, be the orthogonal projection onto the space V™ with
respect to a(-,-) and suppose that the coefficients {a:;(x)} of elliptic problem

(1) are in WH°°(Q). Then there exists a s € (1/2,1] and a constant C such
that '

I = Po)ullgi-e i) < CHINI - B)ullmay,  Vu € HL(S).

Lemma 5. Let V be a finite-dimensional Hilbert space with the inner
product a(-,-) and let V; be subspaces of Vsothat V=Vi+---+Vy. We
define P; as the orthogonal projection onto V; and P = Pi+---+Py. Ifa
decomposition of u,u =Y, u; where u; € V;; can be found such that

Za(ui)ui) < Cla(u) U), Vu € Vh)

2

then
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Amin(P) > CTL.

4. The main optimality result and some multiplicative vari-
ants. In this section, we will construct another proof of our main theorem
by using the approach of iterative refinement methods. For convenience,
we use the same notations as in last section. The typical assumption for
iterative refinement methods is related to the extension theorem for finite

element functions with respect to the a(:,-).

Assumption 3. For each j, there exists a bounded Lipschitz polyhedral
region §; such that Q; C Q;, (0 \ ;) NQ =0, 8 N4 = 0 and the
Lipschitz constants of Qj \ ;41 are uniforinly bounded.

The above assumption can usually be weakened to Assumption 4.

Assumption 4. For each j, either Q; = Q1 or there ezists a bounded
Lipschitz polyhedral region Qj such that Q; C flj, (Qj \ Q)N =90, Bflj n
00Q;4+1 = 0 and the Lipschitz constants of Q]’ \ ;41 are uniformly bounded.

Let us define P;,i < j, as the orthogonal projections onto the spaces
Vh N H}(Q;) with respect to the inner product a(-,-). Now we recall a
result from Cheng [3] and Dryja and Widlund [5].

Lemma 6. Under Assumption 4, there is an absolute constant C which
depends on the Lipschitz constant in Assumption 4 and shape regularity
such that for any u € VP we can decompose u into u = Z?__,l u;, where

u; € Range(P} — P;™'), and

k

Z a(u;,u;) < Ca(u,u).

i=1
We remark that the proof of this lemma can be done by first considering
the case under Assumption 3 and then doing a further decomposition of u
under Assumption 4.

Now let us make the remaining assumption used in the main theorem

in this section and then state the main theorem.
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Assumption 5. Let us assume that

(1) These mesh sizes hy are bounded from above and below by const.¢* uni-
formly for all l. Here q is a positive constant less than 1.

(2) 8(2: aligns with boundaries of level | triangles, i..e. QL is the union of
level I triangles. Diameter (Q}) = O(hi_1).

(3) On each level, the subdomains {Qﬁ}f_’_ﬁf M form a finite covering of Q,
with a covering constant N, i.e. we can color {{X}NFM ysing at
most N, colors in such a way that subdomains of the same color are
disjoint.

(4) On each level, associated with {QL}N), there ezists a partition of unity
{6}} satisfying

> 6=1, with 6} € H (()NC(§4),0 < 6} <1 and |78} < C/hi_s.

Theorem 3. Under Assumptions 4 and 5, there exist absolute con-
stants Cy, and Cy such that

Cra(un,ur) < a(Pup,up) < Coalun,up), Vui € VE.

Here P is defined by (7). Thus x(P) < CoCy Y. Here the constants Cy and
Cy are independent of the mesh sizes {h;} and k.

Before proceeding the proof of Theorem 3, let us compare the assump-
tions used in our proof with those used in Theorem 2. Our assumptions are
weaker than theirs in some sense. In their proof, they need to assume that
(01 NOY)\ U =0 for | =2,3,---,k. It means that we cannot allow
the next-level refinement subregion €;, chosen from a given £;_;, whose
boundary has a nonempty intersection with that of €;_; in the interior of
the whole domain Q. This condition restricts the choice of Q; in two ways.
First, we cannot choose €2; to be the same as ;_;. However, we cannot
allow the consecutive mesh size ratio h;/hiy; to be arbitrarily large in gen-
eral multilevel Schwarz methods. Therefore in order to get the prescribed

accuracy of our solution of partial differential equation, it is possible that
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we need to refine the subregion €2;_; everywhere because we cannot control
the size of {; as small as we can. The second way happens when we consider
a boundary value problem of an elliptic partial differential equation whose
coeflicients are not smooth enough. In such a case, a solution singularity
maybe happen around an interior point of 2 and therefore we need to do
the mesh refinement near this singularity point. It is possible that we have
chosen £2;_; such that this singularity point is on its boundary from a given
error estimate criteria. Then we cannot continue the refinement process
according to their assumptions.

The m‘aiﬁ idea of proving Theorem 3 is that constructing a good de-
composition of u € V" satisfies the condition of Lemma 5. Let us define the
operators R; : V" — Vhi by
u(z) ifzeQ\ Qs
Qu(z) ifz e Qg
forl =1,2,---,k -1 and Rpu = u. It is obvious that R,,R, = R, for
1 <n<m <k Itisalso clear that there exists an absolute constant C
such that

Ruu(z) = {

NRiullz2() < Cllullz2(@)-

There are some other important properties of R; which we need. They

are stated below.

Lemma 7. There is an absolute constant C such that

lw — Rzu“IJz(Q) < C’hl|u|H1(Q).

Proof. Let us denote the union of the element K of level [ in §2;4; which
satisfies K N (Q\ Q41) # 0 by Qg;. Then

llu — Riullzay < llu — Quullracay + 1Quu — Riullr2(q)
< Chylulgiqy + lu — QuullLz(@\auyr) + w2 (o))

Here w € V™ in Qy4; and
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(v — Quu)(z) if z € 8y,
0 if z is a node in Q.

w(z) = {

By considering a discrete norm of w which is equivalent to the L2 norm, it
is easy to see that}
lwllzz (o) < Cllu = Quull L2 yuyy)-

Therefore

luw — Rlu“LZ(Q) < Ch[I’U,IHl(Q) +Cllu — Qlu“[,'z(g) < C'hll'u.lH1(Q).

In order to proceed with the proof of the next lemma, we need to

introduce the operators Hj : V* — V™ by
Hu(z) e VP ... 4 v
Hu(z) =u(z), VzeQ\Qy,
a(Hiu,wp) =0, Vw, € VM N HE( Q1)

It is natural to call Hyu the h;-harmonic extension of u to Qi41. Let us

recall a result from Cheng [3]; ¢f. Widlund [14]. There exists an absolute
constant C' such that

(8) o(Hiu, Hiu) < Ca(u,u), Yue Vh.

By using this inequality, we can prove that R; is a bounded operator from
V* into V™ in the H}-norm.

Lemma 8. There exists an absolute constant C such that

Rl (o) < Clulaig), VueVh

Proof. We observe that
(Rl gy = lulin v, + |Riultq,, )
< lulb gy + C(IRu — Huulbq,, ) + |Hulin g, .))

= |ul%11(n) +C(1Qu(u - Hlu)lfm(am) + IHIUI%II(Q,H))
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and that « — Hiu = 0 on 0Q;.;. Therefore we can apply Lemma 3 to
conclude that
|Riul3 qy < |ulf gy + Cllu — Hl“l%{l(nw) + |Huulfno,,,)) < Clulfng)-
The last step follows from equation (8).

The proof of the following lemma is similar to one that appears in Xu
[16] after replacing the L? projection by the operators R;. However, in

our proof, we do not need to use the fact that the R; are bounded linear

mappings in the space Hj ().

Lemma 9. There ezists an absolute constant C, which depends only
on these Lipschitz constants that appear in Assumption 4 and the shape

regularity, such that

k
1
> (R = Rima)ullfz oy - 7 < Clulingy YueV™
=2

Proof. Let us first decompose u into u = Ei;l u;, where u; € Range(P}

— P?71) is the same as in Lemma 6. We observe that

3

(Rt = Ri-1)uillz2(0) < Clluillzz o),
by the shape regularity assumption, and that

(R — Riz1)uill 2oy =IRi(us — Ri—aui)ll 2y
< Cllui = Ri—auillzzey < Challuillm (o),

by using Lemma 7. By using an interpolation theorem of Hilbert scales; cf.
[3] and (8], we have

(R — Ri—uillzey < Ch™° - lluslln-s), Vs € (0,1).
‘We choose s as in Lemma 4. Then

(R — Ri—t)usllzz(ay < Chy ™ luillm-s (o) < Chy B sl (o)
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With ¢ A j = min(4, j) and the observation that (R; — R;_;)u; = 0 for i < [,

we have

1

S (R~ Ruca)ullagey- h2
1=1
1
=Z Z ((Ri = Ri—1)ui, (Ri — Ri_1)uj)r2(q) - &
=1 4,j=I 1
ko iAj .
= Z((Rt — Ri_1)ui, (Rr — Ri—1)u;j)2(q) - 7z
ij=11=1 1
iAj
1-s
<C Z Z By il pra-s gyl | ey
9.7 =1l=1
iAng
<C Z > 2R s oy s
7,7=1l=1
ing
=C Z hshs lui“H‘l(Q)”uJ'“Hl(Q) Z hi—zs
k
<C Y hihihg sl e llusll oy
i,7=1

k
<C Y~ ¢l g oy sl o
ij=1

k
<C Y Muillfgy < €A+ C'(d))ulF qy
=1

by using Lemma 6 and Friedrichs’ inequality. Here C’(d) is a constant
which only depends upon the diameter d of the domain . By using a
simple dilation argument, we can completely remove the dependence of this
constant upon the diameter of  and complete the proof.

We now return to the proof of Theorem 3 by using those previous

lemmas.

, Proof of Theorem 3. Let us first prove that the operator P has an
uniform upper bound. We define P by
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k. Ni+M;
P=2 2 7
= 1,"1

We observe that P has a uniform upper bound by Theorem 1 and P < P.
Therefore P has a uniform upper bound.

To establish a uniform lower bound, we will apply Lemma 5. We note
that it is sufficient to find a good decomposition of u € V* such that the

constant is uniformly bounded from above. Let us first decompose u as
k k
u= Rju+ Z(Rl -R_us= Zul.
1=2 =1

It is easy to see that u! € V™. We need to further decompose u!, for [ > 2,

as
N,
ul = }:ui, with ul = [;(9ul) € V™.
=1
Here {#!} is a partition of unity as in Assumption 5 and I is the standard -
nodal interpolants into Vhi. It can be shown that
i _ _7 l
A LT
1j2 12 1
< C(10i] Ly lu €y + 10 .00 (ol “L2(f~ll~ )
< O, g+ /R, gu )

Summing over ¢ and using the finite covering property of {Qi}, we obtain
12 ! 112
Z il () = Z il ity < Z(l a1 q)
< C(|w! f3rqay + h—?”ul“iz(m) < Cﬁ?”ulniz(n)-

Summing over [, for 1 <1 < k, and using Lemmas 8 and 9, we get

Z}:lu 2oy < Clu' 3o +Z 2“ul“L2(Q)) < Clul?(qy-

=1 1

The lower bound of P now follows.
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Then we discuss some multiplicative variants of the MDS algorithm
with partial refinement. In particular, we can estimate the energy norm of

the following operators

k N;

I=1:=1

k k N;
Ey=Tlu-n)=T[u-8>_ P},
=1 =1 =1

where 3 is a damping factor such that ||Ti|}, < w < 2. The operators Eg
and E; correspond to the FAC algorithms with inexact solvers consisting
of one Gauss-Seidel and damped Jacobi iteration, respectively, except for
the coarsest space V1. We can use the techniques in Zhang [17] and the
fact that the multilevel additive Schwarz operator P has a uniform lower

bound to prove the following theorem.

Theorem 4. There ezist absolute constants ng and 17, which depend

only on the Lipschitz constants appearing in Assumption 4 and the shape

reqularity, such that
lEclla <ng <1 and [|Esfla <95 <1

In order to prove Theorem 4, we need the following lemma, which is

given in Zhang [17].

Lemma 10. Let T;,i = 1,--- | N, be symmetric, semi-positive definite
operators with respect to the a(:,-) and let |Ti|l, <w < 2. Let T = Zf\_f__l T;
and E= (I —T)(I —Ty)--- (I - Ty). Then

IE]. < \/1 —(2- w)i\%;%)'

Here ©1 = {9?}, where 0% =1 and 6?, 1 # j, are given by

i Tiu, T;v)
01] —_ a"( 2 b J .
T Suu’ll? a(Tyu, ) /2a(Tjv, v)1/2
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Proof of Theorem 4. We first estimate Eg. In this case, T; = P} for
each subspace Vih‘. Let us denote by T the operator corresponding to the
case of refinement everywhere. In [17], Zhang established that ||©4|3 is
uniformly bounded. We ndte that each space corresponding to T; is a space
corresponding to a Tj for some j. Therefore ||@r||3 is uniformly bounded.
By Lemma 10 and Theorem 3, the first part follows easily.

As for the case of E;, we take T} = 3, P} and use an argument similar

to the above one used.

Finally we discuss the extension to the cases of general mixed type
boundary condition and more general Lagrange elements. For general La-
grange elements in higher-dimensional space, it is possible to construct high
order quasi-interpolants by looking at quadrature rules preserving high order
polynomials which are similar to the example given in Section 3. For general
boundary condition, it is sufficient to prove counterparts of Lemmas 3, 4,
and 6. The modification of Lemmas 4 and 6 have been discussed for the
work of iterative refinement methods in [3]. However, we can construct the
counterpart of Lemma 3 by separately considering two cases of the elements
K satisfying K NT'p = @ and those who do not.
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