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INDEPENDENCE PROPERTY OF
POLYNOMIALS IN PRIME RINGS
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Abstract. In this paper we consider the independence
property of polynomials in prime rings with assumptions on one-
sided ideals. The following result is proved.

Let R be a prime ring with extended centroid C, A a left
ideal of R and let g;(X1,...,X;), ¢ =1,...,k, be polynomials in
C{X}, the free C-algebra in noncommuting indeterminates in
X = {X1,X2,...}. Assume that ai1,...,a; are C-independent
elements in RC.

(I) Suppose that Z:;l a;9i(X1,...,X¢) is a GPI of \. Then
each X:419:(Xy,...,X:)isaPlof A fori=1,... k.

(I1) Suppose that Z:;l a;gi(X1,...,X,) is central-valued on )\
but is not a GPI of . Then each g; (X1,...,X4) is central-valued
on RC unless R = M,(GF(2)) and k > 2.

In [13] Regev proved an analogue of a theorem of Amitsur for central
polynomials. More precisely, Regev proved the theorem: Let @ be an infi-
nite field, f(Xy,...,X;) and ¢(Y3,...,Y,,) two polynomials over @ in two
disjoint indeterminates sets {Xi,...,X;} and {Y1,...,Yn}. Assume that
f(X1,..., X:)g(Y1,...,Yy) is central but is not an identity for My (®), the
k X k matrix ring over ®. Then both f and g are central polynomials for
M} (®). In [8] Kovacs gave the theorem a brief proof by using [7, Theorem 8]
together with a famous theorem of Amitsur [1, Theorem 4]. The arguments
given by Regev and Kavacs do depend on the infinity of the field ®. In fact,
the result is independent of the infinity of @ as pointed out by Chuang. In [3]
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Chuang proved the following natural generalization without the assumption
that ® is infinite.

Theorem (Chuang). Let ® be a field, n > 2, and let I, be the T-1deal
of polynomial identities of M, (®). Fori=1,...,k, let fi(Xl, .., X) and
gi(Y1,-..,Ym) be polynomials with coefficients in ® and in noncommuting
indeterminates in the disjoint sets {Xy,...,X;} and {Y1,..., Y} respec-
tively. Assume that the polynomial Zle fi(X1,. o, Xe)gi (Y1, ..., Yim) 18
central on M, (®). Then, except only when k > 2, n =2 and & = GF(2),
the Galois field with two elements, the following hold :

) If fi(X1,...,Xs), ¢ = 1,...,k, are ®-independent modulo I,,, then all
gi(Y1,..., V), i =1,...,k, must be central on M,(®).
(2) If both the sets {fi(X1,...,Xe)li = 1,...,k} and {g:(Y1,...,Y)li =
1,...,k} are ®-independent modulo I, then all fi(Xy,...,X¢) and
g (Y1, Ym), i =1,...,k, must be central on M,(®).

On the other hand, recall that a ring R is called prime if every nonzero
left ideal of R has no nonzero left annihilators. In [4] Chuang and Lee
extended this to a polynomial form. They proved the result: Let R be
a prime algebra over a commutative ring K with unity, A a left ideal of R
and g(X1,...,X;) be a polynomial over K in noncommuting indeterminates
X1,...,X¢. If a € R is such that ag(zy,...,2¢) = 0 for all z; € A, then
either & = 0 or Ag(xy,...,2¢) =0 for all z; € A.

The objective of this paper is then to generalize the definition of prime-
ness to a polynomial form with finite sum and to consider Chuang’s theorem

in the context of prime rings. More precisely, we obtain the following result.

Theorem 1. Let R be a prime ring with eztended centroid C, A a left
ideal of R and let g;(X1,...,Xs), i1 = 1,...,k, be polynomials in C{X},
the free C-algebra in noncommuting indeterminates in X = {X;,Xs,...}.
Assume that ay,...,ar are C-independent elements in RC.

(I) Suppose that Zle a;9;(Xy,...,Xs) is a GPI of A\. Then each
Xiv19:(X1,..., Xt) tsa Pl of A fori=1,...,k.
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(IT) Suppose that Zi;l a;g;(X1,...,Xt) is central-valued on )\ but is not a
GPI of A. Then each ¢;(Xi,...,X;) ts central-valued on RC unless R =
My(GF(2)) and k > 2.

In what follows, R always denotes a prime ring with extended centroid
C. Let C{Z} be the free C-algebra in noncommuting indeterminates in
Z = {X1,Xs,...;Y1,Ys,...}. For the simplicity of notation, if T C RC
and f(Xi,...,X;) € C{Z}, we denote by f(T) the additive subgroup of
RC generated by all elements of the form f(a,...,a:) with a1,...,a, € T.

Now we start the proof of Theorem 1 with some observations.

Lemma 1. Let R be a prime ring with extended centroid C and let I be
a nonzero ideal of RC. ' Suppose that a1,...,a, are C-independent elements
in RC. Then there exists an element h € I such that hay,...,ha, are

C-independent.

Proof. Note that if R is not a Pl-ring, then by [11, Lemma 3] we are
done. So we assume that R is a PI-ring. Then by Posner’s théorem RC is a
finite-dimensional central simple C-algebra and hence I = RC'. In this case,

we can choose h = 1. This completes the proof.
Lemma 2. Theorem 1 (I) holds when RC = M,(C) for some n > 1.

Proof. We may suppose that A # 0 and n > 2. According to [11,
Lemma 2] A and AC satisfy the same GPIs. Therefore replacing A with A\C
we may assume from the start that A is a left ideal of RC = M,,(C). So A =
RCe for some idempotent e € A. Denote by {e;;|]1 < 7,7 < n} a complete
set of matrix units in RC, i.e., e;jexe = Ojre;e for all 1 < 4,5,k, £ < n and
Z?:l e;; = 1. Choose an invertible element u € RC such that weu™! =
ei1 + -+ + emm, where m = rank(e). Since ua;u™!,...,uaru"?! are still C-
indepeﬁdent, we may assume further that A = RCewithe=e11+ - +emm.
Note that k£ < n? since dimg RC = n?. If £ < n?, then we can choose n? —k
elements ax41,...,0a,2 in RC such that {ai,...,a,2} forms a basis for RC

over C. In this case, set f;(X1,...,X:) =0 for i > k. Hence we may always
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assume that k = n?. Since the two bases {a1,...,a,2} and {e;;|1 <4,7 < n}
can be transformed each other via an invertible n? x n? matrix with entries
in C, therefore we may assume that {a1,...,a,2} = {e;;|1 < 4,5 < n}.
Rearrange these f;(Xi,...,X:), i =1,...,n2, as ¢;;(X1,..., X¢), 1 < 4,5 <
n. Then we have that lei,an €i;gij(X1,...,X:) is a GPI of A. Clearly,
for each 7 = 1,...,n, we have that Z;-;l eij9ij(X1,...,X¢) is a GPI of A.
Let z; € \,i=1,...,t and let 1 < k < n. Then (1 + ex1)z;(1 —ex1) € A for

1=1,...,t and hence

T
v
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P

€i;gi; (1 + er1)r1(1 — ex1), ..., (14 ep1)zs(1 — 1))
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N

6,']'(1 + ekl)gij(xl, e ,.’Et)(l — ekl)

[
Il
i

€ij9i;(x1, -, 2e)(1 — ex1) + €19k (21, - - . ,ﬂft)(‘1 —ep1)

1
® .
i M:
I,

i19ik(T1, - - -, Te)(1 — ex1), ‘

since Z;;l €:;9i;(x1,...,2¢) = 0 by assumption. But 1 — e is invertible,
we have that e;;9:(X1,...,X¢) is a GPI of A for k > 1. By [4, Lemma 3]
Agik(A) = 0 for k > 1. In particular, eg;z(z1,...,2:) = 0, that is, g;x(exq,

...,exy) = 0. Now

n .
0= Zeijgij(exl, o, eTy) = engin(exy,. .., ext)
Jj=1
= €i1€9i1(%1,- -, Tt) = €i1gi1(T1, - - -, Te)-

Applying [4, Lemma 3] again yields that Ag;;(X) = 0. So we have proved
that Ag;;(A) =0 for 1 < 4,5 < n. This completes the proof.

Proof of Theorem 1.

We first prove (I). According to the C-independence of ay,...,a, each
9:(X1,...,X¢) has no constant term. Also, we may assume that these poly-
nomials g;(Xi,...,X;) are blended in X;,..., X;. We define the height of
a polynomial in C{Z} as given in [6, p.15]. Set h = 21;1 ht(g;). Proceed
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the proof by induction on h. For the case h = 0, each ¢;(Xy,...,X}) is

multilinear. Let xq,...,2;, ¥ € A. Then

[v,9:(z1,...,2¢)] = Zgi(a;l,...,[y,acs],...,act).

So we have

t k |
OZZZ%% 1?1, yvxS] “’xt)

s=1 i=1

k
= Zai[y>gi($17' .. 7xt)]
i=1

k k
= Zaiygi(xl, ce X)) — Z a;9i(Z1,. .-, T)Y

k
= Z a'iygi(x17 “e 7xt)‘
=1

Let z € R. Then zy € X. The above implies that Zle a;2yg; (z1,...,2¢) =
0. By [12, Theorem 2(a)], yg:(x1,...,2¢) = 0 for ¢ = 1,...,k. That is,
Agi(A)=0fori=1,... k.

Assume next that A > 1. There is no loss of generality in assuming that
ht(g:) > 0 and that deg(g;) = deg,, (g1) > 1. Denote by g; the linearlization
of g; at X4, i.e.,

gi(YlaXla"'aXt)
:gi(Xl +Y:, Xo,... ,Xt) — gi(Xl,Xg,. .. ,Xt) — gi(Yl,Xg, e ,Xt).

Then Zle a;3; (Y1, X1,...,X¢) is a GPI of A with height less than h. By
inductive hypothesis, in particular, Y3§,(Yy, X1,...,X;) is a PI of A. By
[10, Proposition] AC = He, where H stands for the socle of RC and e is
an idempotent in H. By Lemma 1 we can choose an element v € H such
that vay,...,vas are still C-independent. Note that AC and X satisfy the
same GPIs with coefficients in RC by [11, Lemma 2]. So replacing A and
ai,...,ar by AC and vay,...,va, respectively, we may assume that )\ = He
and that a; € H for i = 1,..., k. By Litoff’s theorem [5, p.90], there exists
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an idempotent © € H such that e,a1,...,ar € uHu. Also, R satisfies
a nontrivial GPI, since \ satisfies a nontrivial PI. So Martindale’s theorem
implies that uHu = M, (D), where D is a finite-dimensional central division

algebra over C. Choose a maximal subfield L of D. Then
(uHu)A ®¢ L = (uHu)e ®c L =uHe @c L C uHu ®c L = My(L)

for some ¢ > 1. Note that (uHu)A®¢ L is a left ideal of (uHu) ®¢c L. Also,
(uHu)A ®c L still satisfies 5, a;0:(X1,...,X:). Indeed, if C is a finite
field, then D = C = L by Wedderburn’s theorem on finite division rings.
If C is an infinite field, this case can be proved by a standard arguments;
see, for instance, [6, Lemma 1, p.89] for the PI case and [9, Proposition| for
the GPI case. Applying Lemma 2 to the present case yields that (uHe ®¢
L)g;(uHe ®c L) = 0 and hence eg;(He) = 0 since e € uHe. That is,
Agi(A\) =0 for i =1,...,k This proves (I).

For (II), by [11, Lemma 2] Zle a;9:(X1, ..., X:) is central-valued on
AC but is not a GPI of AC. Therefore AC = RC. Suppose that g;(X3,..., Xy)
is not a PI of RC for some i. We may assume that g;(X1,..., X;) is not a PI
of RC for i =1,...,k. Then V1,5, a;0:(X1,-. ., X;)] is a nontrivial GPI
of RC. Martindale’s theorem [12, Theorem 3] implies that RC is a strongly
primitive ring. Denote by H the socle of RC. Since Zle a;9:(X1,...,X¢)
is central-valued on RC but is not a GPI of RC and C is a field, 1 € RC
follows. By [2, Theorem 2|, H and RC satisfy the same GPIs. So 1 € H.
Recall that H itself is s simple ring with minimal right ideals. Therefore
H = RC = M, (D) for some n > 1, where D is a finite-dimensional cen-
tral division algebra over C. Take a maximal subfield L of D. As before,
'Zi.;l a;g;(X1,...,X¢) is central-valued on H ®c L. Note that H ®@¢ L =
Moe(L), where [D : C] = 2. By [3, Lemma 1], each g;(X1,...,X,) is
central-valued on H ®¢ L and hence on H = RC unless RC = M5(GF(2)).
Note that RC = M,(GF(2)) if and only if R & M>(GF(2)). Finally, we
settle the case when R = M,(GF(2)) and k¥ = 1. Denote by A the set
{aig1(z1,-- ., z¢)|21,. .., 2, € R}. Then clearly A = {0,1} since C = GF(2).
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So we have uaju™!

= @ for all invertible elements v € R. This implies that
a; € C. Note that a; # 0. Therefore g;(Xi,...,X:) is central-valued on R.

This finishes the proof of the theorem.

Remarks. 1. In Theorem 1 (I) we cannot conclude that each ¢;( X1,
..., Xy)isaPlof Afori=1,...,k Indeed, let R = M,(F), n > 1, where
F is a field, and let A = Re, where e is an idempotent of R of rank &,
1 < k < n. Denote by Sar(Xy,...,Xa) the standard polynomial of degree
2k. Then by the Amitsur-Levitzki theorem Xog41S9k(X1,..., Xox) is a PI
of X\ but clearly Sor(Xi,...,Xok) is not a PI of A.
2. In Theorem 1 (II) the exceptional case does occur by Chuang’s example
[3, p.239]. Indeed, let R = M5(GF(2)). Choose h(X) = X*(X +1)* =
(X2 + X +1)%+1 and let f1(X) = XA(X), fo(X) = f1(X)?, and a =
11 + €12 + e21. Then afi(X) + a?fa(z) is central-valued on R but a and a?
are GF(2)-independent.

As an immediate consequence of Theorem 1 we can consider Chuang’s
theorem in the context of prime rings. To give its precise statement we
need one more terminology. Let A be a left ideal of prime ring R. The
polynomials fi(X1,...,X;) € C{X}, ¢ = 1,...,k, are called properly C-
independent modulo the identities of X if they satisfy the following condition:
If 61,...,6, € C satisfy that X1 Sor_y 8:fi(X1,..., X:) is a PI of A then
§;=0foralli=1,...,k,

Theorem 2. Let R be a prime ring with extended centroid C, X a
left ideal of R and let g;(X1,...,X:) € C{X}, i = 1,...,k, be properly
C-independent modulo the identities of A.

(1) Let as,...,ar € RC be such that S, aigi(X1,...,X:) is a GPI of A,
Then a; =0 fori=1,...,k.

(IT) Let ay, .. .,ar € RC be such that Zle a;9:(X1,...,Xs) is central-valued
on \ but is not a GPI of A. Thena; € C,i=1,...,k, unless R = My(GF(2))
and k > 2.

Proof. We first prove (I). Suppose on the contrary that a; # 0 for some
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¢. If a1,...,ar are C-independent, then we are done by Theorem 1 (I). So
we may assume that ay, ..., ax are C-dependent. Without loss of generality,
we may assume that for some 1 < &' < k, ay,...,a5 is a maximal C-
independent subset of {ai,...,az}. Write a; = Z’:I:l Bjsas for k' < j <k,
where §8;, € C. Then

kl

> a; [gi(X17 o Xe) + zk: Biigi(X1, ... ,Xt)]

i=1 j=k'+1

isa GPI of A. By Theorem 1 (I), Y1[g1(X1,... » Xe)+ i B519;( X1, ..., Xt)]
is a PI of A, which is absurd since the gi(Xl,...],_;c(:r)t t = 1,...,k, are
properly C-independent modulo the identities of A. This proves (I).

For the proof of (II) we proceed the proof by induction on k. For
k = 1, we have that a;91(X3y,...,X;) is central-valued on A\ but is not a
GPI of A\. By Theorem 1 (II), ¢1(Xy,...,X;) is central-valued on . But
91(X1,...,Xt) is not a PI of A, a; € C follows. Now suppose that R (and
hence RC) is not isomorphic to Ma(GF(2)). Suppose that a1, ..., ay are C-
independent. Then by Theorem 1 (II) each g;(X1,..., X;) is central-valued
on RC. Note that in this case A\C = RC. Hence Zle a19(X1,...,Xz) is
central-valued on RC. Let zy,...,z;,y € RC. Then

k k
0= [alyuzaigi(xly---axt)] = Z[alyaai]gi(xla---axt)‘
i=1 i=1

By (I), [a1y,0;] = 0 for i = 1,...,k. That is, [a; R, a;] = 0] which implies
a; € C. Hence we are done. So we may assume that ai,...,ar are C-
dependent. As before, we may assume that there exist &', 1 < & < k, such
that {a1,...,ax } is a maximal C-independent subset of {a1,...,ar}. Write
a; = Zf,:l Bjsas for j > k', where B;; € C. Then

kl

Zai [gi(Xl, ey X))+ i Bji9; (X1, ... ,Xt)]

i=1 j=k'+1
is central-valued on A but is not a GPI of A\. By inductive hypothesis, a; € C
for ¢ = 1,...,k' since the g;(Xy,...,X;) + Zj’::k’-l-l B9 (X1,..., X)), i =
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1,..., k', are still properly C-independent modulo the identities of . So k' =
1. That is, a; = fiaq for i =2,...,n, where 3; € C. So a;[g:(X1,...,X:) +
Zf;z Bigi(X1,...,X:)] is central-valued on X but is not GPI of A\. Now
this is just the case of length one. So a; € C. This finishes the proof of

Theorem 2.

As an immediate application of Theorem 2 Chuang’s theorem can be

obtained in the context of prime rings.

Theorem 3. Let R be a prime ring with extended centroid C, X a
left ideal of R and let fi(X1,...,X:) and g;(Y1,.-.,Ym), @ = 1,...,k, be
polynomials in C{Z}. Suppose that the g;(Y1,...,Yn), 1 = 1,....k, are
properly C-independent'modulo the identities of A.

(I) Suppose that Zle fi(X1,..., X)g:(Y1,...,Y.) is a PI of A\. Then each
filX1,..., X)) isPLof A fori=1,... k.

(IT) Suppose that Zle filX1, ..., Xe)gi(Y1,...,Ym) is central-valued on A
but is not a PI of A. Then each f;(X1,...,X:) is central-valued on RC
unless R =2 My(GF(2)) and k > 2.
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