OSCILLATION OF SOLUTIONS OF HIGHER ORDER NONLINEAR DIFFERENCE EQUATIONS

BY

BLAZEJ SZMANDA

Abstract. This paper is concerned with the study of oscillatory behavior of solutions of the nonlinear difference equation

$$\Delta^m u(n) = f(n, u(n), \dots, \Delta^{m-1} u(n)), n \in \mathcal{N}, m \ge 2,$$
where $\Delta^i u(n) = \Delta(\Delta^{i-1} u(n))(i = 1, \dots, m), \ \Delta^0 u(n) = u(n), f :$

$$\mathcal{N} \times R^m \longrightarrow R.$$

1. Introduction. In this paper we are concerned with the oscillatory behavior of solution of the nonlinear difference equation

(1)
$$\Delta^m u(n) = f(n, u(n), \dots, \Delta^{m-1} u(n)), \quad n \in \mathcal{N}, m \ge 2,$$

where $\mathcal{N} = \{1, 2, \ldots\}$, Δ is the forward difference operator i.e. $\Delta u(n) = u(n+1) - u(n)$ and $\Delta^i u(n) = \Delta(\Delta^{i-1}u(n))$, $i = 1, \ldots, m$, $\Delta^0 u(n) = u(n)$; $f: \mathcal{N} \times \mathbb{R}^m \longrightarrow \mathbb{R}$ where \mathbb{R} is the set of real numbers. Finally, $\mathbb{R}_+ = \langle 0, \infty \rangle$, $(r)^{(k)} = r(r-1) \cdots (r-k+1)$ is the usual factorial notation with $(r)^{(0)} = 1$. It is assumed that the function f satisfies on the set $\mathcal{N} \times \mathbb{R}^m$ either condition (a) $f(n, x_1, \ldots, x_m) x_1 \leq 0$,

or the condition

(b) $f(n, x_1, \ldots, x_m)x_1 \ge 0$.

By a solution of (1) we mean any function $u: \mathcal{N} \longrightarrow R$ which satisfies

(1) and such that $\sup_{n\geq k}|u(n)|>0$ for any $k\in\mathcal{N}$. A nontrivial solution

Received by the editors January 29, 1996 and in revised form May 27, 1996. AMS subject classification(1996): 39A12.

Key Words and Phrases: Oscillation, nonoscillatory solution, nonlinear difference equations.

u is called oscillatory, if for every $k \in \mathcal{N}$ there exists $n \geq k$ such that $u(n)u(n+1) \leq 0$. Otherwise it is called nonoscillatory.

The Eq. (1) has property A if each solution of (1) is oscillatory when m is even and is either oscillatory or tends to zero monotonically as $n \longrightarrow \infty$ when m is odd.

The Eq. (1) has property B if each solution of (1) is either oscillatory or tending monotonocally to infinity or to zero as $n \longrightarrow \infty$ when m is even and is either oscillatory or monotonically tending to infinity as $n \longrightarrow \infty$ when m is odd.

Recently some results concerning the oscillatory and asymptotic behavior of solutions of difference equations of higher order have been established in papers [1-3, 7-9].

The purpose of this paper is to present general oscillation theorems that give sufficient conditions under which the Eq. (1) has property A and B. The obtained results are the discrete analogues of the well-known oscillation theorems for differential equations due to Kiguradze [5], [6, p. 288].

2. Lemmas. To obtain our results we need the following discrete analogue of well-known lemmas due to Kiguradze (cf. [5], [6, pp. 280-290]).

Lemma 1. Let
$$u: \mathcal{N} \longrightarrow R - \{0\}$$
, $m \in \mathcal{N}, m \geq 2$ and

(2)
$$u(n)\Delta^m u(n) \le 0, \quad n \ge n_0$$

with $u, \Delta^m u$ of constant sign for $n \geq n_0$ and $\Delta^m u(n)$ is not identically zero for all large n. Then there exist a $\overline{n_0} \geq n_0$ and an integer l, $0 \leq l \leq m$ with m+1 odd such that for $n \geq \overline{n_0}$

(3)
$$u(n)\Delta^{i}u(n) > 0 \quad for \quad i = 0, 1, \dots, l,$$

$$(-1)^{l+i}u(n)\Delta^{i}u(n) > 0 \quad for \quad i = l+1, \dots, m-1.$$

If l > 0, then for $n \ge n_1 \ge \overline{n_0} + p$, where $p \in \{0, 1, 2, \ldots\}$

(4)
$$|\Delta^{l-j}u(n+j-p)| \ge \frac{i!}{j!}(n-n_1+j)^{(j-i)}|\Delta^{l-i}u(n+i-p)|$$

$$(j=1,\ldots,l, \quad i=0,1,\ldots,j-1)$$

and

(5)
$$|u(n+m-p)| \ge |u(n_1+l-1-p)| + \frac{1}{(m-1)!} \sum_{k=n_1}^{n} (k-n_1+m-1)^{(m-1)} |\Delta^m u(k)|.$$

Lemma 2. If the inequality (2) is replaced by

(6)
$$u(n)\Delta^m u(n) \ge 0, \quad n \ge n_0,$$

then there exists a $\overline{n_0} \ge n_0$ such that for $n \ge \overline{n_0}$

(7)
$$u(n)\Delta^{i}u(n) > 0 \text{ for } i = 1, ..., m-1,$$

or there exists an integer $l, 0 \le l \le m-2$ with m+l even such that the inequalities (3) hold. If l > 0, then the inequalities (4) and (5) hold.

Proof of Lemma 1 and Lemma 2. For a proof of the inequalities (3) and (7) we refer to [3] or [4].

Now, let l > 0 and $n \ge n_1 \ge \overline{n_0} + p$, where $p \in \{0, 1, 2, ...\}$. We prove that for i = 1, ..., l and all $n \ge n_1$

(8)
$$i\Delta^{l-i}u(n+i-p) \ge (n-n_1+i)\Delta^{l-i+1}u(n+i-p-1).$$

Since $\Delta^l u(n)$ is decreasing, we see that

$$\Delta^{l-1}u(n-p+1) - \Delta^{l-1}u(n_1-p) = \sum_{k=n_1}^n \Delta^l u(k-p) \ge \Delta^l(n-p)(n-n_1+1)$$

and thus (8) is true for i = 1.

Now assume that (8) holds for i - 1 (i = 2, ..., l) i.e.

$$(i-1)\Delta^{l-i+1}u(n+i-1-p) \ge (n-n_1+i-1)\Delta^{l-i+2}u(n+i-2-p), \ n \ge n_1.$$

Summing the above inequality from n_1 to n yields

$$(i-1)\sum_{k=n_1}^n \Delta^{l-i+1}u(k+i-1-p) \ge \sum_{k=n_1}^n (k-n_1+i-1)\Delta^{l-i+2}u(k+i-2-p).$$

According to summation by parts formula we may write

$$(i-1)\Big[\Delta^{l-i}u(n+i-p)-\Delta^{l-i}u(n_1+i-1-p)\Big]$$

$$\geq (n-n_1+i)\Delta^{l-i+1}u(n+i-1-p)-(i-1)\Delta^{l-i+1}u(n_1+i-2-p)$$

$$-\sum_{k=n_1}^n \Delta^{l-i+1}u(k+i-1-p).$$

Hence

$$i \Big[\Delta^{i-1} u(n+i-p) - \Delta^{l-i} u(n_1+i-1-p) \Big]$$

$$\geq (n-n_1+i) \Delta^{l-i+1} u(n+i-1-p) - (i-1) \Delta^{l-i+1} u(n_1+i-2-p),$$

which yields

$$i\Delta^{l-i}u(n+i-p) \ge (n-n_1+i)\Delta^{l-i+1}u(n+i-1-p)$$
$$+i\Big[\Delta^{l-i}u(n_1+i-1-p) - \Delta^{l-i+1}u(n_1+i-2-p)\Big]$$
$$+\Delta^{l-i+1}u(n_1+i-2-p),$$

and so

$$i\Delta^{l-i}u(n+i-p) \ge (n-n_1+i)\Delta^{l-i+1}u(n+i-1-p).$$

Thus, by induction, the inequality (8) holds for i = 1, ..., l. From (8) we conclude that

$$u(n+1-p) \ge \frac{1}{l!}(n-n_1+l)^{(l)} \Delta^l u(n-p),$$

$$u(n+l-p) \ge \frac{i!}{l!}(n-n_1+l)^{(l-i)} \Delta^{(l-i)} u(n+i-p),$$

$$i = 0, 1, \dots, l-1,$$

$$\Delta u(n+l-1-p) \ge \frac{i!}{(l-1)!}(n-n_1+l-1)^{(l-1-i)} \Delta^{l-i} u(n+i-p),$$

$$i = 0, 1, \dots, l-2,$$

and consequently we have

$$\Delta^{l-j}u(n+j-p) \ge \frac{i!}{j!}(n-n_1+j)^{(j-i)}\Delta^{l-i}u(n+i-p), \ n \ge n_1,$$

$$j = 1, \dots, l, \ i = 0, 1, \dots, j-1, \ p \in \{0, 1, 2, \dots\},$$

i.e. the inequality (4).

From (4) for j = l - 1, i = 0 we have

$$\Delta u(n+l-1-p) \ge \frac{1}{(l-1)!}(n-n_1+l-1)^{(l-1)}\Delta^l u(n-p), \ n \ge n_1.$$

Summing the above inequality from n_1 to n+m-l yields

$$u(n+m-p) - u(n_1+l-1-p)$$

$$\geq \frac{1}{(l-1)!} \sum_{k=n_1}^{n+m-l} (k-n_1+l-1)^{(l-1)} \Delta^l u(k).$$

Using the summation by parts formula m-l times to the right-hand side of (9) we obtain

$$\frac{1}{(l-1)!} \sum_{k=n_1}^{n+m-l} (k-n_1+l-1)^{(l-1)} \Delta^l u(k)
= \sum_{j=1}^{m-1} \frac{(-1)^{m-l-j}}{(m-j)!} \Delta^{m-j} u(n+j) (n-n_1+m)^{(m-j)}
+ \frac{(-1)^{m-l}}{(m-1)!} \sum_{k=n_1}^{n} \Delta^m u(k) (k-n_1+m-1)^{(m-1)}.$$

Thus (9) and (3) imply that

$$u(n+m-p) - u(n_1+l-1-p)$$

$$\geq \frac{(-1)^{m-l}}{(m-1)!} \sum_{k=n_1}^{n} \Delta^m u(k)(k-n_1+m-1)^{(m-1)},$$

which means that (5) is true. This completes the proof.

3. Main Results.

Theorem. Suppose the following conditions hold

- 1º condition (a) [condition (b)],
- 20 for every c > 0 there exists a function $\varphi_c : \mathcal{N} \times R_+ \longrightarrow R_+$, where $\varphi_c(n,x)$ is continuous and nondecreasing with respect to $x \in R_+$ such that

$$|f(n,x_1,\ldots,x_m)| \geq \varphi_c(n,|x_1|),$$

for

$$(D_c)$$
 $n \in \mathcal{N}, \ \frac{1}{c} \le |x_1| \le cn^{m-1}, \ (x_2, \dots, x_m) \in \mathbb{R}^{m-1},$

 3^0 for an $n_0 \in \mathcal{N}$ the difference equation

(11)
$$\Delta x(n-1) = \frac{1}{(m-1)!}(n-n_0+m-1)^{(m-1)}\varphi_c(n,x(n)), \ n \ge n_0$$

has no eventually positive solution.

Then Eq. (1) has property A [property B].

Proof. First, we show that for every c > 0 and $\eta > 0$

$$\sum_{n}^{\infty} \varphi_c(n, \eta n^{m-1}) = \infty.$$

Suppose that it is not true. Choose $n_0 \ge m$ so large that

$$\sum_{k=n_0}^{\infty} \varphi_c(k, \eta k^{m-1}) < \frac{\eta}{2}.$$

Consider the solution x of Eq. (11) with initial condition

(12)
$$x(n_0 - 1) = \frac{\eta}{2},$$

and the continuous function defined as follows

$$h(t) = \begin{cases} t - \frac{\eta}{2} - \frac{1}{(m-1)!} \left[\sum_{p=n_0}^{k} \varphi_c(p, x(p))(p - n_0 + m - 1)^{(m-1)} + \varphi_c(k+1, t)(k - n_0 + m)^{(m-1)} \right], & k \ge n_0, \\ t - \frac{\eta}{2} - \varphi_c(n_0, t), & k = n_0 - 1. \end{cases}$$

We note that

$$h[x(n_0 - 1)] = x(n_0 - 1) - \frac{\eta}{2} - \varphi_c(n_0, x(n_0 - 1)) \le 0,$$

$$h\left[\eta n_0^{m-1}\right] = \eta n_0^{m-1} - \frac{\eta}{2} - \varphi_c(n_0, \eta n^{m-1}) > \eta n_0^{m-1} - \eta > 0.$$

Hence there exists $v_0 \in \left\langle \frac{\eta}{2}, \eta n_0^{m-1} \right\rangle$ such that $h(v_0) = 0$ i.e. $v_0 = \frac{\eta}{2} + \varphi_c(n_0, v_0)$ that is $v_0 = x(n_0)$ and $x(n_0) < \eta n_0^{m-1}$

Now, assume that x(n) is defined for $n = n_0 - 1, n_0, \ldots, k$, where $k \in \{n_0 - 1, n_0, \ldots\}$ and $x(n) < \eta n^{m-1}$ for $n = n_0 - 1, n_0, \ldots, k$. We see that

$$h[x(k)] = x(k) - \frac{\eta}{2} - \frac{1}{(m-1)!} \left[\sum_{p=n_0}^{k} \varphi_c(p, x(p))(p - n_0 + m - 1)^{(m-1)} + \varphi_c(k+1, x(k))(k - n_0 + m)^{(m-1)} \right].$$

From Eq. (11) we get

$$x(k) = x(n_0 - 1) + \frac{1}{(m-1)!} \sum_{p=n_0}^{k} \varphi_c(p, x(p)) (p - n_0 + m - 1)^{(m-1)},$$

hence

$$h[x(k)] = -\frac{1}{(m-1)!} \varphi_c(k+1, x(k))(k-n_0+m)^{(m-1)} \le 0.$$

Next we have

$$h\left[\eta k^{m-1}\right]$$

$$\geq \eta k^{m-1} - \frac{\eta}{2} - \frac{1}{(m-1)!} \sum_{p=n_0}^{k+1} \varphi_c(p, \eta p^{m-1})(p - n_0 + m + 1)^{(m-1)}$$

$$\geq \eta k^{m-1} - \frac{\eta}{2} - \frac{(k - n_0 + m)^{(m-1)}}{(m-1)!} \sum_{p=n_0}^{k+1} \varphi_c(p, \eta p^{m-1})$$

$$\geq \eta k^{m-1} - \frac{\eta}{2} - k^{m-1} \frac{\eta}{2} > 0.$$

Therefore there exists $v_0 \in \langle x(k), \eta k^{m-1} \rangle$ such that $h(v_0) = 0$ i.e.

$$v_0 = \frac{\eta}{2} + \frac{1}{(m-1)!} \sum_{p=n_0}^{k} \varphi_c(p, x(p)) (p - n_0 + m - 1)^{(m-1)} + \frac{1}{(m-1)!} \varphi_c(k+1, v_0) (k+1 - n_0 + m - 1)^{(m-1)}.$$

Thus the solution x of Eq. (11) is defined for n = k+1 and $x(k+1) = v_0 < \eta k^{m-1}$. Hence, by induction, the solution x of (11) with initial condition (12) is defined for all $n \geq n_0 - 1$ and $\eta/2 \leq x(n) < \eta n^{m-1}$. But this contradicts assumption 3^0 .

Similarly as above one can show that for every c>0 and $\eta>0$

(13)
$$\sum_{n=0}^{\infty} n^{m-1} \varphi_c(n, \eta) = \infty.$$

Now, suppose that theorem is not true. Let u be a nonoscillatory solution of (1) and assume that u(n) > 0 for $n \ge n_0$. Then from Lemma 1 it follows that one of the following two cases holds:

- (i) m is odd and the inequalities (3) hold for l = 0,
- (ii) the inequalities (3) hold for l > 0 with m + l odd.

Case (i). We show that $\lim_{n\to 0} u(n) = 0$.

Suppose that $\lim_{n\to\infty} u(n) = \gamma > 0$. Then $u(n) \geq \frac{1}{c}$ for $n \geq n_0$. From Eq.

(1) and (10) we have

$$-\Delta^m u(n) \ge \varphi_c(n, u(n)) \ge \varphi_c(n, 1/c), \ n \ge n_0.$$

Using the equality [3]

$$u(n_0) = \sum_{j=0}^{m-1} \frac{(-1)^j (n - n_0 + j - 1)^{(j)}}{j!} \Delta^j u(n) + \frac{(-1)^m}{(m-1)!} \sum_{k=n_0}^{n-1} (k - n_0 + m - 1)^{(m-1)} \Delta^m u(k),$$

we see, by (3), that

$$u(n_0) \ge -\frac{1}{(m-1)!} \sum_{k=n_0}^{n-1} (k - n_0 + m - 1)^{(m-1)} \Delta^m u(k),$$

and this implies

$$u(n_0) \ge \frac{1}{(m-1)!} \sum_{k=n_0}^{n-1} (k - n_0 + m - 1)^{(m-1)} \varphi_c(k, 1/c), \ n > n_0,$$

which contradicts (13).

Case (ii). Let $l \geq 1$. Thus u is increasing. From (1), by the assumptions. We have

$$-\Delta^m u(n) \ge \varphi_c(n, u(n)), \quad n \ge \overline{n_0}.$$

Putting p = m in (5) we get for $n \ge n_1 \ge \overline{n_0} + m$

$$u(n) \ge u(n_1 - m + l - 1) + \frac{1}{(m-1)!} \sum_{k=n_1}^{n} (k - n_1 + m - 1)^{(m-1)} \varphi_c(k, u(k)).$$

Consider the solution x of Eq. (11) with initial condition $x(n_1 - 1) = u(n_1 - m + l - 1) > 0$ and assume that x is defined for $n = n_1 - 1, n_1, \ldots, k$, $k \in \{n_1 - 1, n_1, \ldots\}$ and $x(n) \leq u(n)$ for $n = n_1 - 1, n_1, \ldots, k$.

For the function defined as follows

$$h(t) = \begin{cases} t - u(n_1 - m + l - 1) - \frac{1}{(m-1)!} \left[\sum_{p=n_1}^{n} \varphi_c(p, x(p))(p - n_1 + m - 1)^{(m-1)} + \varphi_c(k+1, t)(k-n_1+m)^{(m-1)} \right], & k \ge n_1, \\ t - u(n_1 - m + l - 1) - \varphi_c(n_1, t), & k = n_1 - 1, \end{cases}$$

in exactly the same way as the previous one we can show that

$$h[x(k)] \le 0, \quad h[u(k+1)] \ge 0.$$

Hence there exists $v_0 \in \langle x(k), u(k+1) \rangle$ such that $h(v_0) = 0$ i.e. the solution x of Eq. (11) is defined for n = k+1 and $x(k+1) = v_0 \leq u(k+1)$. Thus by induction, the solution x of (11) with initial condition $x(n_1-1) = u(n_1-m+l-1)$ is defined for all $n \geq n_1-1$ and $x(n) \leq u(n)$ which contradicts assumption 3^0 .

Proof of property B.

Let u be a nonoscillatory solution of (1) and let u(n) > 0 for $n \ge n_0$. Then, by Lemma 2, it follows that one of the following three cases holds:

- (i) m is even and the inequalities (3) hold for l = 0,
- (ii) the inequality (3) hold for l > 0 with m + l even,
- (iii) the inequalities (7) hold.

In the cases (i) and (ii) the proofs are the same as the previous one.

Case (iii). We show that $\lim_{n\to\infty} \Delta^i u(n) = \infty$ for $i=0,1,\ldots,m-1$. By (7), there exists $\eta > 0$ such that $u(n) \geq \eta n^{m-1}$, $n \geq n_1$. On the other hand, it follows from (10) that

$$\Delta^m u(n) \ge \varphi_c(n, u(n)) \ge \varphi_c(n, \eta n^{m-1}), \ n \ge n_1.$$

This in turn implies

$$\Delta^{m-1}u(n) - \Delta^{m-1}u(n_1) \ge \sum_{k=n_1}^{n-1} \varphi_c(k, \eta k^{m-1}) \longrightarrow \infty \text{ as } n \longrightarrow \infty,$$

which gives our assertion. This complies the proof.

Corollary 1. Suppose that the following conditions hold

- 1º condition (a) [condition (b)],
- 2^0 for every c>0 there exist a nondecreasing continuous function $\varphi_c:$ $(0,\infty)\longrightarrow (0,\infty)$ and $a_c:\mathcal{N}\longrightarrow R_+$ such that

$$|f(n, x_1, \dots, x_m)| \ge a_c(n)\varphi_c(|x_1|) \text{ on } (D_c)$$

and

(15)
$$\sum_{n=0}^{\infty} n^{m-1} a_c(n) = \infty, \quad \int_{-\infty}^{\infty} \frac{ds}{\varphi_c(s)} < \infty.$$

Then Eq. (1) has property A [property B].

Proof. It suffices to show that for any $n_0 \in \mathcal{N}$ the equation

$$\Delta x(n-1) = \frac{1}{(m-1)!} (n - n_0 + m - 1)^{(m-1)} a_c(n) \varphi_c(x(n))$$

does not have a positive solution for sufficiently large n. Suppose that this equation has a positive solution for $n \ge n_1 \ge n_0$. Then we have

$$\frac{1}{(m-1)!}(n-n_0+m-1)^{(m-1)}a_c(n) = \frac{x(n)-x(n-1)}{\varphi_c(x(n))} \le \int_{x(n-1)}^{x(n)} \frac{ds}{\varphi_c(s)}.$$

Summing the above inequality leads to a contradiction.

Corollary 2. Suppose there exists a function $a: \mathcal{N} \longrightarrow R_+$ such that

$$f(n, x_1, ..., x_m)$$
 sign $x_1 \le -a(n)|x_1|$
 $[f(n, x_1, ..., x_m)$ sign $x_1 \ge a(n)|x_1|],$

on $\mathcal{N} \times R^m$ and there exists a nondecreasing function $w : \mathcal{N} \longrightarrow (0, \infty)$ such that

(16)
$$\sum_{n=0}^{\infty} \frac{1}{nw(n)} < \infty, \quad \sum_{n=0}^{\infty} \frac{n^{m-1}a(n)}{w(n)} = \infty.$$

Then Eq. (1) has property A [property B].

Proof. Note, that the inequality (14) holds, where the functions

$$a_c(n) = a(n)/w(n), \quad \varphi_c(x) = xw\left[\left(\frac{x}{c}\right)^{\frac{1}{m-1}}\right]$$

satisfy the assumption (15).

In fact, for $0 < x_1 < cn^{m-1}$ we have

$$f(n, x_1, ..., x_m) \le -a(n)x_1 = -\frac{a(n)}{w(n)}x_1w(n)$$

 $\le -a_c(n)x_1w\Big[(\frac{x_1}{c})^{\frac{1}{m-1}}\Big],$

i.e. the inequality (14) and, by (16), we obtain

$$\sum_{n=0}^{\infty} a_c(n) n^{m-1} = \sum_{n=0}^{\infty} \frac{a(n)}{w(n)} n^{m-1} = \infty,$$

$$\int_{-\infty}^{\infty} \frac{ds}{sw\left[\left(\frac{s}{c}\right)^{\frac{1}{m-1}}\right]} = (m-1) \int_{-\infty}^{\infty} \frac{dt}{tw(t)} < \infty.$$

Thus the condition (15) is satisfied.

References

- 1. R. P. Agarwal, Properties of solutions of higher order nonlinear difference equations, An. Sti. Univ. Iasi, 31 (1985), 165-172.
- 2. R. P. Agarwal, Properties of solutions of higher order nonlinear difference equations II, An. Sti. Univ. Iasi, 29 (1983), 85-96.
- 3. R. P. Agarwal, Difference calculus with applications to difference equations, in General Inequalities 4, ISNM 71, (1984), 95-110.
- 4. R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, Inc., New York, (1992).
- 5. I. T. Kiguradze, On the conditions for oscillation of solutions of nonlinear differential equations I (Russian), Differencial'nye Uravnenija, 10 (1974), 1387-1399.
- 6. I. T. Kiguradze, Some Singular Boundary Value Problems for Ordinary Differential Equations, Tbilisi Univ. Press, Tbilisi, (1975) (Russian).
- 7. Z. H. Li, A note on the oscillatory property for nonlinear difference equations and differential equations, J. Math. Anal. Appl., 103 (1984), 344-352.
- 8. E. Thandapani, Oscillation theorems for higher order nonlinear difference equations, Indian J. Pure Appl. Math., 25 (1994), 519-524.
- 9. A. Wyrwińska, Oscillation criteria of a higher order linear difference equation, Bull. Inst. Math., Acad. Sinica, 22 (1994), 259-266.

Institute of Mathematics, Poznań University of Technology, 60-965 Poznań, Poland.