ON UNIQUENESS OF POSITIVE SOLUTIONS OF NON-LINEAR DIFFERENTIAL EQUATIONS

BY

CHIU-CHUN CHANG (張秋俊) AND CHIU-YANG CHANG (張秋陽)

Abstract. It is shown that for $y'' + g(x)y^{\gamma}(x) = 0$, $\gamma > 1$, g(x) > 0, there is at most one positive C' solution y with y(0) = 0 and tending to a positive constant at infinity, under the condition that $\frac{\gamma+3}{2} + \frac{xg'}{g}$ has only finite number of zeros and there is a positive solution with positive Pohozaev function.

1. Introduction. In this paper, we are concerned about the uniqueness of positive C' solutions of the non-linear ordinary differential equation

(1)
$$y''(x) + g(x)y^{\gamma}(x) = 0, \quad 0 < x < \infty,$$

with y(0) = 0 and $\lim_{x\to\infty} y(x)$ a positive constant; where g(x) is positive continuous and $\gamma > 1$.

The discussion below will cover the case in finite interval $[\alpha, \beta]$, with $0 \le \alpha < \beta$ and boundary conditions

(2)
$$y(\alpha) = 0, \quad y'(\beta) = 0.$$

Notice that in this case, there were already many articles concerned about the existence and uniqueness of positive solution. [1] [2] [3] [4] [5]. Essentially, the uniqueness problem is only solved partially.

For semi-linear elliptic equations of the form

Received by the editors January 26, 1996.

AMS Subject Classifications: 34B15.

Key Words: Non-linear differential equations, positive solution, uniqueness.

(3)
$$\Delta u + p(|x|)u^{\gamma} = 0, \quad x \in \mathbb{R}^n, \ n \ge 3 \text{ and } \gamma > 1,$$

one interests in the radially symmetric solutions u(r) = u(|x|), which satisfies the ordinary differential equation [7] [8]

(4)
$$u'' + \frac{n-1}{r}u' + p(r)u^{\gamma} = 0.$$

with the change of variables $s = r^{n-2}$, y(s) = su(r(s)), the equation reduces to

(5)
$$y''(s) + \frac{1}{(n-2)^2} \frac{r^2 p(r)}{s^{1+\gamma}} y^{\gamma}(s) = 0,$$

that is, of the form (1) with $g(s) = \frac{1}{(n-2)^2} \frac{r^2 p(r)}{s^{1+\gamma}}$

The uniqueness of positive solutions of order $O(r^{2-n})$ (a ground state) is of great interests and is included in the problem of equation (1).

2. A Pohozaev identity. The Pohozaev identity for solutions of (4) is [8]

(6)
$$\frac{n-2}{2}r^{n-1}u(r)u'(r) + \frac{1}{2}r^nu'^2(r) + \frac{r^n}{\gamma+1}p(r)u(r)^{\gamma+1}$$

$$= \int_0^r \left\{ \left(\frac{n}{\gamma+1} - \frac{n}{2}\right)p(\alpha)u^{\gamma+1} + \frac{1}{\gamma+1}\alpha p'(\alpha)u^{(\gamma+1)} \right\} \alpha^{n-1}d\alpha$$

Equivalently $G_y(s)$, the Pohozaev function of y is equal to

(7)
$$G_{y}(s) \equiv sy'(s)^{2} - y(s)y'(s) + \frac{2}{\gamma+1}sg(s)y^{\gamma+1}(s)$$

$$= \frac{2}{\gamma+1} \int_{0}^{s} \left(\frac{tg'(t)}{g(t)} + \frac{\gamma+3}{2}\right)g(t)y^{\gamma+1}(t)dt$$

$$\equiv \int_{0}^{s} Q(t)g(t)y^{\gamma+1}(t)dt.$$

we mention that this function also appeared in [6] for solutions of (1). We assume that Q(t) is continuous throughout the whole interval considered and has only a finite number of zeros.

3. A generalized mean value theorem.

Theorem 1. Let y be a fixed positive solution of (1) with $G_y(x) > 0$, and y_1 another (arbitrary) solution of (1), then

(8)
$$\frac{G_{y_1}(x)}{G_y(x)} = \left(\frac{y_1}{y}\right)^{\gamma+1}(\xi), \quad some \ \xi \ \ with \ 0 < \xi < x.$$

Proof. The proof is similar to that of Cauchy Mean Value Theorem in calculus. In fact, let

(9)
$$H(t) \equiv G_{y_1}(t) - \frac{G_{y_1}(x)}{G_y(x)} G_y(t),$$

then H(x) = H(0) = 0. At extrema (say maximum) ξ , $0 < \xi < x$, we have

$$H(\xi + h) - H(\xi) \le 0$$
, small $h > 0$
 ≤ 0 , $h < 0$.

This implies

(10)
$$\frac{1}{h} \int_{\xi}^{\xi+h} Q(t)g(t)y_1^{\gamma+1}dt = \frac{G_{y_1}(\xi+h) - G_{y_1}(\xi)}{h}$$
$$\leq \frac{G_{y_1}(x)}{G_y(x)} \cdot \frac{G_y(\xi+h) - G_y(\xi)}{h}$$
$$= \frac{G_{y_1}(x)}{G_y(x)} \cdot \frac{1}{h} \int_{\xi}^{\xi+h} Q(t)g(t)y^{\gamma+1}dt$$

for h > 0 and similarly for h < 0 (with \geq). Then equality (8) follows by L'Hopital Rule.

4. The Sturm-Picone like theorem for nonlinear equation (1). Assume that y is a fixed positive solution of (1), y_1 , another solution with $y_1'(0) > y'(0)$, y_1 stays positive in (0,a) and $y_1(x) \ge y(x)$ in (0,b), so that b < a. We have $y_1'y - y_1y' < 0$ in (0,b) because

(11)
$$(y_1'y - y_1y')(x) = \int_0^x y_1yg[y^{\gamma} - y_1^{\gamma}]dt.$$

Write

(12)
$$w_1(x) = \frac{xy_1'(x)}{y_1(x)}, \qquad w(x) = \frac{xy'(x)}{y(x)},$$

then $w_1 < w$ in (0, b).

Theorem 2. y, y_1 as above. We further assume $G_y(x) > 0$, then we have $w_1 < w$ in (0,a). That is, as long as y_1 , stays positive, then $\frac{y_1}{y}$ is decreasing.

Proof. We want to prove that there is no way that $w_1 = w$. As stated before, in (0,b), we have $w_1 < w$. If there is a first point c such that $w_1(c) = w(c)$, then $y_1(c) < y(c)$: For at first point b of crossing, $y_1(b) = y(b)$ and $y'_1(b) < y'(b)$ so that $w_1(b) < w(b)$ and at second point d of crossing (if any), we have $y_1(d) = y(d)$ and $y'_1(d) > y'(d)$ so that $w_1(d) > w(d)$. In between, there is a point c with $w_1(c) = w(c)$.

Now, by Theorem 1,

$$G_{y_1}(c) = G_y(c) \left(\frac{y_1(\xi)}{y(\xi)}\right)^{\gamma+1}, \quad 0 < \xi < c$$
$$> G_y(c) \left(\frac{y_1(c)}{y(c)}\right)^{\gamma+1},$$

because $\frac{y_1}{y}$ is decreasing in (0,c) or equivalently $w_1 < w$ there. Hence

$$(k^{-1})^{\gamma+1}G_y(c) > G_{y_1}(c), \quad k = \frac{y_1(c)}{y(c)} < 1.$$

From Pohozaev identity for y and y_1 , evaluated at c, we have

$$(13) (k^{-1})^{\gamma+1} [cy_1'^2(c) - y_1(c)y_1'(c)] > cy'^2(c) - y(c)y'(c).$$

At c, $w_1(c) = w(c)$ implies $\frac{y_1'(c)}{y_1(c)} = \frac{y'(c)}{y(c)}$. Or, $\frac{y_1(c)}{y(c)} = \frac{y_1'(c)}{y(c)} = k$. Therefore (13) leads to $[cy'^2(c) - y(c)y'(c)] > k^{\gamma-1}[cy'^2(c) - y(c)y'(c)]$.

That is not the case because k < 1 and $cy'^2(c) - y(c)y'(c)$ is always negative. (It is well known y'(x) > 0, 0 < xy'(x) < y(x)) The proof is completed.

5. The main uniqueness theorem.

Theorem 3. Assume that there is a positive solution z of (1) with z(0) = 0 and $G_z(x) > 0$. Also assume that $\frac{\gamma+3}{2} + \frac{xg'(x)}{g(x)}$ is continuous and has only finite number of zeros. Then (1) has at most one positive solution y with y(0) = 0 and tending to a positive constant at infinity.

Proof. Assume there are two positive solution y and y_1 as stated. We may assume $y_1'(0) > y'(0)$. Hence

(14)
$$\left(\frac{y_1}{y}\right)'(x) = \frac{y_1'(x)y(x) - y_1(x)y'(x)}{y^2(x)} < 0$$
, (by Theorem 2)

And it is well known (by (11)) that there is a point a such that $y_1(a) = y(a)$.

Hence $\lim_{x\to\infty} y_1'(x) = 0 = \lim_{x\to\infty} y'(x)$ and of course $\lim_{x\to\infty} y_1(x) < \lim_{x\to\infty} y(x)$. Also, it is clear that $G_y(x) > 0$ by generalized mean value theorem applied to z and y.

Let b be the last zero of Q(x), then

(15)
$$G_{y_1}(x) - G_{y_1}(b) = \int_b^x Q(t)g(t)y_1^{\gamma+1}(t)dt,$$

(16)
$$G_y(x) - G_y(b) = \int_b^x Q(t)g(t)y^{\gamma+1}(t)dt, \quad b < x < \infty$$

(17)
$$\frac{G_{y_1}(b)}{G_y(b)} \equiv k = \left(\frac{y_1}{y}(\xi)\right)^{\gamma+1}, \quad 0 < \xi < b \text{ (Theorem 1)}$$
$$> \left(\frac{y_1}{y}(t)\right)^{\gamma+1}, \quad t \ge b. \text{ (Theorem 2)}$$

Consider $(15) - k \times (16)$ and letting $x \to \infty$, then the left hand side tends to zero because $0 < xy'(x) < y(x), 0 < xy'_1(x) < y_1(x)$ and it is well known that xg(x) is integrable (Atkinson Theorem). Now, $y_1^{\gamma+1}(t) < ky^{\gamma+1}(t), t \ge b$, so that the integrand of right hand side of $(15) - k \times (16)$ is everywhere positive (or everywhere negative) and contradiction follows. Therefore the theorem is proved.

Remark. For positive solution z with z(0) = 0 and tending to a positive constant at infinity, the condition $G_z(x) > 0$ is satisfied if Q(x) > 0

everywhere or Q(x) is positive at beginning and across zero only at once. (cf. The right hand side of Pohozeav identity)

6. Finite interval $[\alpha, \beta]$. On $[\alpha, \beta]$, with $\alpha \geq 0$, we also assume $\frac{\gamma+3}{2} + \frac{sg'}{g}$ is continuous and has only finite number of zeros. The existence of a positive solution of (1) with $y(\alpha) = 0$, $y'(\beta) = 0$ is asserted in [4] for $\alpha > 0$. For $\alpha = 0$, of course we need some integrable condition on g. cf. [1].

It is also true that for two such solutions y and y_1 , there is a point a in (α, β) with $y(a) = y_1(a)$. The decreasing of $\frac{y_1(x)}{y(x)}$ is proved in the same way as before under the condition that $y'_1(0) > y'(0)$ and that there is positive solution z with z(0) = 0 and $G_z(x) > 0$.

Theorem 4. In $[\alpha, \beta]$, we assume (1) has a positive solution z with $z(\alpha) = 0$, $G_z(x) > 0$ and Q has only finite number of zeros. Then (1) has at most one positive solution satisfying $y(\alpha) = 0$, $y'(\beta) = 0$.

Proof. Assume there are two such solutions y and y_1 , then as before $G_y(x) > 0$ and also $\frac{y_1}{y}$ is decreasing. Using Pohozaev identities (15) (16) as before at b, where b is the last zero of Q if $Q(\beta) \neq 0$ or the zero prior to the last if $Q(\beta) = 0$. Now, $k \equiv (\frac{y_1}{y})^{\gamma+1}(b) > (\frac{y_1}{y})^{\gamma+1}(t) > (\frac{y_1}{y})^{\gamma+1}(\beta) \equiv m$, $b < t < \beta$. When Q(t) < 0 in (b, β) , we consider (15) $-k \times (16)$, evaluated at β . When Q(t) > 0 in (b, β) , we consider (15) $-m \times (16)$, also evaluated at β . In both cases, the left hand side is negative, while the right hand side is positive. The contradictions proved the theorem.

Corollary 5. (Moroney) If g'(x) > 0 everywhere then uniqueness follows.

Proof. For then $Q(x) = \frac{\gamma+3}{2} + \frac{xg'(x)}{g(x)} > 0$ and $b = \alpha$ in the proof of theorem 4. Notice that in this case $G_y(x) > 0$ for positive solution y. The Remark following theorem 3 is still hold in this finite interval case.

Remark. Moroney theorem can be eased to Q(x) > 0.

Remark. When $Q(x)\equiv 0$, the theorem is still hold. For $G_y(x)\equiv 0\equiv G_{y_1}(x)$, when evaluated at β , leads to $y(\beta)=y_1(\beta)$. Adding to the

condition $y'(\beta) = y'_1(\beta) = 0$, the backward initial value problem implies the uniqueness.

7. Examples.

(a) In [2], the equation considered is

(18)
$$y'' + (x\operatorname{csch}^{2}(x))^{2}y^{3} = 0$$
$$\frac{\gamma + 3}{2} + \frac{xg'}{g} = 3 + 2[1 - 2x\coth x].$$

Notice that $1 - 2x \coth x < 0$ and is actually decreasing to $-\infty$. Also, the existence of a positive solution tending to a positive constant is asserted [2] or can be inferred from [1]. So that the Remark of Theorem 3 applied to this case and Uniqueness hold.

(b) In [8], the Matukuma equation was considered,

(19)
$$\Delta u + \frac{1}{1+r^2} u^{\gamma} = 0, \quad 1 < \gamma < \frac{n+2}{n-2}.$$

For radial solution u(r) = u(|x|), this reduces to

(20)
$$u_{rr} + \frac{n-1}{r}u_r + \frac{1}{1+r^2}u^{\gamma} = 0, \quad r > 0.$$

Write y(s) = su(r), $r = s^{\frac{1}{n-2}}$, then

(21)
$$y'' + g(s)y^{\gamma}(s) = 0, \quad g(s) = \frac{1}{(n-2)^2} \frac{\frac{r^2}{1+r^2}}{s^{1+\gamma}}.$$

So, $\frac{\gamma+3}{2} + \frac{sg'}{g} = \frac{1-\gamma}{2} + \frac{2}{(n-2)(1+r^2)}$, and Q(0) > 0 because $\gamma < \frac{n+2}{n-2}$. Also $Q(\infty) < 0$ because $\gamma > 1$. The existence of a positive solution tending to a positive constant can be inferred from [1]. Hence the Remark of Theorem 3 applies to this case too. (The decreasing of Q is obvious.)

(c) For the semi-linear elliptic equation

(22)
$$\Delta u + u^{\frac{n+2}{n-2}} = 0,$$

we have infinite positive solutions tending to zero [7]. Or,

(23)
$$y'' + g(s)y^{\frac{n+2}{n-2}} = 0, \quad g(s) = \frac{1}{s^{2+\frac{2}{n-2}}},$$

has infinite many positive solution tending to positive constants. (with 0 initials) In this case, we have $\frac{\gamma+3}{2} + \frac{sg'}{g} \equiv 0$ and the condition of theorem 3 is not fulfilled.

References

- 1. Chiu-chun Chang, On the existence of positive decaying solution of semi-linear elliptic equation in \mathbb{R}^n , Chinese J. of Math. 17(1) (1989), 62-76.
- 2. A. Das and C. V. Coffman, A class of eigenvalues of the fine-structure costant and internal energy obtained from a class of exact solutions of combined Klein-Gordon-Maxwell-Einstein field equations, J. of Math. Physics 8 (1967), 1720-1735.
- 3. Man Kam Kwong, On the Kolodner-Coffman method for the uniqueness problem of Emden-Fowler BVP, J. of Applied Math. and Physics, 41(1) (1990), 79-104.
- 4. Richard A. Moore and Zeev Nehari, Nonoscillation theorems for a class of non-linear differential equations, Trans. A. M. S., 93 (1959), 30-52.
- 5. Zeev Nehari, On a class of nonlinear second order differential equations, Trans. A. M. S., 95 (1960), 101-123.
- 6. Zeev Nehari, A nonlinear oscillation problem, J. of differential equations, 5 (1969), 452-460.
- 7. Wei-Ming Ni, Some aspects of semi-linear elliptic equations, National Tsin Hua Univ., Hsinchu, Taiwan, 1987.
- 8. Wei-Ming Ni and Shoji Yotsutani, Semi-linear elliptic equations of Matukuma type and related topics, Japan J. Appl. Math. 5 (1988), 1-32.

Department of Mathematics, National Taiwan University, Taipei, Taiwan Department of Electronic Engineering, Lien-Ho Technology College, Miao Li, Taiwan