INDEPENDENCE PROPERTY OF POLYNOMIALS IN PRIME RINGS

BY

TSIU-KWEN LEE (李秋坤)

Abstract. In this paper we consider the independence property of polynomials in prime rings with assumptions on one-sided ideals. The following result is proved.

Let R be a prime ring with extended centroid C, λ a left ideal of R and let $g_i(X_1, \ldots, X_t)$, $i = 1, \ldots, k$, be polynomials in $C\{X\}$, the free C-algebra in noncommuting indeterminates in $X = \{X_1, X_2, \ldots\}$. Assume that a_1, \ldots, a_k are C-independent elements in RC.

- (I) Suppose that $\sum_{i=1}^k a_i g_i(X_1, \ldots, X_t)$ is a GPI of λ . Then each $X_{t+1} g_i(X_1, \ldots, X_t)$ is a PI of λ for $i = 1, \ldots, k$.
- (II) Suppose that $\sum_{i=1}^{k} a_i g_i(X_1, \ldots, X_t)$ is central-valued on λ but is not a GPI of λ . Then each $g_i(X_1, \ldots, X_t)$ is central-valued on RC unless $R \cong M_2(GF(2))$ and $k \geq 2$.

In [13] Regev proved an analogue of a theorem of Amitsur for central polynomials. More precisely, Regev proved the theorem: Let Φ be an infinite field, $f(X_1, \ldots, X_t)$ and $g(Y_1, \ldots, Y_m)$ two polynomials over Φ in two disjoint indeterminates sets $\{X_1, \ldots, X_t\}$ and $\{Y_1, \ldots, Y_m\}$. Assume that $f(X_1, \ldots, X_t)g(Y_1, \ldots, Y_m)$ is central but is not an identity for $M_k(\Phi)$, the $k \times k$ matrix ring over Φ . Then both f and g are central polynomials for $M_k(\Phi)$. In [8] Kovacs gave the theorem a brief proof by using [7, Theorem 8] together with a famous theorem of Amitsur [1, Theorem 4]. The arguments given by Regev and Kavacs do depend on the infinity of the field Φ . In fact, the result is independent of the infinity of Φ as pointed out by Chuang. In [3]

Received by the editors November 15, 1995 and in revised form February 28, 1996. 1991 Mathematics Subject Classifications: Primary 16R50, 16N60.

Key Words and Phrases: Prime ring, extended centroid, PI, GPI.

Chuang proved the following natural generalization without the assumption that Φ is infinite.

20

Theorem (Chuang). Let Φ be a field, $n \geq 2$, and let I_n be the T-ideal of polynomial identities of $M_n(\Phi)$. For $i=1,\ldots,k$, let $f_i(X_1,\ldots,X_t)$ and $g_i(Y_1,\ldots,Y_m)$ be polynomials with coefficients in Φ and in noncommuting indeterminates in the disjoint sets $\{X_1,\ldots,X_t\}$ and $\{Y_1,\ldots,Y_m\}$ respectively. Assume that the polynomial $\sum_{i=1}^k f_i(X_1,\ldots,X_t)g_i(Y_1,\ldots,Y_m)$ is central on $M_n(\Phi)$. Then, except only when $k \geq 2$, n=2 and $\Phi=GF(2)$, the Galois field with two elements, the following hold:

- (1) If $f_i(X_1, ..., X_t)$, i = 1, ..., k, are Φ -independent modulo I_n , then all $g_i(Y_1, ..., Y_m)$, i = 1, ..., k, must be central on $M_n(\Phi)$.
- (2) If both the sets $\{f_i(X_1,\ldots,X_t)|i=1,\ldots,k\}$ and $\{g_i(Y_1,\ldots,Y_m)|i=1,\ldots,k\}$ are Φ -independent modulo I_n , then all $f_i(X_1,\ldots,X_t)$ and $g_i(Y_1,\ldots,Y_m)$, $i=1,\ldots,k$, must be central on $M_n(\Phi)$.

On the other hand, recall that a ring R is called prime if every nonzero left ideal of R has no nonzero left annihilators. In [4] Chuang and Lee extended this to a polynomial form. They proved the result: Let R be a prime algebra over a commutative ring K with unity, λ a left ideal of R and $g(X_1, \ldots, X_t)$ be a polynomial over K in noncommuting indeterminates X_1, \ldots, X_t . If $a \in R$ is such that $ag(x_1, \ldots, x_t) = 0$ for all $x_i \in \lambda$, then either a = 0 or $\lambda g(x_1, \ldots, x_t) = 0$ for all $x_i \in \lambda$.

The objective of this paper is then to generalize the definition of primeness to a polynomial form with finite sum and to consider Chuang's theorem in the context of prime rings. More precisely, we obtain the following result.

Theorem 1. Let R be a prime ring with extended centroid C, λ a left ideal of R and let $g_i(X_1, \ldots, X_t)$, $i = 1, \ldots, k$, be polynomials in $C\{X\}$, the free C-algebra in noncommuting indeterminates in $X = \{X_1, X_2, \ldots\}$. Assume that a_1, \ldots, a_k are C-independent elements in RC.

(I) Suppose that $\sum_{i=1}^k a_i g_i(X_1, \dots, X_t)$ is a GPI of λ . Then each $X_{t+1}g_i(X_1, \dots, X_t)$ is a PI of λ for $i = 1, \dots, k$.

(II) Suppose that $\sum_{i=1}^{k} a_i g_i(X_1, \ldots, X_t)$ is central-valued on λ but is not a GPI of λ . Then each $g_i(X_1, \ldots, X_t)$ is central-valued on RC unless $R \cong M_2(GF(2))$ and $k \geq 2$.

In what follows, R always denotes a prime ring with extended centroid C. Let $C\{Z\}$ be the free C-algebra in noncommuting indeterminates in $Z = \{X_1, X_2, \ldots; Y_1, Y_2, \ldots\}$. For the simplicity of notation, if $T \subseteq RC$ and $f(X_1, \ldots, X_t) \in C\{Z\}$, we denote by f(T) the additive subgroup of RC generated by all elements of the form $f(a_1, \ldots, a_t)$ with $a_1, \ldots, a_t \in T$. Now we start the proof of Theorem 1 with some observations.

Lemma 1. Let R be a prime ring with extended centroid C and let I be a nonzero ideal of RC. Suppose that a_1, \ldots, a_n are C-independent elements in RC. Then there exists an element $h \in I$ such that ha_1, \ldots, ha_n are C-independent.

Proof. Note that if R is not a PI-ring, then by [11, Lemma 3] we are done. So we assume that R is a PI-ring. Then by Posner's theorem RC is a finite-dimensional central simple C-algebra and hence I = RC. In this case, we can choose h = 1. This completes the proof.

Lemma 2. Theorem 1 (I) holds when $RC \cong M_n(C)$ for some $n \geq 1$.

Proof. We may suppose that $\lambda \neq 0$ and $n \geq 2$. According to [11, Lemma 2] λ and λC satisfy the same GPIs. Therefore replacing λ with λC we may assume from the start that λ is a left ideal of $RC \cong M_n(C)$. So $\lambda = RCe$ for some idempotent $e \in \lambda$. Denote by $\{e_{ij}|1 \leq i,j \leq n\}$ a complete set of matrix units in RC, i.e., $e_{ij}e_{k\ell} = \delta_{jk}e_{i\ell}$ for all $1 \leq i,j,k,\ell \leq n$ and $\sum_{i=1}^n e_{ii} = 1$. Choose an invertible element $u \in RC$ such that $ueu^{-1} = e_{11} + \cdots + e_{mm}$, where $m = \operatorname{rank}(e)$. Since $ua_1u^{-1}, \ldots, ua_ku^{-1}$ are still C-independent, we may assume further that $\lambda = RCe$ with $e = e_{11} + \cdots + e_{mm}$. Note that $k \leq n^2$ since $\dim_C RC = n^2$. If $k < n^2$, then we can choose $n^2 - k$ elements a_{k+1}, \ldots, a_{n^2} in RC such that $\{a_1, \ldots, a_{n^2}\}$ forms a basis for RC over C. In this case, set $f_i(X_1, \ldots, X_t) = 0$ for i > k. Hence we may always

assume that $k=n^2$. Since the two bases $\{a_1,\ldots,a_{n^2}\}$ and $\{e_{ij}|1\leq i,j\leq n\}$ can be transformed each other via an invertible $n^2\times n^2$ matrix with entries in C, therefore we may assume that $\{a_1,\ldots,a_{n^2}\}=\{e_{ij}|1\leq i,j\leq n\}$. Rearrange these $f_i(X_1,\ldots,X_t),\,i=1,\ldots,n^2,\,$ as $g_{ij}(X_1,\ldots,X_t),\,1\leq i,j\leq n$. Then we have that $\sum_{1\leq i,j\leq n}e_{ij}g_{ij}(X_1,\ldots,X_t)$ is a GPI of λ . Clearly, for each $i=1,\ldots,n$, we have that $\sum_{j=1}^ne_{ij}g_{ij}(X_1,\ldots,X_t)$ is a GPI of λ . Let $x_i\in\lambda,\,i=1,\ldots,t$ and let $1< k\leq n$. Then $(1+e_{k1})x_i(1-e_{k1})\in\lambda$ for $i=1,\ldots,t$ and hence

$$0 = \sum_{j=1}^{n} e_{ij} g_{ij} ((1 + e_{k1}) x_1 (1 - e_{k1}), \dots, (1 + e_{k1}) x_t (1 - e_{k1}))$$

$$= \sum_{j=1}^{n} e_{ij} (1 + e_{k1}) g_{ij} (x_1, \dots, x_t) (1 - e_{k1})$$

$$= \sum_{j=1}^{n} e_{ij} g_{ij} (x_1, \dots, x_t) (1 - e_{k1}) + e_{i1} g_{ik} (x_1, \dots, x_t) (1 - e_{k1})$$

$$= e_{i1} g_{ik} (x_1, \dots, x_t) (1 - e_{k1}),$$

since $\sum_{j=1}^{n} e_{ij}g_{ij}(x_1,\ldots,x_t) = 0$ by assumption. But $1 - e_{k1}$ is invertible, we have that $e_{i1}g_{ik}(X_1,\ldots,X_t)$ is a GPI of λ for k > 1. By [4, Lemma 3] $\lambda g_{ik}(\lambda) = 0$ for k > 1. In particular, $eg_{ik}(x_1,\ldots,x_t) = 0$, that is, $g_{ik}(ex_1,\ldots,ex_t) = 0$. Now

$$0 = \sum_{j=1}^{n} e_{ij} g_{ij}(ex_1, \dots, ex_t) = e_{i1} g_{i1}(ex_1, \dots, ex_t)$$
$$= e_{i1} eg_{i1}(x_1, \dots, x_t) = e_{i1} g_{i1}(x_1, \dots, x_t).$$

Applying [4, Lemma 3] again yields that $\lambda g_{i1}(\lambda) = 0$. So we have proved that $\lambda g_{ij}(\lambda) = 0$ for $1 \leq i, j \leq n$. This completes the proof.

Proof of Theorem 1.

We first prove (I). According to the C-independence of a_1, \ldots, a_k , each $g_i(X_1, \ldots, X_t)$ has no constant term. Also, we may assume that these polynomials $g_i(X_1, \ldots, X_t)$ are blended in X_1, \ldots, X_t . We define the height of a polynomial in $C\{Z\}$ as given in [6, p.15]. Set $h = \sum_{i=1}^k \operatorname{ht}(g_i)$. Proceed

the proof by induction on h. For the case h=0, each $g_i(X_1,\ldots,X_t)$ is multilinear. Let $x_1,\ldots,x_t,y\in\lambda$. Then

$$[y, g_i(x_1, \dots, x_t)] = \sum_{s=1}^t g_i(x_1, \dots, [y, x_s], \dots, x_t).$$

So we have

$$0 = \sum_{s=1}^{t} \sum_{i=1}^{k} a_i g_i(x_1, \dots, [y, x_s], \dots, x_t)$$

$$= \sum_{i=1}^{k} a_i [y, g_i(x_1, \dots, x_t)]$$

$$= \sum_{i=1}^{k} a_i y g_i(x_1, \dots, x_t) - \sum_{i=1}^{k} a_i g_i(x_1, \dots, x_t) y$$

$$= \sum_{i=1}^{k} a_i y g_i(x_1, \dots, x_t).$$

Let $z \in R$. Then $zy \in \lambda$. The above implies that $\sum_{i=1}^k a_i zy g_i(x_1, \ldots, x_t) = 0$. By [12, Theorem 2(a)], $yg_i(x_1, \ldots, x_t) = 0$ for $i = 1, \ldots, k$. That is, $\lambda g_i(\lambda) = 0$ for $i = 1, \ldots, k$.

Assume next that h > 1. There is no loss of generality in assuming that $\operatorname{ht}(g_1) > 0$ and that $\deg(g_1) = \deg_{x_1}(g_1) > 1$. Denote by \tilde{g}_i the linearlization of g_i at X_1 , i.e.,

$$\tilde{g}_i(Y_1, X_1, \dots, X_t)
= g_i(X_1 + Y_1, X_2, \dots, X_t) - g_i(X_1, X_2, \dots, X_t) - g_i(Y_1, X_2, \dots, X_t).$$

Then $\sum_{i=1}^k a_i \tilde{g}_i(Y_1, X_1, \dots, X_t)$ is a GPI of λ with height less than h. By inductive hypothesis, in particular, $Y_2 \tilde{g}_1(Y_1, X_1, \dots, X_t)$ is a PI of λ . By [10, Proposition] $\lambda C = He$, where H stands for the socle of RC and e is an idempotent in H. By Lemma 1 we can choose an element $v \in H$ such that va_1, \dots, va_t are still C-independent. Note that λC and λ satisfy the same GPIs with coefficients in RC by [11, Lemma 2]. So replacing λ and a_1, \dots, a_k by λC and va_1, \dots, va_k respectively, we may assume that $\lambda = He$ and that $a_i \in H$ for $i = 1, \dots, k$. By Litoff's theorem [5, p.90], there exists

an idempotent $u \in H$ such that $e, a_1, \ldots, a_k \in uHu$. Also, R satisfies a nontrivial GPI, since λ satisfies a nontrivial PI. So Martindale's theorem implies that $uHu = M_n(D)$, where D is a finite-dimensional central division algebra over C. Choose a maximal subfield L of D. Then

$$(uHu)\lambda \otimes_C L = (uHu)e \otimes_C L = uHe \otimes_C L \subseteq uHu \otimes_C L \cong M_q(L)$$

for some $q \geq 1$. Note that $(uHu)\lambda \otimes_C L$ is a left ideal of $(uHu)\otimes_C L$. Also, $(uHu)\lambda \otimes_C L$ still satisfies $\sum_{i=1}^k a_i g_i(X_1,\ldots,X_t)$. Indeed, if C is a finite field, then D=C=L by Wedderburn's theorem on finite division rings. If C is an infinite field, this case can be proved by a standard arguments; see, for instance, [6, Lemma 1, p.89] for the PI case and [9, Proposition] for the GPI case. Applying Lemma 2 to the present case yields that $(uHe \otimes_C L)g_i(uHe \otimes_C L)=0$ and hence $eg_i(He)=0$ since $e\in uHe$. That is, $\lambda g_i(\lambda)=0$ for $i=1,\ldots,k$. This proves (I).

For (II), by [11, Lemma 2] $\sum_{i=1}^{k} a_i g_i(X_1, \ldots, X_t)$ is central-valued on λC but is not a GPI of λC . Therefore $\lambda C = RC$. Suppose that $g_i(X_1, \ldots, X_t)$ is not a PI of RC for some i. We may assume that $g_i(X_1, \ldots, X_t)$ is not a PI of RC for $i=1,\ldots,k$. Then $[Y_1,\sum_{i=1}^k a_ig_i(X_1,\ldots,X_t)]$ is a nontrivial GPI of RC. Martindale's theorem [12, Theorem 3] implies that RC is a strongly primitive ring. Denote by H the socle of RC. Since $\sum_{i=1}^k a_i g_i(X_1, \dots, X_t)$ is central-valued on RC but is not a GPI of RC and C is a field, $1 \in RC$ follows. By [2, Theorem 2], H and RC satisfy the same GPIs. So $1 \in H$. Recall that H itself is s simple ring with minimal right ideals. Therefore $H = RC = M_n(D)$ for some $n \ge 1$, where D is a finite-dimensional central division algebra over C. Take a maximal subfield L of D. As before, $\sum_{i=1}^k a_i g_i(X_1,\ldots,X_t)$ is central-valued on $H\otimes_C L$. Note that $H\otimes_C L\cong$ $M_{n\ell}(L)$, where $[D:C]=\ell^2$. By [3, Lemma 1], each $g_i(X_1,\ldots,X_t)$ is central-valued on $H \otimes_C L$ and hence on H = RC unless $RC \cong M_2(GF(2))$. Note that $RC \cong M_2(GF(2))$ if and only if $R \cong M_2(GF(2))$. Finally, we settle the case when $R \cong M_2(GF(2))$ and k = 1. Denote by A the set $\{a_1g_1(x_1,\ldots,x_t)|x_1,\ldots,x_t\in R\}$. Then clearly $A=\{0,1\}$ since C=GF(2).

So we have $ua_1u^{-1}=a_1$ for all invertible elements $u \in R$. This implies that $a_1 \in C$. Note that $a_1 \neq 0$. Therefore $g_1(X_1, \ldots, X_t)$ is central-valued on R. This finishes the proof of the theorem.

Remarks. 1. In Theorem 1 (I) we cannot conclude that each $g_i(X_1, \ldots, X_t)$ is a PI of λ for $i = 1, \ldots, k$. Indeed, let $R = M_n(F)$, n > 1, where F is a field, and let $\lambda = Re$, where e is an idempotent of R of rank k, $1 \le k < n$. Denote by $S_{2k}(X_1, \ldots, X_{2k})$ the standard polynomial of degree 2k. Then by the Amitsur-Levitzki theorem $X_{2k+1}S_{2k}(X_1, \ldots, X_{2k})$ is a PI of λ but clearly $S_{2k}(X_1, \ldots, X_{2k})$ is not a PI of λ .

2. In Theorem 1 (II) the exceptional case does occur by Chuang's example [3, p.239]. Indeed, let $R = M_2(GF(2))$. Choose $h(X) = X^2(X+1)^2 = (X^2+X+1)^2+1$ and let $f_1(X) = Xh(X)$, $f_2(X) = f_1(X)^2$, and $a = e_{11} + e_{12} + e_{21}$. Then $af_1(X) + a^2f_2(x)$ is central-valued on R but a and a^2 are GF(2)-independent.

As an immediate consequence of Theorem 1 we can consider Chuang's theorem in the context of prime rings. To give its precise statement we need one more terminology. Let λ be a left ideal of prime ring R. The polynomials $f_i(X_1,\ldots,X_t)\in C\{X\},\ i=1,\ldots,k$, are called properly C-independent modulo the identities of λ if they satisfy the following condition: If $\delta_1,\ldots,\delta_k\in C$ satisfy that $X_{t+1}\sum_{i=1}^k \delta_i f_i(X_1,\ldots,X_t)$ is a PI of λ then $\delta_i=0$ for all $i=1,\ldots,k$,.

Theorem 2. Let R be a prime ring with extended centroid C, λ a left ideal of R and let $g_i(X_1, \ldots, X_t) \in C\{X\}$, $i = 1, \ldots, k$, be properly C-independent modulo the identities of λ .

- (I) Let $a_1, \ldots, a_k \in RC$ be such that $\sum_{i=1}^k a_i g_i(X_1, \ldots, X_t)$ is a GPI of λ . Then $a_i = 0$ for $i = 1, \ldots, k$.
- (II) Let $a_1, \ldots, a_k \in RC$ be such that $\sum_{i=1}^k a_i g_i(X_1, \ldots, X_t)$ is central-valued on λ but is not a GPI of λ . Then $a_i \in C$, $i = 1, \ldots, k$, unless $R \cong M_2(GF(2))$ and $k \geq 2$.

Proof. We first prove (I). Suppose on the contrary that $a_i \neq 0$ for some

i. If a_1, \ldots, a_k are C-independent, then we are done by Theorem 1 (I). So we may assume that a_1, \ldots, a_k are C-dependent. Without loss of generality, we may assume that for some $1 \leq k' < k, \ a_1, \ldots, a_{k'}$ is a maximal C-independent subset of $\{a_1, \ldots, a_k\}$. Write $a_j = \sum_{s=1}^{k'} \beta_{js} a_s$ for $k' < j \leq k$, where $\beta_{js} \in C$. Then

$$\sum_{i=1}^{k'} a_i \Big[g_i(X_1, \dots, X_t) + \sum_{j=k'+1}^{k} \beta_{ji} g_j(X_1, \dots, X_t) \Big]$$

is a GPI of λ . By Theorem 1 (I), $Y_1[g_1(X_1,\ldots,X_t)+\sum\limits_{j=k'+1}^k\beta_{j1}g_j(X_1,\ldots,X_t)]$ is a PI of λ , which is absurd since the $g_i(X_1,\ldots,X_t)$, $i=1,\ldots,k$, are properly C-independent modulo the identities of λ . This proves (I).

For the proof of (II) we proceed the proof by induction on k. For k=1, we have that $a_1g_1(X_1,\ldots,X_t)$ is central-valued on λ but is not a GPI of λ . By Theorem 1 (II), $g_1(X_1,\ldots,X_t)$ is central-valued on λ . But $g_1(X_1,\ldots,X_t)$ is not a PI of λ , $a_1\in C$ follows. Now suppose that R (and hence RC) is not isomorphic to $M_2(GF(2))$. Suppose that a_1,\ldots,a_k are C-independent. Then by Theorem 1 (II) each $g_i(X_1,\ldots,X_t)$ is central-valued on RC. Note that in this case $\lambda C = RC$. Hence $\sum_{i=1}^k a_1g_i(X_1,\ldots,X_t)$ is central-valued on RC. Let $x_1,\ldots,x_t,y\in RC$. Then

$$0 = \left[a_1 y, \sum_{i=1}^k a_i g_i(x_1, \dots, x_t)\right] = \sum_{i=1}^k \left[a_1 y, a_i\right] g_i(x_1, \dots, x_t).$$

By (I), $[a_1y, a_i] = 0$ for i = 1, ..., k. That is, $[a_1R, a_i] = 0$] which implies $a_i \in C$. Hence we are done. So we may assume that $a_1, ..., a_k$ are C-dependent. As before, we may assume that there exist k', $1 \le k' < k$, such that $\{a_1, ..., a_{k'}\}$ is a maximal C-independent subset of $\{a_1, ..., a_k\}$. Write $a_j = \sum_{s=1}^{k'} \beta_{js} a_s$ for j > k', where $\beta_{js} \in C$. Then

$$\sum_{i=1}^{k'} a_i \Big[g_i(X_1, \dots, X_t) + \sum_{j=k'+1}^{k} \beta_{ji} g_j(X_1, \dots, X_t) \Big]$$

is central-valued on λ but is not a GPI of λ . By inductive hypothesis, $a_i \in C$ for i = 1, ..., k' since the $g_i(X_1, ..., X_t) + \sum_{j=k'+1}^k \beta_{ji} g_j(X_1, ..., X_t)$, i = 1, ..., k'

 $1, \ldots, k'$, are still properly C-independent modulo the identities of λ . So k' = 1. That is, $a_i = \beta_i a_1$ for $i = 2, \ldots, n$, where $\beta_i \in C$. So $a_i[g_1(X_1, \ldots, X_t) + \sum_{i=2}^k \beta_i g_i(X_1, \ldots, X_t)]$ is central-valued on λ but is not GPI of λ . Now this is just the case of length one. So $a_1 \in C$. This finishes the proof of Theorem 2.

As an immediate application of Theorem 2 Chuang's theorem can be obtained in the context of prime rings.

Theorem 3. Let R be a prime ring with extended centroid C, λ a left ideal of R and let $f_i(X_1, \ldots, X_t)$ and $g_i(Y_1, \ldots, Y_m)$, $i = 1, \ldots, k$, be polynomials in $C\{Z\}$. Suppose that the $g_i(Y_1, \ldots, Y_m)$, $i = 1, \ldots, k$, are properly C-independent modulo the identities of λ .

- (I) Suppose that $\sum_{i=1}^k f_i(X_1, \ldots, X_t) g_i(Y_1, \ldots, Y_m)$ is a PI of λ . Then each $f_i(X_1, \ldots, X_t)$ is PI of λ for $i = 1, \ldots, k$.
- (II) Suppose that $\sum_{i=1}^k f_i(X_1, \ldots, X_t) g_i(Y_1, \ldots, Y_m)$ is central-valued on λ but is not a PI of λ . Then each $f_i(X_1, \ldots, X_t)$ is central-valued on RC unless $R \cong M_2(GF(2))$ and $k \geq 2$.

References

- S. A. Amitsur, The T-ideals of the free ring, J. London Math. Soc., 30 (1955), 470-475.
- 2. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
- 3. C. L. Chuang, An independence property of central polynomials, Pacific J. Math., 148 (1991), 237-249.
- 4. C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 24 (1996), 177-185.
 - 5. N. Jacobson, Structure of Rings, AMS Colloq. Publications 47 (2nd ed), 1964.
- N. Jacobson, PI-algebras, an Introduction, Lecture Notes in Mathematics 441, Springer-Verlag Berlin/Yew York.
- 7. A. Kovacs, On the nonexistence of hypercommuting polynomials, Proc. Amer. Math. Soc., 66 (1977), 241-246.
 - 8. A. Kovacs, A note on central polynomials, Math. Japonica 25 (1980), 589.
- 9. P. H. Lee and T. L. Wong, *Derivations cocentralizing Lie ideals*, Bull. Inst. Math. Academia Sinica 23 (1995), 1–5.
- 10. T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloquium, 3(1) (1996), 19–24.
- 11. T. K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc., 347 (1995), 3159-3165.

12. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.

13. A. Regev, A primeness property for central polynomials, Pacific J. Math., 83 (1979), 269-271.

Department of Mathematics, National Taiwan University, Taipei, Taiwan 10764. E-mail address: tklee@math.ntu.edu.tw