SOME MINIMAX THEOREMS ON SET FUNCTIONS

BY

WEI SHEN HSIA AND TAN-YU LEE

Abstract. Some minimax theorems of set functions similar to those of Terkelson [7] and Fan [6] but under different and non-comparable convexity conditions are established in this paper.

1. Introduction. Let (X, A, m) be a measure space. For $\Omega \in A$, let χ_{Ω} denote the characteristic function of Ω . Morris [5] showed that if (X, A, m) is finite, atomless and $L_1(X, A, m)$ is separable, then for any $\Omega, \Lambda \in A$ and $\lambda \in I = [0,1]$, there exists a sequence $\{\Gamma_n\} \subset A$ such that $\chi_{\Gamma_n} \xrightarrow{w^*} \lambda \chi_{\Omega} + (1-\lambda)\chi_{\Lambda}$, where $\xrightarrow{w^*}$ denotes weak* convergence in L_{∞} . The sequence $\{\Gamma_n\}$ is called a Morris-sequence associated with $\langle \lambda, \Omega, \Lambda \rangle$. A subfamily $C \subset A$ is said to be convex if for every $\langle \lambda, \Omega, \Lambda \rangle \in I \times C \times C$ and every Morris sequence $\{\Gamma_n\}$ associated with it, there exists a subsequence $\{\Gamma_{n_k}\}$ in C; and a set function $F:C \longrightarrow R$ is said to be convex if $\limsup_{k \to \infty} F(\Gamma_{n_k}) \le \lambda F(\Omega) + (1-\lambda)F(\Lambda)$. Also, a set function G is said to be concave if G is convex. For more detailed discussion of basic properties of convex set functions, the readers are referred to [1, 2, 3].

In this note, we shall establish minimax theorems of set functions similar to those of Terkelsen [7] and Fan [4], while the convexity conditions are not comparable.

2. Minimax Theorems. When there is no danger of ambiguity, we shall identify $\Omega \in \mathcal{A}$ with χ_{Ω} in L_{∞} . It is shown in [2] that the w^* -closure

Received by the editors April 25, 1995 and in revised form April 24, 1996. AMS subject classification:

of \mathcal{A} in L_{∞} , $\overline{\mathcal{A}} = \{ f \in L_{\infty} | |f| \leq 1 \}$, is w^* -compact and is the w^* -closed convex hull of A. Note that since \overline{A} is w^* -compact and L_1 is separable by assumption, $\overline{\mathcal{A}}$ is metrizable.

A set function F defined on $S \subset A$ is said to be w^* -lower semicontinuous (1.s.c) if $F(\Omega) = \overline{F}(\Omega)$ for all $\Omega \in \mathcal{S}$ where \overline{F} is defined on $\mathcal{S} \subset L_{\infty}$ as

$$\overline{F}(f) = \sup_{V \in N(f)} \inf_{\Omega \in V \cap \mathcal{S}} F(\Omega) \quad \text{for} \quad f \in \overline{\mathcal{A}},$$

where N(f) denotes the family of all w^* -neighborhood of f in $\overline{\mathcal{A}}$. F is said to be w^* -continuous if both F and -F are w^* -l.s.c.. And if F is w^* -continuous, then \overline{F} is the unique w^* -continuous extension of F on \overline{S} .

Let \mathcal{F} be a collection of w^* -continuous set functions defined on $\mathcal{S} \subset \mathcal{A}$. \mathcal{F} is said to be w^* -equicontinuous on \mathcal{S} , if $\overline{\mathcal{F}} = {\overline{F} | F \in \mathcal{F}}$, the collection of w^* -continuous extension of set functions in \mathcal{F} , is w^* -equicontinuous on the w^* -compact subset $\overline{\mathcal{S}}$ of L_{∞} .

The following well-known lemma (e.g. see [7] establishes the minimax equality for collection of real-valued functions defined on a compact set.)

Lemma 2.1. Let X be a compact space, and let \mathcal{F} be a collection of l.s.c. real-valued functions defined on X. The following are equivalent:

- (i) For any $\alpha \in R$ and any finite non-empty subset \mathcal{G} of \mathcal{F} such that $\alpha < \underset{x \in X}{\operatorname{minmax}} F(x), \text{ there exists } H \in \mathcal{F} \text{ with } \alpha \leq \underset{x \in X}{\operatorname{min}} H(x).$
- (ii) $\sup_{F \in \mathcal{F}} \min_{x \in X} F(x) = \min_{x \in X} \sup_{F \in F} F(x).$

Lemma 2.2 below is a set-function version of Lemma 2.1.

Lemma 2.2. Let \mathcal{F} be a collection of w^* -equicontinuous real-valued set functions defined on $S \subset A$. The following are equivalent:

- (i) For any $\alpha \in R$ and any finite non-empty subset $\mathcal G$ of $\mathcal F$ such that $\begin{array}{l} \alpha < \inf_{\Omega \in \mathcal{S}} \max_{F \in \mathcal{G}} F(\Omega), \ there \ exists \ H \in \mathcal{F} \ \ with \ \alpha \leq \inf_{\Omega \in \mathcal{S}} H(\Omega). \\ (\mathrm{ii}) \quad \sup_{F \in \mathcal{F}} \inf_{\Omega \in \mathcal{S}} F(\Omega) = \inf_{\Omega \in \mathcal{S}} \sup_{F \in \mathcal{F}} F(\Omega) \end{array}$

Proof. Let $\overline{\mathcal{F}}$ be the w^* -continuous extension of \mathcal{F} . Then $\overline{\mathcal{F}}$ is w^* equicontinuous on \overline{S} . Note that for any non-empty subset $\mathcal{G} \subset \mathcal{F}$, the w^* - equicontinuity asserts that the function $f \longmapsto \sup_{F \in \mathcal{G}} \overline{F}(f)$ is w^* -continuous on $\overline{\mathcal{S}}$. If \mathcal{G} is also finite, then we have

$$\min_{f \in \overline{\mathcal{S}}} \max_{F \in \mathcal{G}} F(f) = \inf_{\Omega \in \mathcal{S}} \max_{F \in \mathcal{G}} F(\Omega).$$

Therefore, if condition (i) holds for \mathcal{F} and \mathcal{G} , then condition (i) of Lemma 2.1 holds for $\overline{\mathcal{F}}$ and $\overline{\mathcal{G}}$. It follows from Lemma 2.1 that (i) implies $\sup_{F \in \mathcal{F}} \min_{f \in \overline{\mathcal{S}}} \overline{F}(f)$ = $\min_{f \in \overline{\mathcal{S}}} F(f)$, hence $\sup_{F \in \mathcal{F}} \inf_{\Omega \in \mathcal{S}} F(\Omega) = \inf_{\Omega \in \mathcal{S}} \sup_{F \in \mathcal{F}} F(\Omega)$. This shows that (i) \Longrightarrow (ii). The converse is trivial.

As an immediate consequence, we have

Theorem 2.1. Let \mathcal{F} be a collection of w^* -equicontinuous real-valued set functions defined on $S \subset \mathcal{A}$. Furthermore, if \mathcal{F} is directed with respect to the relation \leq , i.e., if for any $F, G \in \mathcal{F}$ there exists an $H \in \mathcal{F}$ with $F \leq H$ and $G \leq H$. Then

$$\sup_{F \in \mathcal{F}} \inf_{\Omega \in \mathcal{S}} F(\Omega) = \inf_{\Omega \in \mathcal{S}} \sup_{F \in \mathcal{F}} F(\Omega).$$

Corollary 2.1. Let $\{F_n\}$ be an ascending sequence of w^* -equicontinuous set functions on $S \subset A$. Then

$$\lim_{n\to\infty}\inf_{\Omega\in\mathcal{S}}F_n(\Omega)=\inf_{\Omega\in\mathcal{S}}\lim_{n\to\infty}F_n(\Omega).$$

Example 2.1. Let $\{f_n\}$ be an ascending sequence of equicontinuous functions on [0,1], and let $F_n: \mathcal{S} \longrightarrow R$ be defined by $F_n(\Omega) = \int_{\Omega} f_n$ where \mathcal{S} is a subfamily of Lebesgue-measurable sets in [0,1]. Then since $\{F_n\}$ satisfies the hypothesis of Corollary 2.1, we have

$$\lim_{n\to\infty}\inf_{\Omega\in\mathcal{S}}\int_{\Omega}f_n=\inf_{\Omega\in\mathcal{S}}\lim_{n\to\infty}\int_{\Omega}f_n.$$

When convexity condition is present, the directed order condition can be weakened.

Theorem 2.2. Let \mathcal{F} be a collection of w^* -equicontinuous real-valued convex set functions on a convex subfamily $\mathcal{S} \subset \mathcal{A}$. Then $\sup_{F \in \mathcal{F}} \inf_{\Omega \in \mathcal{S}} F(\Omega) =$

inf sup $F(\Omega)$, if for any $F,G\in\mathcal{F}$, there exists $H\in\mathcal{F}$ such that $F+G\leq \Omega\in\mathcal{F}$ 2H.

The next minimax theorem on set functions is free of topological structures, which is an application of Fan's minimax theorem (Theorem 3 [4]) dealing with almost periodic functions on product sets. A real-valued function F defined on the product set $X \times Y$ of two arbitrary sets X, Y is said to be right almost periodic, if F is bounded on $X \times Y$ and if, for any $\epsilon > 0$, there exists a finite convering $Y = \bigcup_{k=1}^m Y_k$ of Y such that $|F(x,y') - F(x,y'')| < \epsilon$ for all $x \in X$, whenever y', y'' belong to the same Y_k . Left almost periodic functions are defined similarly. Since every right almost periodic function on $X \times Y$ is also left almost periodic and vice versa, we may simply use the term almost periodic.

Theorem 2.3. Let F be a real-valued almost periodic function defined on the product of $A \times B$ where A and B are convex subfamilies of some finite, atomless measure spaces with L_1 -separable. Then

$$F(\Gamma_{\ell}^1, \Lambda_1) \leq \lambda F(\Omega_1, \Lambda_1) + (1 - \lambda)F(\Omega_2, \Lambda_1) + \epsilon$$

Since $\limsup_{\ell\to\infty} F(\Gamma^1_\ell, \Lambda_2) < \lambda F(\Omega_1, \Lambda_2) + (1-\Lambda)F(\Omega_2, \Lambda_2)$, we may find a subsequence $\{F^2_\ell\}$ of $\{F^1_\ell\}$ such that $F(\Gamma^2_\ell, \Lambda_1) \leq \lambda F(\Omega_1, \Lambda_2) + (1-\lambda)F(\Omega_2, \Lambda_2) + \epsilon$. Continue this process m times, the subsequence $\{\Gamma^m_\ell\}$ of $\{\Gamma_\ell\}$ satisfies:

$$F(\Gamma_{\ell}^{m}, \Lambda_{j}) \leq \lambda F(\Omega_{1}, \Lambda_{j}) + (1 - \lambda)F(\Omega_{2}, \Lambda_{j}) + \epsilon$$

for all $1 \leq j \leq m$.

This shows the case for n=2.

Now assume that it is true for n. Let $\xi_i \geq 0, i = 1, 2, \dots, n+1$ and $\sum_{i=1}^{n+1} \xi_i = 1$ with $\xi_{n+1} \neq 1$. Let $\lambda = 1 - \xi_{n+1}$ and $\lambda_i = \frac{\xi_i}{\lambda}$ for $i = 1, 2, \dots, n$.

Then
$$\lambda_i \geq 0$$
 and $\sum_{i=1}^n \lambda_i = \frac{\sum_{i=1}^n \xi_i}{\lambda} = 1$. Let $\Gamma \in \mathcal{A}$ be such that

$$F(\Gamma, \Lambda_j) \le \sum_{i=1}^n \lambda_i F(\Omega_i, \Lambda_j) + \epsilon \text{ for } 1 \le j \le m.$$

Choose $\Omega_0 \in \mathcal{A}$ so that

$$F(\Omega_0, \Lambda_j) \le \lambda F(\Gamma, \Lambda_j) + (1 - \lambda)F(\Gamma, \Lambda_j) + (1 - \lambda)\epsilon, \quad 1 < j \le m.$$

It follows that

$$F(\Omega_0, \Lambda_j) \le \sum_{i=1}^{n+1} \xi_i F(\Omega_i, \Lambda_j) + \epsilon \quad \text{for} \quad 1 \le j \le m.$$

The claim is thus proved.

Since F is concave on \mathcal{B} , i.e., -F is convex on \mathcal{B} , there exists $\Lambda_0 \in \mathcal{B}$ such that

(3)
$$F(\Omega_i, \Lambda_0) \ge \sum_{j=1}^m \eta_j F(\Omega_i, \Lambda_j) - \epsilon$$

for all $1 \leq i \leq n$.

Combining (1), (2) and (3), it follows that

$$F(\Omega_0, \Lambda_i) \le F(\Omega_i, \Lambda_0) + 2\epsilon \quad (1 \le i \le n, \ 1 \le j \le m).$$

Since ϵ is arbitrary, the proof is complete.

Remark: If $u: X_1 \times X_2 \longrightarrow R$ is almost periodic and $F_i: A_i \longrightarrow X_i$ is a set function for i = 1, 2. Then the function $G: A_1 \times A_2 \longrightarrow R$ defined by $G(\Omega, \Lambda) = u(F_1(\Omega), F_2(\Lambda))$ is almost periodic.

References

- 1. J.H. Chou, W.S. Hsia, and T.Y. Lee, Second order optimality conditions for mathematical approgramming with set functions, J. Austr. Math. Society, ser. B, 26 (1985), 284-292.
- 2. J.H. Chou, W.S. Hsia, and T.Y. Lee, Epigraphs of convex set functions, J. Math. Anal. Appl. 118(1986), 247-254.
- 3. J.H. Chou, W.S. Hsia, and T.Y. Lee, Convex programming with set functions, Rocky Mountain J. of Math. 17(1987), 535-543.
- 4. K. Fan, Minimax theorems, Proceedings of the National Academy of Sciences, 39 (1953), 42-47.
- 5. R.J.T. Morris, Optimal constrained selection of a measurable subset, J. Math. Anal. Appl. 80(1979), 546-562.
- 6. J. von Neumann and Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), 295-320.
 - 7. F. Terkelsen, Some minimax theorems, Math. Scad. 51(1972), 405-413.

Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487, U.S.A.