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Abstract. It is shown that for y" + g(z)y"(z) =0, v >
1, g(z) > 0, there is at most one positive C' solution y with
y(0) = 0 and tending to a positive constant at infinity, under the
condition that 1'%'3 + %LI has only finite number of zeros and

there is a positive solution with positive Pohozaev function.

1. Introduction. In this paper, we are concerned about the unique-

ness of positive C’ solutions of the non-linear ordinary differential equation
(1) y"(z) + g(z)y"(z) =0, 0<z < oo,

with (0) = 0 and lim; o, y(z) a positive constant; where g(z) is positive
continuous and v > 1.
The discussion below will cover the case in finite interval [a, 8], with

0 < a < B and boundary conditions
(2) y(a) =0, ¥'(B)=0.

Notice that in this case, there were already many articles concerned
about the existence and uniqueness of positive solution. [1] [2] [3] [4] [5]-
Essentially, the uniqueness problem is only solved partially.

For semi-linear elliptic equations of the form
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(3) Au+p(lz))u? =0, z€R", n>3andy>1,

one interests in the radially symmetric solutions u(r) = u(|z|), which satis-

fies the 6rdinary differential equation [7] [8]

-1
(4) w' o+ By + p(r)u? = 0.

with the change of variables s = r™~2, y(s) = su(r(s)), the equation reduces
to

2
) '(6) + g oy (6) =0,

that is, of the form (1) with g(s) = m)—z-%:—)
~ The uniqueness of positive solutions of order O(r?~™) (a ground state)

is of great interests and is included in the problem of equation (1).
2. A Pohozaev identity. The Pohozaev identity for solutions of (4)
is [§]

n—2

(6)

)+ ) + )
/ m - —)P(a) (AR 7j_—1ap'(a)u(7+1)}a”'lda

Equivalently G(s), the Pohozaev function of y is equal to

M G =y (s -yl (o) + T zs9(a)y" 2 (5)
= 711/ (tg(g) + ) (£)y" 1 (t)dt
= [" Qoo o

we mention that this function also appeared in [6] for solutions of (1). We
assume that Q(¢) is continuous throughout the whole interval considered

and has only a finite number of zeros.
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3. A generalized mean value theorem.

Theorem 1. Let y be a fized positive solution of (1) with Gy(z) > 0

’

and y1 another (arbitrary) solution of (1), then

(8) Gy (z) _ (g;

Y+1
Gy(z) y) (&), some & with0 < € < .

Proof. The proof is similar to that of Cauchy Mean Value Theorem in

calculus. In fact, let

Q A0 = 6,0~ 226,

then H(z) = H(0) = 0. At extrema (say maximum) £, 0 < £ < z, we have

H(+h)~H(E) <0, small h>0

<0, h < 0
This implies
1 [eh 1 Gy (§+ 1) — Gy (6)
10 [ Qe = Tt TS
< Gy, (2) . Gy(§+h) - Gy(f) '
T Gy(=) h

T E+h
=——§y*(;)) : [ ewotoyar

for h > 0 and similarly for » < 0 (with >). Then equality (8) follows by
L’Hopital Rule.

4. The Sturm-Picone like theorem for nonlinear equation (1).
Assume that y is a fixed positive solution of (1), y¥;, another solution with
¥1(0) > 4'(0), y1 stays positive in (0,a) and y;(z) > y(z) in (0,b), so that
b < a. We have yjy — 11y’ <0 in (0,b) because

(11) | Wiy —ny')(z) = /03c y1ygly” — yi]de.

Write



86 CHIU-CHUN CHANG AND CHIU-YANG CHANG [June

_ zy(2) _ zy'(x)

2

yi(z)’

then wy < w in (0,b).

Theorem 2. y, y; as above. We further assume Gy(z) > 0, then we
have wy < w in (0,a). That is, as long as y;, stays positive, then % is

decreasing.

Proof. We want to prove that there is no way that wy = w. As stated
before, in (0,b), we have w; < w. If there is a first point ¢ such that
wi(c) = w(c), then y1(c) < y(c): For at first point b of crdssing, y1(b) = y(b)
and y1(b) < y'(b) so that wy(b) < w(b) and at second point d of crossing
(if any), we have y1(d) = y(d) and y}(d) > y'(d) so that w;(d) > w(d). In
between, there is a point ¢ with w;(c) = w(c).

Now, by Theorem 1,

Gy, c) = Gy(c)("g((f)))”“, 0<é<e

> Gy(c) (?;/1((5) )7+1a

because % is decreasing in (0, c) or equivalently w; < w there. Hence

(k"l)""'le(c) > Gy, (c), k= 11(e) <1l

y(c)

From Pohozaev identity for y and y;, evaluated at ¢, we have

(13) (=1 eyh *(c) — y1(5 (O] > ey’ (e) — y(e)y' (©).

At ¢, wi(c) = w(c) implies %—’;—% = ZI((CC)). Or, yyl(—(:)) = %—((5)—) = k. There-
fore (13) leads to [ey’(e) — y(e)y' (e)] > K7~ [ey'(¢) — y()y'(0)].

That is not the case because k < 1 and cy'?(c) — y(c)y'(c) is always
ﬁegative. (It is well known ¥'(z) > 0, 0°< zy'(z) < y(z)) The proof is
completed.
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5. The main uniqueness theorem.

Theorem 3. Assume that there is a positive solution z of (1) with
2(0) = 0 and G,(x) > 0. Also assume that 1j2'_§ + —%%l is continuous and
has only finite number of zeros. Then (1) has at most one positive solution

y with y(0) = 0 and tending to a positive constant at infinity.

Proof. Assume there are two positive solution y and y; as stated. We

may assume y3(0) > y'(0). Hence

(14) (l;_l)'(m) _ y’l(m)y(w;;( j/)l(-’lz‘)y'(x)

And it is well known (by (11)) that there is a point a such that y;(a) = y(a).

<0, (by Theorem 2)

Hence limg o0 ¥} (z) = 0 = lim,_, . ¥’ (z) and of course lim, . y1(z) <
lim, 00 y(x). Also, it is clear that Gy(x) > 0 by generalized mean value
theorem applied to z and y.

Let b be the last zero of Q(z), then

(15) G(@) — Gun(®) = [ Q)T O

1) G@ -G = [ QugyTOE b<z<o
b

17 C;yl((:)) =k= (%(g)) 7+1, 0 < & < b (Theorem 1)

+1
> (2(:‘.))’y , t>b. (Theorem 2)
Y

Consider (15) —k x (16) and letting x — oo, then the left hand side tends to
zero because 0 < zy'(z) < y(x), 0 < zy}(z) < y1(x) and it is well known that
zg(x) is integrable (Atkinson Theorem). Now, Y7 (E) < ky'ti(2), t > b, s0
that the integrand of right hand side of (15) — k x (16) is everywhere positive
(or everywhere negative) and contradiction follows. Therefore the theorem

is proved.

Remark. For positive solution z with z(0) = 0 and tending to a

positive constant at infinity, the condition G.(z) > 0 is satisfied if Q(z) > 0
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everywhere or Q(z) is positive at beginning and across zero only at once.

(cf. The right hand side of Pohozeav identity)

6. Finite interval [o,8]. On [o,f], with & > 0, we also assume
1—'5—3 + ig—/ is continuous and has only finite number of zeros. The existence
of a positive solution of (1) with y(a) = 0, 3'(8) = 0 is asserted in [4] for
@ > 0. For a =0, of course we need some integrable condition on g. cf. [1].

It is also true that for two such solutions y and yy, there is a point a in
(a, B) with y(a) = y1(a). The decreasing of %’—%Z is proved in the same way
as before under the condition that y{(0) > 3/(0) and that there is positive
solution z with z(0) = 0 and G,(z) > 0.

Theorem 4. In [a, ], we assume (1) has a positive solution z with
z(a) = 0, G.(z) > 0 and Q has only finite number of zeros. Then (1) has
at most one positive solution satisfying y(a) =0, y'(B) = 0.

Proof. Assume there are two such solutions y and y;, then as before
Gy(z) > 0 and also . is decreasing. Using Pohozaev identities (15) (16) as
before at b, where b is the last zero of Q if Q(8) # 0 or the zero prior to
the last if Q(8) = 0. Now, k = (£)7+1(3) > (L)) > (L)*(8) = m,
b<t<pB. When Q(t) < 01in (b, B), we consider (15) — k x (16), evaluated
at 5. When Q(t) > 0 in (b, 8), we consider (15) — m x (16), also evaluated
at (. In both cases, the left hand side is negative, while the right hand side

is positive. The contradictions proved the theorem.

Corollary 5. (Moroney) If ¢'(x) > 0 everywhere then uniqueness fol-
lows.

Proof. For then Q(z) = 22 + 23('_1(:)12 > 0 and b = « in the proof of
theorem 4. Notice that in this case Gy(z) > 0 for positive solution y. The

Remark following theorem 3 is still hold in this finite interval case.
Remark. Moroney theorem can be eased to Q(x) > 0.

Remark. When Q(z) = 0, the theorem is still hold. For Gy(z) =
0 = Gy, (z), when evaluated at 3, leads to y(8) = y1(B). Adding to the
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condition y'(8) = y1(8) = 0, the backward initial value problem implies the
uniqueness.

7. Examples.

(a) In [2], the equation considered is

(18) y" + (zesch?(z))%y® =0

3
%_ + Eg’; =3+ 2[1 — 2z cothz].

Notice that 1 — 2z cothz < 0-and is actually decreasing to —oo. Also, the
existence of a positive solution tending to a positive constant is asserted [2]
or can be inferred from [1]. So that the Remark of Theorem 3 applied to

this case and Uniqueness hold.
(b) In [8], the Matukuma equation was considered,

(19) - Au +

For radial solution u(r) = u(|z|), this reduces to

_1
(20) Upr + —

Up +

1_!_7‘2u"'=0, r > 0.

Write y(s) = su(r), r = s757, then

1'2

T4r2
(21) y" +9(s)y(s) =0, g(s) = 2)2 o
So, % + sg =1+ m’ and Q(0) > 0 because v < 22, Also

"~ Q(o0) < 0 because v > 1. The existence of a positive solution tendmg to a
positive constant can be inferred from [1]. Hence the Remark of Theorem 3

applies to this case too. (The decreasing of Q is obvious.)
(c) For the semi-linear elliptic equation
(22) Au+uitE =0,

we have infinite positive solutions tending to zero [7]. Or,
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1

n42
(23) v +9(slym2 =0, g(s) = 57,
S n—2

has infinite many positive solution tending to positive constants. (with 0
initials) In this case, we have "—‘;3- + i;’—l = 0 and the condition of theorem 3
is not fulfilled.
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