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Abstract. Let X, X;, X2,... be independent, identically
distributed random variables with P(X = 1) =p =1~ P(X =0)

for some 0 < p < 1. For n =1,2,..., the random variables
N, =inf{j > 0: Xn4; = 0}

are called the number of runs. Newman (cf. Feller (1950, p.210)
or Chow and Teicher (1988, p.61)) proved that

lim sup = =1 a.s.

s 00 logl/p n

Pattern after Chow, Teicher, Wei and Yu (1981), we have the
following result. Let (K,,n > 1) be a subsequence of positive
integers, and (K., = K, (C),n > 1) is a thinner subsequence of
(Kn,n > 1) such that

K, 1(C) = inf{Kpm : Km > K,, + Clogy,, K,,}

for some C > 0. Then

N
En -1 a.s.

limsup ———— =
IOgl/p Kn

n—o0

iff forevery 0 < 8 < 1

Z K (C)™ = oo.
n=1

1. Introduction. In 1981, Chow, Teicher, Wei and Yu proved the fol-

lowing result on the iterated logarithm law with subsequences: Let ¥7,Y5,. ..
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be independent, identically distributed random variables, EY; = 0, EY? =1
and W, = Z;;l Y;. Let (i,,n > 1) be a subsequence of positive integers,
and (i,,n > 1) be a thinner subsequence defined by

. P U . c

i1 = inf {zm D > 0L €XD @}

for some C > 0 and all n > ng > 2. Then

in

limsup ——=—==1 a.=s.
n—oo 4/ 271n 10g2 in
iff for every 0 < 8 < 1
Z(logi;)_ﬂ = 0.
n=1

Motivated by their work, we will establish the following Theorem 1. Let
X, X3, Xs,... beindependent, identically distributed random variables with
PX=1)=p=1-P(X =0)forsome 0 <p<1l Forn=12,... the

random variables
N, =inf{j > 0: X,,4,; =0}

are called the number of runs. Newman (cf. Feller (1950, p.210) or Chow
and Teicher (1988, p.61)) proved that

. N,
limsup =1 a.s.
n—oo 1Og1/p n

For a given subsequence (K,,n > 1) of positive integers, we are interested
in the necessary and sufficient conditions for

. Nk,
lim sup

— =1 a.S.
n—oo ]'Ogl/p Kn

To do that, we need the concept of a thinner subsequence of (K,,n > 1)
which was introduced by Qualls (1974). Let (K,,,n > 1) be a subsequence
of positive integers and C > 0. Define (K, = K, (C),n > 1) by K| = K;,
K} = Ky and for n > 2

(1) K., 1(C) = inf{Ky, : Km > K, + Clog, ,, KL}
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The subsequence (K, (C),n > 1) is called the thinner subsequence of (K,
n > 1) for a given C.

Theorem 1. Let (K,,n > 1) be a subsequence of positive integers.
Then

N
(2) lim sup Ko =1 as.

n—oco 1081/, Kn

iff for some (and then for all) C > 0, the thinner subsequence (K] = K (C))
satisfies

(o o)

(3) ST KL = oo,

n=1

for every 0 < B < 1.
The proof of Theorem 1 will be given in the next section.

Remark. Without the idea of “thinner subsequence”, one would have

difficulties to formulate the necessary condition for the upper limit.
Corollary 1. If K,, =n", for somey>1andn=1,2,..., then

. Nk
4 limsup ——— < 1 a.s.
( ) n—00 Iogl/p Kn B

Proof. Obviously, for any C > 0, K], = K/(C) > K,, n = 1,2,....
Choose 0 < 3 < 1 such that v8 > 1. Then

o oo oo
SEP<SY KF =Y 0 <o
n=] n=1 n=1

By Theorem 1, (4) holds.

Corollary 2. Let K, = [nlog”(n + 2)}, for some vy >1 and alln > 1,

where [a] is the integral part of a. Then

’ N
(5) lim sup K. =1 a.s.

n-—0co 10'g1/p Kn
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Proof. There exists a positive integer ng such that for all n > ny,
Kny1=[(n+1)log"(n + 3)]
> nflog”(n + 3)] + [log”"(n+3)] — 1
> nflog”(n + 3)] + log(nlog” (n + 3))
1

> K, + §logKn.

Hence (K] = K,,n >'1) is a thinner subsequence defined by (2), with

C = zlog L. Since Y377, K7 = oo for every 0 < § < 1, by Theorem 1, we
have (5). k

2. Proof of Theorem 1. Before giving the proof of Theorem 1, we

need the following lemmas.

Lemma 1. For any 0 < 8 < 1, if

(6) Z K\ (Co) P =00 for some Cy > 0,
n=1
then
(7) Y K,C P =00 forallC>0.
n=1

Proof. By the definition of K (C), we know that
K, (C)< KL (C') for C">C

Hence (7) holds for all 0 < C' < Cj. To prove that (7) hold for all C > Cy,

we need to prove that

(®) S K200 = o

n=1
Since
Kén+2(c) Z Kén—l—l(c) + C'10g1/17 Kén—l—l(c)
2 Kén(c) + Clogl/p Kén(c) + C’logl/p Kén+1(c)
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If K3,(C) > K},(2C), then K}, ,,(C) > K.(20) + 2Clog,/, K,,(2C), and
hence K3,,,(C) > K;,,(20). Since K{(2Co) = K; < K, = K}(Cp),
K3, (Co) > K, (2Cy) for all n > 1, by induction. Hence

o0 = ZK;(C())—B
=2

= K5, (Co) P+ K1 (Co)~?

n=1 n=1

<2 K. (2Co)7F,

n=1

yielding (8).

Lemma 2. Let

(9) N " KL(C) P = oo for some C >0 and all 0 < B < 1.
n=1

Then

(10) lim sup _Nw >1 a.s.

— 00 ]'Ogl/p Kn

Proof. Let 0 < f < 1."Put a,, = [Blogy, K],

(11) P{Ng; > an} =p% > K, P,

{NI{;L ..>.. Oln} = {XK;L = 1,. .. ’X(K;L‘f‘an—l) = 1}

Now we choose C' = . K.,1(8) — KL(8) > Blogy,, Ki(B), Kiya(6) -
K,.(B)
> ap. Since (X,,n > 1) are independent and {Ng; > o} € o(Xkr,
XK g1y XK 4an—1), ({Nk: > 0az},n > 1) are independent.

By (9), (11) and the Borel-Cantelli theorem,

P{NK;L Z Ay 10} =1.
Hence

P{Ng: > fBlogy/, K, — 1, io.} =1
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Consequently,

. Nk, :
limsup ——=— > f3 a.s.
n—00 1Ogl/p Kn

for every 0 < 8 < 1. Therefore (10) holds.
Lemma 3. Let

N
lim sup Ko =1 a.s.

n—o0 ]‘Ogl/p Kn

Then for some C > 0,

EK,'I(C)_'B = o0 for every 0 < g < 1.

n=1

Proof. For a given 0 < § < 1, choose <y < 1. Put

(12) A, = {Ng, > vlogy/, Kn}.
By (2),
(13) P(A,, i0.) =1.

Let C=v-8, K, =K. (C),n" =(n+1) -1, and
(14) B, =J4;
Then by (13),

> P{B,} = cx.

For j = 1,2,3,...,and m = j+ 1,7 +2,...,if N; = kK > m — j, then
X; =1, X1 =1...,Xn =1,..., Xj4r-1 = 1, X;4x = 0. Therefore
Np=k—-(m-3j)=(G+k-1)—(m-1), and N; — N, = m—j. Of course,
if Nj <m —j, then N; — N, <m — j. Hence for some m > j,

(15) Nj—NmS'ITL—j.
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For every n’ < j < n”, on A;,

Nk, = Ng, + Ng_,, — Nk,
> (vlogy, Kj) — (Kuv — Kj)  (by (12) and (15))
> (vlogyy, Kj) — (Clogy, Knr)

> (vlogy, Kn) — (Clogy, Kn)

= flogy/, Kn'-
By (14), B, C {Nk,, > Blogy;, K, }. Hence
P{B,} < K.7",
and (3) holds.

Proof of Theorem 1. Assume that (3) holds. By Newman’s result, we
have

limsup —22 <1  as.
'n,—)oop 1Og1/P Kn -

and by Lemma 2,

N
lim sup B ICI |

- a.S.
— O 10g1/p Kn

Hence (2) holds. Now assume that (2) holds . Then by Lemma 3, (3) holds.
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