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Abstract. This paper is concerned with the study of oscil-
latory behavior of solutions of the nonlinear difference equation-

ATu(n) = f(n,un),..., Am_lu(n)), neN,m>2,

where Afu(n) = AA " u(n))(i = 1,...,m), Alu(n) = u(n), f :
N X R™ — R.

1. Introduction. In this paper we are concerned with the oscillatory

behavior of solution of the nonlinear difference equation
(1) A™y(n) = f(n,u(n),...,A™ tu(n)), neN,m>2,

where N = {1,2,...}, A is the forward difference operator i.e. Au(n) =
u(n + 1) — u(n) and A'u(n) = A(A*u(n)), i = 1,...,m, Au(n) = u(n);
f: N xR™ — R where R is the set of real numbers. Finally, R, = (0, 00),
(r)® =r(r—1)--- (r—k+1) is the usual factorial notation with (r)(® = 1.
It is assumed that the function f satisfies on the set &' x R™ either condition
(a) f(n,xi,...,xm)xl <0,
or the condition
() fn,z1,...,2m)z1 > 0.

By a solution of (1) we mean any function u : N' — R which satisfies

(1) and such that sup, >y |u(n)| > 0 for any k € N. A nontrivial solution
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u is called oscillatory, if for every k € N there exists n > k such that
u(n)u(n + 1) < 0. Otherwise it is called nonoscillatory.

The Eq. (1) has property A if each solution of (1) is oscillatory when m
is even and is either oscillatory or tends to zero monotonically as n — 0o
when m is odd.

The Eq. (1) has property B if each solution of (1) is either oscillatory
or tending monotonocally to infinity or to zero as n — co when m is even
and is either oscillatory or monotonically tending to infinity as n — oo
when m is odd.

Recently some results concerning the oscillatory and asymptotic behav-
ior of solutions of difference equations of higher order have been established
in papers [1-3, 7-9].

The purpose of this paper is to present general oscillation theorems that
give sufficient conditions under which the Eq. (1) has property A and B.
The obtained results are the discrete analogues of the well-known oscillation

theorems for differential equations due to Kiguradze [5], [6, p. 288].

2. Lemmas. To obtain our results we need the following discrete

analogue of well-known lemmas due to Kiguradze (cf. [5], [6, pp. 280-290]).
Lemma 1. Letu: N — R— {0}, m e N,m > 2 and
(2)  u(n)AMu(n) <0, n>ng

with w, A™u of constant sign for n > ng and A™u(n) is not identically zero
for all large n. Then there exist a Tig > ng and an integer I, 0 < I < m with

m + 1 odd such that for n > g

(3) u(n)A'u(n) >0 for i=0,1,...,1,
(-1 u(n)Afu(n) >0 for i=1+1,...,m—1.

If1> 0, then for n > ny >7g + p, where p € {0,1,2,...}

Al—7 . 2! (i _ '
(4) A u(n +j —p)| > F(n —ny 4+ YDA y(n + 4 — )]
' G=1,...,I, i=0,1,...,5—1)
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and
(5) lu(n+m-p)| = IU(n1+l~1—p)I

Z (k — ny +m — 1) DA™y (k).

knl

(m—l

Lemma 2. If the inequality (2) is replaced by
(6) u(n)A™u(n) >0, n>ng,
then there exists a Mg > ng such that for n > g
(7 w(n)Alu(n) >0 for i=1,...,m~—1,

or there exists an integer 1,0 < 1 < m — 2 with m + 1 even such that the

inequalities (3) hold. If1 > 0, then the inequalities (4) and (5) hold.

Proof of Lemma 1 and Lemma 2. For a proof of the inequalities (3)
and (7) we refer to [3] or [4]. _

Now, let [ > 0 and n > n; > g + p, where p € {0,1,2, .. .}. We prove
that fori=1,...,l and alln > ny

(8) iNTun+i—p) > (n—n1+ DA T y(n+ 4 —p—1).

Since Alu(n) is decreasing, we see that

A ly(n—p+1)— A u(ng —p) = z”: Alu(k—p) > Al(n—p)(n—ny +1)

k='n1

and thus (8) is true for i = 1.
Now assume that (8) holds for i — 1(i = 2,...,1) i.e.

G—-1A"Fy(n+i—1-p) > (n—ni+i—1)A™u(n+i—-2-p), n > n.

Summing the above inequality from n; to n yields

(i—1) Z A Fly(k4i—1—-p) > Y (k—m+i— 1A Pu(k+i—2-p).

k=ni k=n,
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According to summation by parts formula we may write-

(1—1) [Al'iu(n +i—p)— A" ulng +i—1 - p)]
>(n —ng + DA y(n 44— 1 —p) — (6 — DA ly(ng +i — 2 — p)

= > ATk 4+i—-1-p).

k=ny
Hence
i[Ai"lu(n +i-p)— A u(ng +i—1- P)]
>(n—ny+ AT u(n+i—1-p) = (i - DA u(ny +i -2 -p),
which yields
A u(n i —p) 2 (n = ny + AT u(n 4+ — 1 - p)
+i[Al—iu(n1 +i—1—p)— Ay (ng +i—2 “1")]
+ A Fy(ng +i -2 — p),
and so
il tu(n 44— p) > (n—ny + DA u(n +i— 1 —p).

Thus, by induction, the inequality (8) holds for ¢ = 1,...,l. From (8) we

conclude that
1
u(n+1—-p)> l —(n—ny + DO A(n - p),

u(n+1-p) > l—;(n =ny + )AL Dy (n 44— p),
i=0,1,...,1—1,

!

Au(n+1-1-p)2> R ny +1 = DA (i - p),

2_0,1,...,1-—2,

and consequently we have
Au(n+j —p) > Fn—m + )0 A y(n +i — p), 0>y,

j=1,.,L, i=0,1,....j 1, pe {0,1,2,.. .},

i.e. the inequality (4).
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From (4) for j =1 —1, i = 0 we have

1
Au(n+1—1—-p)> m(n —ny +1-1)DA(n —p), n>ng.
Summing the above inequality from n; to n +m — [ yields

un+m—p)—ulng +1—1—p)
1 n4+m—I

Zm Z (k —nq +1— DDAl (k).

k:nl

Using the summation by parts formula m — [ times to the right-hand side
of (9) we obtain

1 n+-m—1

i Z (k—ny +1— 1D Aly(k)

.._'n,l

m-— 1( 1 m—Il—j ) )
LA™+ 5)(n - ng + m)m9)

o (m—g)
D™ & A (m—1)
+(m_1)' ZA EYk—ny+m—1) .

..-'n,l

Thus (9) and (3) imply that

wn+m—p)—u(ny+1—1-p)

Lﬁ% > Amuk)(k - +m = 1)(m-1),

_'n,l

==
which means that (5) is true. This completes the proof.

3. Main Results.

Theorem. Suppose the following conditions hold
0 condition (a) [condition (b)],
2° for every ¢ > 0 there ezists a function ¢. : N x Ry — R, where

©c(n,x) is continuous and nondecreasing with respect to x € Ry such
that

(10 [f (21, Zm)] 2 @e(n, |21]),
for
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(D.) neN,

1
p <zl <en™ ) (z,...,%,) € R™Y,

3% for an ng € N the difference equation

1

(n—ng+m—1)™ Ve (n,z(n)), n>ng

has no eventually positive solution.

Then Eq. (1) has property A [property BJ.

Proof. First, we show that for every ¢ >0 and 7 > 0

o0

Z we(n,mm™ 1) = 0.

n

Suppose that it is not true. Choose ng > m so large that

oo

3 ek, nk™ ) < -g-

k=no

Consider the solution z of Eq. (11) with initial condition

(12) 2(ng — 1) = g

and the continuous function defined as follows

t= = Gty | e 060 30)(p — g +m = 1)
MO =Y el +1,8)(k = no +m)™V], k> no,
t— 32~ @c(ng,t), k=mng—1.
We note that

hlz(no —1)] = z(no — 1) — g ~ @e(ng, z(ng — 1)) <0,

h[nng‘_l] = nng’_l — g — <pc(n0,77nm_1) > nngl_l —n>0.

Hence there exists vo € (Z,7mg'~") such that h(vg) = 0 ie. vy = 7+
@wc(no,vo) that is vg = z(np) and z(ng) < nngn_l »
Now, assume that a:(n) is defined for n = ng — 1,ng, ..., k, where k €

{no —1,n0,...} and z(n) < gn™"" for n = ng — 1,ne,..., k. We see that
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1 .

k
m[ Z ro(pax(p))(p —ng+m— 1)(m—1)

p=ng

hla(k)] =a(k) - 7 —

+ ek +1,2(k))(k = no +m)™ D]

From Eq. (11) we get

k
z(k) = z(no — 1) + @{—1—), > @e(p,z(p))(p — mo +m — 1)),

p=no
hence
1
h = — c _ (m-1) .
[z(%)] oY (k+1,z(k))(k — no + m) <0
Next we have
h[nkm—l]
n 1 k+1
> km—l o m—1 _ (m-—1)
> 7 2 " 1) p;o @c(P, 1™ ) (p — 0 + M + 1)
> km—l n (k —np + m)(m—l) Iil ( m—l)
2N ) (m —1)! ~ Pe\p, NP
_no
m— n m—ln
>pkml -2k - > 0.
=1 2 2~

Therefore there exists vy € <x(k),’nkm‘1) such that h(vg) = 0 i.e.

k

n 1 -
P T m—1n p;o @c(p, (p))(p — o +m —1)
+ ;@c(k + 1,110)(k +1—ng+m-— 1)(m—1)
(m — 1)!

Thus the solution x of Eq. (11) is defined for n = k+1 and z(k+1) = v <
nk™~1. Hence, by induction, the solution z of (11) with initial condition
(12) is defined for all n > ng — 1 and /2 < z(n) < nn™!. But this
contradicts assumption 3°.

Similarly as above one can show that for every ¢ > 0 and n > 0

(o]

(13) an_l%(naﬂ) = 00.

™
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Now, suppose that theorem is not true. Let uw be a nonoscillatory
solution of (1) and assume that u(n) > 0 for n > ng. Then from Lemma 1
it follows that one of the following two cases holds:

(i) m is odd and the inequalities (3) hold for [ =0,
(ii) the inequalities (3) hold for I > 0 with m +{ odd.

Case (i). We show that lim, ¢ u(n) = 0.

Suppose that lim,_.oo w(n) = v > 0. Then u(n) > L for n > ng. From Eq.
(1) and (10) we have ’

—A"u(n) > pc(n,u(n)) > p.(n,1/c), n > ne.

Using the equality [3]

m—1 _1\j n—n . ) )
ung) = 3 ST DT

(—-1)m = (m—1) Am
.;_mZ(k—no—i—m—l) A™u(k),

k=ng
we see, by (3), that
1 n—1
u(ng) > _m ;—Zno(k —ng+m— 1)(m_1)Am“(k)a
and this implies
. n—-1 .
u(ng) > C kgo(k —no +m—1)" Do (k,1/c), n > no,

which contradicts (13).
Case (ii). Let I > 1. Thus u is increasing. From (1), by the assump-

tions. We have

—A"u(n) 2 @o(n,u(n)), n>ng.

Putting p =m in (5) we get for n > ny > 7g +m -

+ Wél—)‘ Z (]C —-ny+m— 1)(m_1)@c(ka u(k))

=ni

u(n) > u(ng —m+1-1)
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Consider the solution z of Eq. (11) with initial condition z(n; — 1) =
u(ny —m+1—1) > 0 and assume that z is defined for n = n; —1, nq,... kK,
ke {n;—1,n1...} and z(n) <u(n) for n =ny — 1,nq,...,k.

For the function defined as follows

’

t=u(m—m+1 = 1D)= 2y [ 3 0elp,20) (p—ma +m—1)D

p=n1i
AE) =1 +pelk+1,8)(k —ni +m)™ D], k2 my,
t—u(n1 —m+l-1)—-<pc(n1,t), ]CZTL]_ —1, .

\

in exactly the same way as the previous one we can show that
hlz(k)] <0, hfu(k+1)] >0.

Hence there exists vy € (z(k), u(k +1)) such thaﬁ h(v9) = 0 i.e. the solution
z of Eq. (11) is defined for n = k+ 1 and z(k + 1) = vo < u(k + 1).
Thus by induction, the solution z of (11) with initial condition z(ng —1) =
u(ny — m + [ — 1) is defined for all n > n; — 1 and z(n) < u(n) which

contradicts assumption 3°.

Proof of property B.

Let u be a nonoscillatory solution of (1) and let u(n) > 0 for n > ny.
Then, by Lemma 2, it follows that one of the following three cases holds:
(i) m is even and the inequalities (3) hold for I =0,
(ii) the inequality (3) hold for [ > 0 with m + 1 even,
(iii) the inequalities (7) hold.

In the cases (i) and (ii) the proofs are the same as the previous one.

Case (iii). We show that lim, . A*u(n) = oo for i = 0,1,...,m — 1.
By (7), there exists 7 > 0 such that u(n) > nn™™%, n > ni. On the other
hand, it follows from (10) that

Amu(n) 2 (100(”7“‘(”)) > wc(n,ﬂnm_l), n2>mni.

This in turn implies
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n—1
A™hy(n) = A hu(n) 2 3 ek, k™) — 00 a3 m — oo,

k=n1

which gives our assertion. This complies the proof.

Corollary 1. Suppose that the following conditions hold
1° condition (a) [condition (b)),
20 for every ¢ > 0 there exist a nondecrcasing continuous function ¢, :

(0,00) — (0,00) and a. : N — R, such that

(14) [f(n, 21, - 2m)] 2 ac(n)pe(|71]) on (De)
and
(15) an—lac(n) = 00, /oo wfgs) < 0.

Then Eq. (1) has property A [property BJ.
Proof. Tt suffices to show that for any ng € N the equation

Az(n—1) = (m——l—_lﬁ(n —np+m — 1) Vg (n)p.(z(n))

does not have a positive solution for sufficiently large n. Suppose that this
equation has a positive solution for n > n; > ng. Then we have

Lo _\meU gy < EW) —a(n=1) T ds
(=Tt m = U a(n) = =2 S/m(n_l) ol

Summing the above inequality leads to a contradiction.

Corollary 2. Suppose there exists a function a : N — Ry such that
fn,z1,...,2m) sign z1 < —a(n)|zy|
[f(n’zl, s 7xm) Sigl’l 1 2 a(n)|$1|],

on N x R™ and there ezists a nondecreasing function w : N — (0, 00) such
that

oo

(16) > L < o0, imzoo.

nw(n) w(n)

Then Eq. (1) has property A [property B).
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Proof. Note, that the inequality (14) holds, where the functions

ac(n) = a(n)/w(n), @)= xw[(f)ml_l}

satisfy the assumption (15).

In fact, for 0 < z; < ecn™~! we have
a(n)
w(n)
< —a(mzw| ()],

f(n7x17" . 1-'17m) < —a(n)ml = —

z1w(n)

i.e. the inequality (14) and, by (16), we oltain

> actmynt = 3 2

/ww[(gﬁ=(m—1)/w%<

Thus the condition (15) is satisfied.

n™ ! = oo,
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