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SOME MINIMAX THEOREMS ON SET FUNCTIONS

BY

WEI SHEN HSIA AND TAN-YU LEE

Abstract. Some minimax theorems of set functions simi-
lar to those of Terkelson [7] and Fan [6] but under different and
non-comparable convexity conditions are established in this pa-
per.

1. Introduction. Let (X, A, m) be a measure space. For Q € A, let xn
denote the characteristic function of . Morris [5] showed that if (X,.4,m)
is finite, atomless and L,(X,.A,m) is separable, then for any Q,A € A and
A € I = [0,1], there exists a sequence {I'y} C A such that xr, —ui)\xg +
(1—-A)xa, where 7, denotes weak* convergence in L..,. The sequence {I',, }
is called a Morris-sequence associated with (A, €, A). A subfamily C C A
is said to be convex if for every (\,Q,A) € I x C x C and every Morris
sequence {I',} associated with it, there exists a subsequence {I's,} in C;
and a set function F' : C — R is said to be convex if imsup,_, ., F(T'yn,) <
AF(Q) + (1 — A)F(A). Also, a set function G is said to be concave if —G
is convex. For more detailed discussion of basic properties of convex set
functions, the readers are referred to [1,2,3].

In this note, we shall establish minimax theorems of set functions similar
to those of Terkelsen [7] and Fan [4], while the convexity conditions are not

comparable.

2. Minimax Theorems. When there is no danger of ambiguity, we

shall identify © € A with xq in Loo. It is shown in [2] that the w*-closure

Received by the editors April 25, 1995 and in revised form April 24, 1996.
AMS subject classification:

29



30 WEI SHEN HSIA AND TAN-YU LEE [March

of Ain Loy, A= {f € Loo| |f| < 1}, is w*-compact and is the w*-closed
convex hull of A. Note that since A is w*-compact and L, is separable by
assumption, A is metrizable.

A set function F defined on § C A is said to be w*-lower semicontinuous
(1.s.¢) if F(Q) = F(Q) for all Q € S where F is defined on S C L, as

F(f)= sup inf F(Q) for fe€A,
VEN(f) QEVNS

where N(f) denotes the family of all w*-neighborhood of f in A. F is said to
be w*-continuous if both F' and —F are w*-l.s.c.. And if F is w*-continuous,
then F is the unique w*-continuous extension of F on S.

Let F be a collection of w*-continuous set functions defined on S C A.
F is said to be w*-equicontinuous on S, if F = {F|F € F}, the collection of
w*-continuous extension of set functions in F, is w*-equicontinuous on the
w*-compact subset S of L.

The following well-known lemma (e.g. see [7] establishes the minimax

equality for collection of real-valued functions defined on a compact set.)

Lemma 2.1. Let X be a compact space, and let F be a collection of
l.s.c. real-valued functions defined on X. The following are equivalent:
(i) For any o € R and any finite non-empty subset G of F such that
a< gg)r(u}gggF(m), there exists H € F with o < géi}r}H (z).

(ii) supmin F(z) = minsup F(z).
FeF zeX z€X FeF

Lemma 2.2 below is a set-function version of Lemma 2.1.

Lemma 2.2. Let F be a collection of w*-equicontinuous real-valued set
functions defined on S C A. The following are equivalent:
(i) For any a € R and any finite non-empty subset G of F such that
a < inf maxF(Q), there exists H € F with o < inf H(Q).
QESFEG Qes
(ii) supinf F(Q) = infsup F(Q)
FeF Qes Q€S FeF
Proof. Let F be the w*-continuous extension of F. Then F is w*-

equicontinuous on S. Note that for any non-empty subset G C F, the w*-



1997] SOME MINIMAX THEOREMS ON SET FUNCTIONS 31

equicontinuity asserts that the function f — supF(f) is w*-continuous on
Feg

S. If G is also finite, then we have

min max F'(f) = inf max F(Q).
f€S Feg Qes Feg

Therefore, if condition (i) holds for 7 and G, then condition (i) of Lemma 2.1
holds for  and G. It follows from Lemma 2.1 that (i) implies sup minF(f)
FeF fes

= min sup F(f), hence supinf F() = infsup F(). This shows that
f€S FeF FeF Qes QeS FeF
(i)==(ii). The converse is trivial.

As an immediate consequence, we have

Theorem 2.1. Let F be a collection of w*-equicontinuous real-valued
set functions defined on S C A. Furthermore, if F is directed with respect to
the relation <, i.e., if for any F,G € F there exists an H € F with F < H
and G < H. Then

supinf F(Q) = infsup F(Q).
FeF Qes Q€S FeF
Corollary 2.1. Let {F,,} be an ascending sequence of w*equicontinuous

set functions on S C A. Then

lim inf F,(Q) = inf lim F,(Q).
Qes QeSS n—o0

n—oo

Example 2.1. Let {f,} be an ascending sequence of equicontinuous
functions on [0,1], and let F,, : S — R be defined by F,,(Q) = [, f» where
S is a subfamily of Lebesgue-measurable sets in [0,1]. Then since {F,}

satisfies the hypothesis of Corollary 2.1, we have

dim gat [ do = jpt i [ g
When convexity condition is present, the directed order condition can

be weakened.

Theorem 2.2. Let F be a collection of w*-equicontinuous real-valued

convez set functions on a conver subfamily S C A. Then supinf F(2) =
FeF Qes
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infsup F(), if for any F,G € F, there exists H € F such that F + G <
Q€S FeF
2H.

The next minimax theorem on set functions is free of topological struc-
tures, which is an application of Fan’s minimax theorem (Theorem 3 [4])
dealing with almost periodic functions on product sets. A real-valued func-
tion F defined on the product set X x Y of two arbitrary sets X, Y is said to
be right almost periodic, if F' is bounded on X X Y and if, for any € > 0, there
exists a finite convering Y = U™, Y} of Y such that |F(z,y") - F(z, Y] <e
for all z € X, whenever y',y" belong to the same Y;. Left almost periodic
functions are defined similarly. Since every right almost periodic function
on X x Y is also left almost peﬁodic and vice versa, we may simply use the

term almost periodic.

Theorem 2.3. Let F be a real-valued almost periodic function defined
on the product of Ax B where A and B are convex subfamilies of some finite,

atomless measure spaces with Li-separable. Then

F(I}, AL S AF(Qq, A1) + (1 = M) F(Q2, A1) + €

Since limsup,_, ., F(T}, A2) < AF(Q1,A2) + (1 = A)F(Q2, Az), we may
find a subsequence {Fj} of {F3} such that F{3 A1) <AF(Q,A2)+(1 -
M) F(€y,As)+e. Continue this process m times, the subsequence {T7} of
{T,} satisfies:

F(IP,A;) < AF(Q4,A5) + (1= N F(Q2,45) + €
forall1 <7 <m.

This shows the case for n = 2.

Now assume that it is true for n. Let & > 0,7 = 1,2,...,n+ 1 and
n+41

S & =1with oy # 1. Let A=1—¢nyr and X = S fori=1,2,...,n.

=1
Then )\; > 0 and Z)\i = z—jl—g—— =1. Let T € A be such that

=1

F(T,A;) <> NF(Qi,Ay)+€ for 1<j<m.

i=1
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Choose 25 € A so that
F(Qo,A;) SAF(T,A) + (1 = NF(T,A) +(1=Ne, 1<j<m.

It follows that
n+1

F(Qo,45) < ZfiF(Qi,AJ‘) +e for 1<j<m.
i=1

The claim is thus proved.

Since F is concave on B, i.e., —F is convex on B, there exists Ay € B

such that
(3) | (i, Ao) > Z F(Qu,A4)

foralll1 <i:<n.
Combining (1), (2) and (3), it follows that

Since ¢ is arbitrary, the proof is complete.

Remark: If u: X; X Xo — R is almost periodic and F; : A; — X;
is a set function for i =1,2. Then the function G : A; X Ay — R defined
by G(Q, A) = uw(F1(Q2), Fy (A)) is almost periodic.
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